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Self-consistent relativistic calculation of the energy bands and cohesive energy of W
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The energy bands, equilibrium lattice constant, cohesive energy, and bulk modulus of tungsten
have been calculated with the use of our relativistic pseudopotential. This is the first self-consistent
calculation for W of which we are aware in which the spin-orbit interaction is treated on an equal

footing with the other relativistic contributions. The calculated lattice constant and cohesive energy
are in good agreement with experiment but the bulk modulus is not.

I. INTRODUCTION

The energy bands of bulk bcc W have been calculated
with a nonrelativistic and non-self-consistent muffin-tin
Hamiltonian, with fully relativistic but non-self-
consistent muffin-tin Hamiltonians, with a self-consistent
but nonrelativistic Hamiltonian, and with semirelativistic
self-consistent Hamiltonians. ' We here present the first
fully relativistic self-consistent calculation of the energy
bands, cohesive energy, equilibrium lattice constant, and
bulk modulus of W. Our ability to perform this calcula-
tion without an inordinate amount of computer time is a
consequence of the simplification resulting from the rela-
tivistic pseudopotentials which we have recently
developed. ' That the Dirac equation can be replaced by
a Schrodinger equation containing a simple pseudopoten-
tial follows from the fact that relativistic corrections are
of importance only in the core region. In Appendix A we
review the pseudopotential. The form of the pseudopoten-
tial, Eq. (A7), actually used in this calculation was not ex-
plicitly written previously due to space limitations in Ref.
7. The Vt'"(r) of Eq. (A3) are displayed in Fig. 2 of Ref.
S and the Vi"(r) (so is the spin orbit) of Eq. (A2) are
displayed here in Fig. 1. The small negative region of Vd'

which occurs in a region where the atomic (re�) is —, or
less of its maximum value is nevertheless unfortunate
since it undoubtedly makes the so pseudopotentials less
transferable from the ion, for which it was calculated and
for which it is exact, to the crystal. Other workers have
obtained similar sign changes in Vt" which arise from a
crossing of the j =l+ —,

' and j =l ——,
'

pseudopotential
curves.

In Ref. