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Judy R. Franz
Department of Physics, Indiana University, Bloomington, Indiana 47405

(Received 5 May 1983; revised manuscript received 12 July 1983)

We have developed a theoretical model for expanded alkali metals and alkali-metal —rare-gas
films that is based on a physically realistic picture of the atomic-scale structure of these materials.
It emphasizes the disorder in the systems, in particular the random atomic coordination number.

Using this model we have calculated the density- and the energy-dependent conductivity as a func-
tion of the mean alkali-metal atomic coordination number. Although the theory contains only two

parameters, both of which are fixed by the properties of pure materials at normal temperatures, we

have been able to explain results measured over a temprature range from 4.2 to ~2000 K in a
variety of different alkali-metal systems. Conductivity and magnetic-susceptibility measurements,
in particular, have been considered in some detail. In addition, the theory provides insight into the
nature and location of the metal-insulator transition, the nature of the critical point for the alkali

metals, and the thermal instability of the alkali-metal —rare-gas films.

I. INTRODUCTION

Metal-insulator transitions have been studied with great
interest recently, and a variety of theoretical models have
been proposed to explain the experimental results in dif-
ferent materials. The metal-insulator transitions in dilute
alkali-metal systems such as expanded fluid alkali metals
and alkali-metal —rare-gas films appear to be particularly
favorable ones for testing theoretical models because of
the relative simplicity of the systems. The expanded al-
kali metals seem particularly simple, having only one
component and a half-filled s band. In these systems the
transitions have been found to occur at densities near the
liquid-gas critical point. ' Unfortunately the experiments
must thus be performed at extremely high temperatures
and pressures so that interesting features of the transition
may be smeared out. In contrast, experiments on alkali-
metal —rare-gas films are carried out at very low tempera-
tures, overcoming the problem of the expanded alkali met-
als, but now one must deal with a two-component system.
In considering the results of these latter experiments, it
has been common to consider the rare-gas atoms as inert
spacers between the alkali-metal atoms. Although this is
probably a good approximation, it is possible that small
interactions between the alkali-metal electrons and the
rare-gas atoms could affect the details of the metal-
insulator transitions.

Among the mechanisms that have been proposed to ex-
plain the transitions in dilute alkali-metal systems are
electron correlation effects leading to a Mott transition
and effects of disorder leading to Anderson localization.
Classical percolation theory has also been used to describe
the transitions. Because none of the calculations carried
out so far have been able to describe all of the experimen-
tal measurements, it has also been proposed that more
than one mechanism contributes to the observed effects.

In the present paper we treat the effects of disorder in
dilute alkali-metal systems. We show that a new type of

Anderson transition may occur. in these materials, one
that is caused not by a randomness in the site energy levels
or in the overlap integrals, as is usual, but by the random-
ness in the number of alkali-metal nearest neighbors, i.e,
in the coordination number of the metallic component. It
has been shown previously that this randomness can lead
to the formation of localized states within the conduction
band. Most of these states lie at the center of the band
and thus at the Fermi energy. The formation of these lo-
calized states is strongly coupled to the exclusion of ex-
tended states at the same energies, and both of these ef-
fects grow rapidly as the mean coordination number is re-
duced, i.e., as the alkali-metal systems become more di-
lute. Eventually a pseudogap forms in the alkali-metal
band, causing a metal-nonmetal transition. These effects
can be studied using the "quantum-percolation" Hamil-
tonian.

The localization that occurs because of this quantum-
percolation transition can explain the observed metal-
insulator transitions in both expanded alkali metals and
alkali-metal —rare-gas films, and appears to be sufficient
to explain a wide variety of experimental measurements.
The differences between the experimental results in the
two types of materials are found to result almost entirely
from the difference between the temperatures at which the
experiments are performed. Moreover, the connection be-
tween the metal-insulator transitions and the critical
points in the expanded alkalis can be understood within
this model.

II. BACK.aROUND

Classical percolation theory has been used by several ex-
perimental groups to explain their measurements of con-
ductivity cr as a function of concentration in alkali-
metal —rare-gas films. ' Most percolation calculations
have predicted the relationship

o ~(x —x, )',
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where x is the volume fraction of metal. Adler er al. '"
have argued that s =2, but different authors quote a range
of values for the critical metal volume fraction, x, .
Phelps and Flynn found that their measurements on Cs-
Xe agreed well with Eq (.1) with s =2 and with the value
of x, =0.15+0.01 calculated by Scher and Zallen. ' On
the other hand, Swenumson et al. , ' also working with
Cs-Xe, found the best fit to their data with s =3.3+0.1

and x, =0.32+0.01. Although the conductivity in these
materials at low alkali-metal concentrations appears to
resemble a percolation process, classical percolation theory
does not allow one to calculate other important phenome-
na in these materials.

A recent calculation by Rose investigated the effects of
electron correlation in dilute alkali-metal systems as a
function of uniform electron density. Using a spin-
density-functional technique that did not include effects
of disorder, Rose carried out a self-consistent band-
structure calculation of the metal-insulator —transition
density, magnetic susceptibility, and electron effective
mass. He obtained a set of values for the alkali-metal crit-
ical radius parameters, r,'=(3/4mn, )'~, w. here n, is the
critical number density, that are in qualitative agreement
with experiments in both expanded alkali metals and
alkali-metal —rare-gas films. Because zero temperature
was assumed in the calculation, no distinction between
high and low temperature could be made. Rose's calcula-
tion indicated that a first-order phase transition should
occur in the alkali-metal —rare-gas films at a critical con-
centration. Because a smooth transition is observed exper-
imentally, Rose suggested that the transition might be
smeared by effects of disorder. In agreement with previ-
ous discussions of Mott transitions, Roses calculation
predicted a large magnetic susceptibility enhancement that
should peak in the neighborhood of the metal-insulator
transition and thus the critical density. A large magnetic
susceptibility enhancement has been observed in expanded
Cs; however, the peak in the enhancement appears to
occur at twice the critical density, rather than at the criti-
cal density itself. ' Rose suggested that this might also be
caused by the effects of randomness. Because both these
results, and previous model calculations that we had car-
ried out, indicated that disorder in the arrangement of the
atoms might be an important factor in the behavior of di-
lute alkali-metal systems, we decided to make a careful in-
vestigation of these effects.

The Anderson model for localization of electrons due to
disorder is usually discussed in a tight-binding frame-
work. The original calculations included the effect of ran-
dom atomic site energies, called diagonal disorder; other
studies have incorporated randomness in the overlap (or
hopping) integrals, called off-diagonal disorder. In the
study of alloys a third type of disorder, the randomness in
the type of nearest neighbors surrounding each atom, is
important. This incorporates aspects of both diagonal and
off-diagonal disorder. Jonson and Franz investigated the
random-alloy problem using a Monte Carlo method.
They distinguished between localized and extended states
using a method developed by Abou-Chacra et al. ' and
showed that localized states can persist at minority-band
concentrations well above the classical percolation lixnit.

III. MODEL

%e start by considering a random binary alloy
described by the simple tight-binding Hamiltonian

II —g em( + g re c) c).

where i and j must be nearest neighbors for the hopping
integral t,J to be nonzero. In the alloys BI „,the site en-

ergy e; can have one of two possible values e~ or ez de-
pending which type of atom occupies site i. The probabil-
ity distribution for the random site energy is thus

P(e ) =x5(e —e„)+(1—x)5(e —es) . (3)

This is the same model that was studied previously by
Jonson and Franz, which we will refer to henceforth as I.

An important result of Jonson and Franz was the
discovery that, for very large separation between the
alloy-constituent atomic energy levels, a pseudogap per-
sists in the center of the minority band over a wide con-
centration range. It is in this regime that the Anderson
Hamiltonian reduces to the quantum-percolation Hamil-
tonian. Such localized states in the center of the band
have also been reported by others. '

Expanded fluid alkali metals can be considered to be
random alloys in which one component is entirely re-
moved. Neutron-diffraction experiments on expanded ru-
bidiurn' have shown that as the density of the fluid is de-
creased from that at the melting point to a value of about
twice the critical-point density, the nearest-neighbor dis-
tance remains almost constant while the average number
of nearest neighbors decreases. Thus the expansion of the
alkali metals does not result in the distance between atoms
increasing uniformly as has been assumed in a number of
theoretical treatments, but to the development of an in-
creasing number of vacancies. The important type of dis-
order in these materials therefore appears to be random-
ness in the nuIDber of nearest neighbors surrounding
alkali-metal atoms. A model which simulates this impor-
tant element of the real structure of these materials might
thus be expected to predict observable effects that would
be entirely lacking in the results of a calculation that as-
sumes other types of disorder or expansion in an ordered
system. This is indeed the case. As Jonson and Franz
showed, such a model predicts the existence of localized
states lying within the energy band and thus of multiple
mobility edges. It is the formation of a pseudogap in the
center of the band, and thus for half-filled bands at the
Fermi surface, which leads to the metal-insulator transi-
tion within this model.

The above model can thus be applied to both expanded
alkali metals and alkali-metal —rare-gas films. The rare-
gas atoms in the films are assumed to act as vacancies in
the alkali-metal framework. An expectation of the model
is, therefore, that the expanded alkali metals and alkali-
metal —rare-gas films should behave similarly, with any
differences being attributable to atomic size or tempera-
ture effects. As discussed below our results indicate that
this is an accurate picture.
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To specialize this model to dilute alkali-metal system. s, we
let

~
cq —cs

~

be large compared to the bandwidths of A

and 8 and let t» ~0. For expanded alkali metals, t» ——0,
and there is only one band. Jonson and Franz showed
that for t&II/i cz —@II i

&10, the A and 8 bands are
essentially noIl1ntcract1ng. Fol Cs-Xc this coIldit1on re-
quires that tzslt~ (0.05, which seems quite reasonable
for such a system. We thus focus our attention on the A

band Rnd take t~ = t Rnd 6'i =6g.
We are interested in calculating the density of states

and the conductivity. The xnagnetic susceptibility can
then be estimated from the density of states (see Sec. VA).
The density of states per atom, g (e), is given by

g(C)=IT '(A;;(e)), (4)

dnF(—c)
o(0)= f dc.

6m5A dc

A,J(e)—: 2Im—G,J.(a+ill) as I)~0,
so that A;; is the diagonal component of the spectral densi-
ty for the electronic Green's function, G,J(c+iri) The a.n-
gular brackets are used to denote a configurational aver-
age ovc1 sites.

From the Kubo formula, the following exact expression
fol tllc dc conductlvlty cT(0) 111 three dlnmllslolls call bc
derived using standard Green's-function techniques,

sltcs. Thc two-sltc conductlvlty 0'0(0) tllus colltallls conl-
plete information about localization. We have used Eq.
(7) to calculate conductivities in the work presented here.

In order to evaluate the density of states and the con-
ductivity, it is necessary to evaluate the spectx'al-density
function and thus the Green's function. The diagonal
Green's function G;; can be written in terms of the sdf-
energy o,' which describes hops away from site i,

o,'(c)=
c cg —cT; +k—(c')

where aj(c), which describes forward hops from site j, is
given by

It is possible to write the self-energy as a sum of terms,
each corresponding to a nonrepeating path. Keeping
only the first term in this series, called the Cayley-tree ap-
proximation, greatly simplifies calculations. Although the
Cayley-tree approximation gives a very poor description
of good conductors, it has been found to give a relatively
good description of systems in the strong scattering lim-
it. ' The Cayley-tree approximation is also expected to
yield Inore accurate results as the coordination member
decreases, becoming exact when Z =2. For the dilute al-
loy systems, therefore, we expect it to give results that im-
prove as the alkali-metal density is decreased.

Within the Cayley-tree approximation, the self-energy
can be written

oj.(e) =
C' Cg —aj +k ( 6—)

X(A; J+S(C)AJ;+s(C)) . (6)

Ill tllls cxprcssloll II ls thc volume of tllc systcII1, n~(E)ls'
the Fermi function, and 5 =R;+s—R;. When the electron
mean free path is short, the position-space summation in
Eq. (6) should converge rapidly. Thus for dilute systems
the lowest-order term ao(0) involving only two neighbor-
ing sites i and j should give a good approximation for the
conductivity. This term is

Ze't'5'X
ao(0) = dc

)& ([A;;(C)AJJ(C) —AJ(e)AJ(C)]),

Here E is the connectivity of the Cayley tree and is given
by IC=Z —1. Equation (10) gives a recursion relation
that allows the self-energies of individual sites to be calcu-
lated self-consistently. The Monte Carlo xnethod used to
determine an ensemble of independent self-energies has
been described in I. In all of the calculations, checks were
made to ensure that the results obatined were not depen-
dent on either the size of the ensemble or the number of
iterations. In most cases values of 100—200 were suffi-
cient for both of these. In regions of rapid change typical
values for the ensemble size and the number of iterations
were 400 although occasionally larger values were used.
Regions in which the scatter in the results remained signi-
ficant are indicated with error bars on the graphs. For
each of the self-energies, the components of the Green's
function were calculated from Eq. (9) and from

G~/(e) =G;;(e)t/[e ez —aj(c)] . — (12)

where X ls thc number of conducting sltcs, X/Q=~
the density of these sites, and Z is the avex'age coordina-
tion number for conducting sites. We can define an
energy-dependent conductivity o 0(e) by

dn~(c)
ao(0) = de ao(C') .

dc

Although Eq. (7) explicitly involves only two sites, the
spectral-density function depends on the energies of all

From these the spectral-density functions and their ap-
propriate ensemble averages can be calculated.

A principal difference between the calculations reported
in I and the px'esent ones is that here we are considering a
one-component system. Thus each of the neighboring K
sites either is occupied by an A atom or is taken to be va-
cant. For the expanded alkali metals the probability that
the site 1s occupied is proportional to the density of the
sample (see Sec. IV), while for the alkali-metal —rare-gas
fllQ1s lt 1s glvcIl by thc conccnt1atlon of thc Rlka11 metals.
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In both cases, thc occupatloIl of 8 part1culRr s1tc 1s chosc11
I'Rlldonlly so that thc su111 111 Eq. (10) fflay colltalll frolll 0
to E nonzero terms. As the systen1 becomes more dilute
there are more sites with only a very small number of
neighbors. The special localized states in the center of the
band become important in the regime where the number
of sites with only one nearest neighbor becomes non-
negligible.

As discussed by Abou-Chacra et al. ' and by Jonson
and Girvin, the energy regions where electron states are
localized can be determined by the condition that the
probability that Imo;(c+iII) equals zero tends to unity as
II~0. In practice the ensemble average of Imo;(c) in the
loc811zcd rcg1n1c can bc made arbltrarlly sn1811 by lncI'cas-
ing the number of iterations of Eq. (11) as described in I.
Under these colldltloIls thc ensemble RvcrRgc of thc
spectral-density function tends to zero, which also causes
the density of (extended) states [Eq. (4)] and the conduc-
tivity [Eq. (7)] to go to zero.

It should be noted that for certain alkali-metal densities,
we find "localized" and extended states coexisting at the
same energy. This coexistence of localized and extended
states has been reported by others, ' ' and i.s possible be-
cause extended states are excluded from regions of space
where localized states exist. There are a small number of
localized states due to isolated clusters scattered
throughout the band. The effect of these states is negligi-
ble, however, because the probability of even small clus-
ters is very low in the concentration region of interest. As
we wiH show in Sec. IV, in the center of the band, where
most of the locahzed states are found, the extended states
RIC gradUally excluded as thc concentration 1s 10%'crcd Rnd
the number of localized states grows. For x & 0.2, only lo-
calized states exist in the center of the band.

The model described above relates both the density of
the expanded alkali metals and the alkali-metal concentra-
tion in alkali-metal —rare-gas flims to the mean alkali-
metal coordination number Z of the atoms. The local
atomic coordination number, on the other hand, is deter-
mined probabilistically and can vary from zero to Zm, „.
We define an effective alkali-metal concentration x, by
xg Z /Zmgx Then for R fixed Zmgxp xg ls proportional 'to

the mean coordination number. For the alkali-
metal —rare-gas films, x, is equal to the actual alkali-
IIlctal conccntrat10Il. An cxpaIldcd Rlk811 n1ctal can bc
thought of as an alloy of alkali-metal atoms and vacan-
clcs. x~ ls tllcll 'thc collcclltl'R'tloI1 of Rlka11-metal atoms ill
such 8 model. Evidcncc that such 8 dcscript1on g1vcs 8
good physical picture of the expanded alkali metals comes
from neutron-diffraction I11casulcn1cnts oIl cxpRIld. cd rubi-
dlun1 ' taken along t4c llquld-vapor equillbrlum curve.
These results show that over a wide range of density (from
the melting point almost to the critical point), the density
is directly proportional to the coordination number vyhilc
the nearest-neighbor distance changes by only a few per-
cent. The density p of the Quid at any point can then be
Iclatcd to x~ by p=x~p~~ where p~ 1s thc dcIls1ty at thc
melt1ng po1nt.

An important aspect of describing both the high- and
low-temperature systems rvith the same simple model is
that only two parameters, Z,„and I;, the hopping in-
tegral, are required for a complete description of both sets
of systems. Both of these parameters can be determined
from known properties of the alkali metals, so there are
no adjustable parameters in the results reported in this pa-
per. Most of the calculations described in this paper were
carried out vnth Z „=9 since the rubidium neutron-
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x, =0.20.
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diffraction' results show that the coordination number
near the melting point is close to this value. The results
presented here are rather insensitive to the second parame-
ter t which sets the absolute energy scale and is fixed by
the alkali-metal bandwidth to (tJ =2Zt in the tight-binding
model). A value r =0.017 Ry was derived from the value
of the Fermi energy for Cs and was used throughout this
paper. For other alkali metals, higher values mould be
needed as discussed in Sec. V B.

The density of states per atom is shown as a function of
energy in Fig. 1 for values of x, ranging from 1.0 to 0.2
{for expanded alkali metals this corresponds to densities
from p to values slightly below the critical density). The
Fermi energy in each case is in the center of the band at
@=ed. Regions of localized states are shown by dashed
lines. Several trends can be noted. As x„and thus the
mean coordination number, is decreased starting from
x, =1.0, the density of states per atom at the Fermi ener-
gy, g(E~)/atom, at first increases because the band nar-
rows with decreasing Z while the total number of states
per atom is a constant. fg(EF)/volume does not increase,
however, because the density of alkali-metal atoms is de-
creasing. This will be discussed in Sec. VA.] At about
x =0.60, the density of states begins to peak up near the
center of the band, i.e., near the Fermi energy. As x, is
decreased further this peaking becomes more pronounced
until at x, —=0.45, a very narrow spike of localized states
occurs at the center of the band. It is as if states in the
center of the band go through a percolation transition be-
fore states at other energies. As expected, states in the
band tails also become localized. With further decrease in
x„ the number of localized states grows rapidly. At
x, =0.30, where the mean coordination number is -3, all
the extended states at the center of the band have disap-
peared, and a pseudogap opens up in the density of ex-
tended states. By x, =0.20, the density of extended states
IlRs shrunk appreciably, thc pscudogap 1S very broad, and
localized states appear not only at the center of the band
but also at e=eq+t, energies associated with electrons lo-

calized at pairs of atoms. At still smaller values of x, ad-
ditional pseudogaps form, and finally at x, =0.16 all of
the states become localized. Thus x, =0.16 is the critical
concentration for quantum percolation for states
throughout most of the band. As usual the critical con-
centration for quantum percolation is higher than that for
classical percolation. At this point the density of states
is similar to Fig. 2(a) of Jonson and Franz. Thus it can
be seen that as the mean coordination is reduced, the dis-
order in the system causes the energy band to split 1nto
subbands scpar'atcd by pscudogaps.

The percentage of band states that are localized is
shown as a function of x, in Fig. 2. Also shown is the
percentage of isolated atoms (those with no nearest neigh-
bors) predicted by a random distribution. It is important
to note that the percentage of isolated atoms is always
much smaller than the percentage of localized states. In
particular, the formation of most of the localized states in
the center of the band is in no way dependent on the pres-
ence of isolated atoms, but instead depends on the number
of atoms that have only a small number of neighbors.

In Fig. 3 the two-site conductivity oo(e) is shown as a
function of energy for energies near the center of the band
and for a range of x, values. oo(e) decreases rapidly as
the mean coord1nat1on number dccrcascs, as expected. At
values of x, ~ 0.45, a.o(e) is almost independent of energy
throughout this central band region, while for
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FIG. 2. Percentage of states that are locaHzed as a function
of the effective alkaH-metal atomic concentration x, . Solid
curve: all localized states. Dashed curve: states locaHzed on
1solatcd alkah-IDctal atoms.
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FIG. 3. Two-site conductivity ao(e) as a function of energy

for various values of the effective alkali-metal atomic concentra-
tion xg. Also showQ Rlc cqulvRlcnt values of thc dcnslty pcs for
cxpandcd fluid Cs. S18Qtcd 11nc 1ndlcatcs for each x~ thc Rp-
proximate kT value Rt which experiments in expanded fluid Cs
werc performed.
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x, =0.30+0.1 the energy dependence is very strong. At
x, =-0.30 the conductivity at the center of the band (at
E~) drops to zero. For smaller values of x„oo(e) is zero
over an ever-increasing range of energies until all of the
states localize. It is interesting to note that for x, &0.60,
the Kubo-Greenwood formula o(e) ~ [g (e)], is no longer
applicable. Although there is a peak in g(E) near the
center of the band, the states within this peak have a lower
mobility and thus do not contribute significantly to the
conductivity, which is actually somewhat reduced in this
region.

To calculate the conductivity oo(0) it is necessary to
carry out the integration indicated in Eq. (8). Rather than
perform the integral numerically, we approximated it by
averaging oo(e) over the energy range Ez kT&—e&E~
+kT. The slanted line running through the curves in Fig.
3 indicates the approximate value fo kT, for each x„at
which high-temperature ( T-2000 K) measurements for
expanded Cs were made. Values of oo(0) calculated from
the curves in Fig. 3, using the indicated values of kT, are
shown by the curve labeled "high T" in Fig. S(a).

For the low-temperature alkali-metal —rare-gas film ex-
periments, the values of kT are so much lower that the
curves in Fig. 3 must be viewed with a greatly expanded
energy scale. This is shown in Fig. 4 for alkali concentra-
tions near 0.30. On this magnified energy scale the curves
remain rather flat as the alkali-metal atomic concentration
is decreased until x,:—0.30. At this value of x, we see a
very rapid shift in the value of cro (e'=eq). From our cal-
culations, it appears that the change is discontinuous,
opening up the possibility of a first-order phase transition
at x, =—0.30 or at a mean coordination number of -3.
From the error bars shown on the graph, however, it can
be seen that large fluctuations occur in our numerical cal-
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culations exactly in this region. It would be necessary to
increase considerably the ensemble size and the number of
iterations performed in order to investigate this further.
The vertical line in Fig. 4 shows the value of kT for T = 5

K, a typical experimental temperature. The values oo(0)
calculated by averaging oo(E) over this energy range are
shown by the solid curve marked "low T" in Fig. S(a).
Also shown in Fig. S(a) is a low-temperature curve with
Z „=10rather than the usual Z,„=9. It can be seen
from the curves of logoo vs x, in Fig. S(a) that for values
of x, (0.32 the conductivity falls off much more rapidly
with decreasing alkali-metal atomic concentration in the
low-temperature regime than in the high-temperature re-
gime.
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FIG. 4. Same as Fig. 3 but with an expanded energy scale.
Vertical line indicates kT for 5 K, a typical experimental tem-
perature. Note large uncertainties in the calculated results at
6'= Eg.
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FIG. 5. Logarithm of the conductivity as a function of effec-
tive alkali-metal atomic concentration x, . Scales for all curves
are the same. An equivalent density scale, which is relevant
only for the high-temperature measurements, is also given. (a)
Calculated values of the two-site conductivity for the high-
temperature regime, Z,„=9, and for the low-temperature re-

gimes, the solid curve is for Z,„=9and the dashed curve is for
Z,„=10. (b) Experimentally measured values of the conduc-
tivity. High-T curve is taken from the work on expanded fluid
Cs by Franz et al. (Ref. 2). The low-T curves are taken from
work on Cs-Xe; the solid curve is taken from Swenumson et al.
(Ref. 16}and the dashed curve is taken from Phelps and Flynn
(Ref. 6).



METAL-INSULATOR TRANSITION IN EXPANDED ALKALI-. . .

From the slopes of the curves in Figs. 3 and 4 it is pos-
sible to predict the qualitative temperature dependence of
the conductivity d lno /dT as a function of x, for the two
temperature regimes. For the expanded alkali metals with
T-2000 K, as the effective alkali-metal atomic concen-
tration is lowered, d Ino/dT should become positive at
x~ —0.45 whclc a dip 1Q thc condUctlv1ty bcg1ns to form 1Q

the center of the band. It then increases continually until
at x, -0.25, d 1no/dT & 10 /K. For the alkali-
metal —rare-gas films with T—5 K, the temperature
dcpcndcQcc becomes posltlvc Rt x, -0.50 Rnd 1n th1s case
1t 1QCIcascs IDolc rapidly as x, 1s lowcrcd. Th1s 1s caused
both by the larger values of dao(e)/de and also by the
smaller values of o 0. For x, -0.35, one finds
d incr/dT-5 X 10 /K. As x, is decreased further, the
temperature dependence increases very rapidly and, as can
be estimated from Fig. 4, at x, -0.30, d Ino /d T
& 5 X 10='/K.

V. DISCUSSION

A. Expanded Cs

Among thc alkali metals morc experimental work hRS

been carried out on Cs than the others because of its lower
critical temperature and pressure. The measurements of
Franz et al. are given by the curve labeled "high T" in
Fig. 5(b). Comparing these to our calculated values shown
in Fig. 5(a), one can see that the two are in qualitative
agreement 0.25&x, &0.45. Below this region, however,
the two diverge with a low level of conduction actually
persisting well beyond the point at which in our model all
of the electrons are localized. We can suggest two possible
contributions to this persistent conduction. The first
comes from the motion of the atoms. Since the electrons
are only well locahzed on a time scale &&10 ' sec, it is
possible that thermal effects allow weak conduction to
take place. The second contribution comes from the pos-
sible existence of free electrons. Freyland' has pointed
out that a large fraction of Cs2 molecules exist in this den-
sity region, and that their degree of ionization may be
qUltc h1gh duc to a Icduct1OQ ln thc 1on1ZRt1on potcntlal Rt

high densities.
As discussed in Sec. IV our model predicts a positive

temperature dependence for the conductivity for values of
x, (0.45, corresponding to p-p~/2-2p, . This is in ex-
cellent agreement with the experimental results. %C also
predict that the temperature dependence increases as the
density is lowered, with d lno/dr") 10 /K at x, -0.25,
but it has not yet been possible to measure the temperature
dependence in this region. Of course, if the low-density
conductivity is dominated by free electrons, as discussed
above, thc temperature dcpcndcQcc w111 bc somewhat dif-
ferent in this region.

Measurement of the Inagnetic susceptibility along the
liquid-vapor equilibrium curve for expanded Cs have been
reported by Freyland. ' From his plot of the gram sus-
ceptibility 7g versus density, it can be seen that a large
peak in the susceptibility occurs at densities very close to
p-2p, . One explanation for the peak in the susceptibility
is that it is caused by electron correlation effects that are

expected to be large in the neighborhood of a Mott-
Hubbard transition. The susceptibility enhancement due
to correlation effects has been calculated by Brinkman and
Rice and by Rose. Rose predicted that the susceptibili-
ty enhanceIDent should have a large peak at p, rather than
-2p, where it is found experimentally. It is thus interest-
ing to sce how the susceptibility peak can be understood
within the context of the model described in this paper.

Freyland' has calculated that the paramagnetic contri-
bution to the gram susceptibility X~s increases from a value
of 0.6)&10 cm /g, at a density of 1.5 g/cm, to a value
of 1.3X10 cm /g at a density of 0.8 g/cm, and thus
there is an increase in Xs by a factor of 2.3. A major part
of this increase is easily understood within the tight-
binding framework. Lowering the density, and thus the
mean coordination number, causes the Cs bandwidth to
narrow and thus g(E+)/atom increases as discussed in
Sec. IV. This effect can be seen from the curves in Fig. 1.
Because X~s 0-g(E+)/atom [where the overbar indicates
that g (EF) is averaged over the states within -kT of the
Fermi surface], it must also increase. The tight-binding
model yields g( E~) /atom~ 1/Z, so that it predicts the
following increase in susceptibility for the above-
mentioned density interval:

X~g(0. 8 g/cm') Z(1 5 g/cm3) =1.9 .
X~s(1.5 g/cm') Z(0. 8 g/cm')

[Note that our calculations are done on a Cayley-tree lat-
tice for which the relationship between g(E~)/atom and
Z is slightly different from the usual tight-binding
model. Thus the enhancement in g( E~) /taomshown in
Fig. 1 is slightly less than 1.9.] Thus only a small part of
the measured enhancement needs further explanation.
Another way of viewing this is to note that the volume
susceptibility X~y should be independent of Z in the tight-
binding model. Plots of the measured X~s versus density
show that a peak still remains, but that it is now greatly
reduced in size.

%'e think that the remaining peak in X~z can be under-
stood in terms of the piling up of states near the Fermi en-

ergy that, as can be seen from the curves in Fig. 1, begins
at x, -0.6 or at p- l. 1 g/cm . These additional states do
not contribute significantly to the conductivity (see Fig.
3), and it is probable that they are weakly localized. How-
ever, we would expect these states to contribute fully to
the susceptibility. The number of weakly localized states
with a range -kT of the Fermi energy appears to peak
around x, -0.45 or p-0. 8 (see Fig. 1). For lower densi-
ties the spike of highly localized states at Ez grows very
rapidly, while other states are excluded from this energy
region. Freyland's measurements' lead us to believe that
these highly localized states contribute only weakly to the
susceptibility. Since the majority of the localized states
are not localized on isolated atoms, it is reasonable that
their magnetic properties appear to be more molecular
than atomic.

B. Coxnparison of expanded alkali metals

It is interesting to consider what general insights about
alkali metals at low densities can be obtained from our



model. We restrict our discussion to low densities,
p&p /2, be~au~e the inherent approximations of our
tight-binding model make it inappropriate for discussion
of alkali-metal systems at densities where they are good
metals.

Because the model contains only iwo parameters, it is
straightforward to use it to predict the relation of the
properties of different alkali metals. The value of the
coordination number at the melting point, Z „=9,was
taken from experiments on Rb, but it is a reasonable
number for liquid metals in general. Once Z,„ is fixed,
the value of the hopping integral t is set by the bandwidth
of the metal at the melting point. In the tight-binding
model the bandwidth is given by 2Zm, „t, so that the Fermi
energy of a half-filled band is related to r by Ez Z,„t.——
Since the value of FF varies by a factor of 2 between Na
and Cs, the appropriate r value for Na would be about
twice that used in our calculations. Changing t changes
the absolute energy scales in Figs. I, 3, and 4, while leav-
ing the shapes of the curves unchanged. Thus as one
moves up the Periodic Table from Cs, and the Fermi ener-

gy and bandwidth of the alkali metals increase, the shapes
of the density-of-states curves as a function of x, remain
the same, ' the localized states still appear at identical
values of reduced density pjp as before. Moreover, the
values of o.o(E) near the Fermi surface remain essentially
the same because, as shown by Eq. (7), the expression for
oo(F) contains a factor of r that cancels the effect of
each factor of 1/t in the density of states (proportional to
ImG;;). However, the conductivity is given by the integral
in Eq. (8) and is thus an average of 0(e) over a range of
-2kT near the Fermi energy. This range will cover a
smaller percentage of the total band as r increases; thus for
constRnt T, thc condUctivity will dccI'case somewhat as t
increases. This change in cr will be negligible, however,
for p &p~/3, because the o(e) curves are relatively flat in
this region. Thus the model predicts that the conductivi-
ties of the alkali metals at low densities should be very
similar to each other as a function of reduced density

p/p~, the conductivity of the lighter alkali metals being
somewhat less than those of the heavier for values of p ap-
proaching the critical density p, . Experiments by Franz
et al. have shown the conductivities of Rb and Cs are
indeed very similar function of pjp~. Many other prop-
erties of the alkali-metals, including the paramagnetic
contribution to the magnetic susceptibility and the Knight,
shift, should also scale as a function of pjp

Our model indicates that the metal-nonmetal transition
takes place gradually, with extended states and localized
states existing together over a wide range of densities.
Thus the location of the transition depends on how it is
defined. If the transition is defined by the temperature
dependence of the conductivity, i.c., the density at which
the temperature dependence of the conductivity changes
from negative to positive, then the transition should occur
at values of p j'p -0.45 for all of the alkali metals. On
the other hand, using the usual definition of the metal-
nonmetal transition, that it occurs at the minimum densi-
ty for which of+0 as T~O, one finds the transition at
p/p~ -0.30 for all of the alkali metals.

The model presented in this paper also yields insight

into the nature of the critical point in the alkali metals.
Thc ma)or contribution to thc cohcsivc cncrgy in liquid al-
kali metals at normal densities comes from the metallic
binding which depends on the bandwidth. As the density
of the liquid is reduced below its value at the melting
point, the bandwidth narrows (see Fig. 1) and the cohesive
cncf'gy is I'cduccd. This is a slow and continUous pioccss.
As the density is reduced below -p~/2, however, some-
thing more dramatic happens: localized states appear and
niost of tllese pile up attli, e Fermi eiiei'gy. Electioils at
the Fermi energy do not make any positive contribution to
the metallic binding. The metallic contribution to the
cohesive energy thus falls as the percent of localized states
rises. This is quite rapid below x, -0.30 (see Fig. 2). The
remaining van der Waals interaction is, however, insuffi-
cient to bind large clusters of atoms at the high tempera-
tures involved, so the disappearance of the metallic bind-
ing leads to a critical point. Within this model p, /p
should be approximately the same for all the alkali metals.
It is interesting to note that the value of p, /p for Cs,
Rb, and K are all p, /p~ =0.23+0.005. At this value
-25% of the band states are localized. The model
developed in this paper thus offers a simple description of
the nature of the critical point in alkali metals and may be
valid for other simple metals as well.

C. Alka11-Hlct81 —%are-gss f11ms

In the low-temperature regime changes in the physical
properties of dilute alkali-metal systems can be observed
without the thermal smearing that occurs at high tem-
peratures. Changes that occur as a function of concentra-
tion are thus expected to be sharper. This sharpening of
the metal-nonmetal transition is predicted by our model
and can be seen from the results shown in Fig. 5(a).

The validity of our model for dilute alkali-metal sys-
tems can be checked by comparing it to experimental re-
sults for alkah-metal —rare-gas films. As discussed in the
Introduction, the analysis of these results is greatly simpli-
fied by making the customary assumption that the rare-
gas atoms are totally inert and act only as holes in the al-
kali metals, At a sufficiently low alkali-metal atomic con-
centration this assumption must break down because it is
well known that Cs-Xe molecules are stable at very low
temperatures and pressures. It would be possible to in-
clude a weak Cs-Xe interaction in our calculations, but up
until now we have not done so.

Experimental measurements have been carried out in
Cs-Xe, ' Rb-Kr, and Na-Ar (Ref. 13) films. Each of
these systems has been found to have a metal-insulator
tI'Rnsit1on that occurs ovcI' R rather narrow 1RIlgc of con-
centrations. For Cs-Xe and Rb-Kr this rapid decrease in
conductivity occurs at an alkali-metal atomic concentra-
tion -25 at. % while for Na-Ar the value is -55 at. %.
It is necessary, therefore, for our model to be able to ac-
count for these transitions with the two parameters Z,„
and t. We consider first the effect of Z,„.

There are no direct experimental measurements to guide
the selection of Z,„, the maximum number of nearest
neighbors surrounding an alkali metal atom. Although
Z,„=9is a reasonable value for a pure liquid or amor-
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phous metal in which all the atoms are the same size, one
expects that for alloys it will vary somewhat with the rela-
tive atomic size of the constituents. At low alkali-metal
atomic concentrations, it is expected that Z,„&9 if the
rare-gas atoms are smaller than the alkali-metal atoms
and Z „~9in the reverse case. Our model predicts that
the conductivity increases with increasing Z,„since a
large Z „implies that a large number of paths are avail-
able for electron hopping. This can be seen from our cal-
culated results shown in Fig. 5(a), where the conductivity
as a function of alkali-metal atomic concentration is plot-
ted for both Z „=9and 10. Z „can also be expected
to vary somewhat with alkali-metal atomic concentration,
but this will have little or no effect over the narrow con-
centration range where the metal-insulator transition
occurs.

The two sets of experimental measurements on Cs-Xe
shown in Fig. 5(b) are not in close agreement with each
other. Our calculated curve with Zm, „=10is in good
qualitative agreement with both measurements although a
value of Z,„=11 would probably agree somewhat better
with the results of Swenumson et al. ' Since the Xe
atoms are slightly smaller than the Cs atoms, values of 10
or 11 are quite reasonable. The conductivity as a function
of concentration in Rb-Kr is very similar to that in Cs-
Xe. This would be expected in our model since the atom-
ic radii have very nearly the same ratio, so that Z,„
should be the same for both systems, and any differences
between the two would be due to the small difference in t.
The effect of changing t was discussed in Sec. V B where
it was shown that t =Ez/Z, „. Thus for fixed Z,„,
tRb/tc, —1.2. The only effect of changing t by 20% is to
sharpen the metal-insulator transition slightly. Thus the
close similarity between Cs-Xe and Rb-Kr can be under-
stood within our model.

The other alkali-metal —rare-gas system, Na-Ar, for
which recent measurements exist has been found to have a
metal-insulator transition at -55 at. % Na. Since Ar
atoms are larger than Na atoms, our model suggests a
value of Z,„~9. From a few preliminary calculations,
we find that the rapid change in o.o at a concentration of
-55 at. % can be reproduced using a Z,„-5.5, a
reasonable value. It appears that our model does a good
job of describing the metal-insulator transitions observed
in dilute alkali-metal systems at low temperature. More-
over, in contrast to classical percolation, this calculational
technique can be used to study other properties of these
systems as those described below.

Because the alkali-metal —rare-gas films are found to be
unstable as the temperature is increased above 5—10 K,
few temperature-dependent measurements have been per-
formed. Swenumson et al. ' report that the conductivity
has a positive temperature dependence in the range
0.22~xcs ~0.51, in excellent agreement with the predic-
tions of our model as discussed in Sec. IV. Moreover,
they found that in this concentration range
d lno. /dT-10 /K. Although we would expect the value
to be somewhat smaller than this for xc, ~0.35, our cal-
culations indicate that the temperature dependence in-
creases rapidly for lower concentrations, reaching a value
of -5&10 /K for xc,-0.30. Thus the sign and the

rough order of magnitude of the observed temperature can
be well explained by our model.

Our model also provides insight into the observed
thermal instability of the alkali-metal —rare-gas films. '

In Sec. V 8 we discussed the change in the metallic contri-
bution to the cohesive energy as a function of alkali-metal
atomic concentration. We indicated that our model
predicts a rapid decrease in the metallic binding below
xc, -0.45 caused by a rapid growth in the spike of local-
ized states at E~. Thus at low alkali-metal atomic concen-
trations, random films would be held together predom-
inantly by the van der Waals interaction. Under those
conditions it becomes energetically favorable for the
alkali-metal atoms to cluster to regain metallic binding,
making it difficult to maintain random films. This can be
contrasted with other alloys in which charge transfer
occurs. These have an ionic contribution to the binding
which provides increased stability throughout a wide con-
centration range.

Swenumson et al. ' have indicated that their investiga-
tion of the optical properties of Cs-Xe films shows that a
metal-insulator transition takes place at xc, ——0.5S+0.01.
As for the expanded alkali metals, our model indicates
that the exact location of this transition in Cs-Xe films is
a matter of definition since both extended and localized
states exist over a wide range of concentrations. Our cal-
culations indicate, however, that do(e)/de

~ E becomes
F

positive at xc, -0.5 (leading to the positive temperature
dependence for cr), and it may be that it is this change that
the optical properties are displaying. We have not at-
tempted to predict optical properties on the basis of our
model.

In light of the recent discussion on "minimum metallic
conductivi(y" it is interesting to ask what our model
predicts for the T~O behavior of the conductivity. Cal-
culations performed so far appear to favor a small jump in
the T =0 conductivity (see Fig. 4) and a minimum metal-
lic conductivity o. ;„of -50 Q 'cm ', although the
scatter in our numerical calculations near x, -0.30 is very
large as we have indicated with error bars. Using Mott's
equat1on,

o;„=0.026e /gaia,

one finds, for Cs, a value o ';„-1000 'cm ', which is
within a factor of 2 of our preliminary result. More ex-
tensive calculations are currently underway to test the idea
of o;„within this model. If we find that the conductivi-
ty falls smoothly to zero with x„ this will be an example
of the possible exceptional systems that Mott describes
for which o & o;„only in a very narrow range of concen-
tration.

VI. CONCLUSIONS

Using a simple tight-binding model that incorporates
realistic atomic-scale disorder in dilute alkali-metal sys-
tems, we have been able to obtain results that are in good
qualitative agreement with a wide range of experimental
measurements for both expanded alkali metals and alkali-
metal —rare-gas films. Although electron correlation ef-
fects may play a role in the metal-insulator transitions in
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these materials, our calculations indicate that disorder is
probably a dominant factor.

The model's simplicity makes it a valuable tool for
studying scaling relations and critical phenomena in
alkali-metal systems as we have indicated by our initial
work discussed in this paper. In addition, it seems prob-
able that the model will prove to be applicable to a
broader range of systems than just those containing alkali
metals. %e plan to use the ideas developed in this paper
to investigate a variety of other systems.

ACKNOWLEDGMENTS

It is a pleasure to thank J. H. Rose, W. W. Warren, Jr.,
F. Hensel, and W. Freyland for useful and interesting dis-
cussions. We also want to thank J. Karwowska for help
with the numerical calculations. The author gratefully
acknowledges financial support from North Atlantic
Treaty Organization under Grant No. 24.80.

N. F. Mott and E. A. Davis, Electronic Processes in Non-

crystalline Materials (Clarendon, Oxford, 1979).
G. Franz, W. Freyland, and F. Hensel, J. Phys. (Paris) Colloq.

8, C-70 (1980)~

3W. Freyland, Comm. Solid State Phys. 10, 1 (1981).
~J. H. Rose, Phys. Rev. B 23, 552 (1981).
5P. W. Anderson, Phys. Rev. 109, 1492 (1958).
D. J. Phelps and C. P. Flynn, Phys. Rev. B 14, 5279 (1976).
S. Kirkpatrick and T. P. Eggarter, Phys. Rev. B 6, 3598 (1972).
M. Jonson and J. R. Franz, J. Phys. C 13, 5957 (1980).
Y. Shapir, A. Aharony, and A. B. Harris, Phys. Rev. Lett. 49,

486 (1982).
A. B.Harris, Phys. Rev. Lett. 49, 296 (1982).
R. Raghavan and D. C. Mattis, Phys. Rev. B 23, 4791 (1981).

' S. N. Evangelou, Phys. Rev. 8 27, 1397 (1983).
N. A. McNeal and A. M. Goldman, Phys. Lett. 61A, 268
(1977).
D. Adler, L. P. Flora, and S. D. Sentaria, Solid State Com-
mun. 12, 9 (1973).

~5H. Scher and R. Zallen, J. Chem. Phys. 53, 3759 (1970).
R. D. Swenumson, S. Leutwyler, and U. Even, Phys. Rev. B

24, 5726 (1981).
7W. Freyland, Phys. Rev. B 20, 5104 (1979).
R. Abou-Chacra, P. W. Anderson, and D. J. Thouless, J. Phys.
C 6, 1734 (1973).

W. Freyland, F. Hensel, and W. Glaser, Ber. Bunsenges. Phys.
Chem. 83, 884 (1979).

20K M. Watson, Phys. Rev. 105, 1388 (1957).
F. Brouers, M. Cyrot, and F. Cyrot-Lackmann, Phys. Rev. 8
7, 4370 (1973).
J. R. Franz, F. Brouers, and C. Holzhey, J. Phys. F 10, 235
(1980).
J. R. Franz and J. H. Rose (unpublished).
M. Jonson and S. M. Girvin, Phys. Rev. Lett. 43, 1447 (1979).

25F. Hensel, Habilitationsschrift, University of Karlsruhe, 1970.
%.F. Brinkman and T. M. Rice, Phys. Rev. B 2, 4302 (1970).

27G. D. Mahan and M. Lapp, Phys. Rev. 179, 19 (1969).
2 For a discussion of the differences between the two measure-

ments, see, R. Avci and C. P. Flynn, Phys. Rev. B 27, 3886
(1983)'.

N. F. Mott, Philos. Mag. B 44, 265 (1981).


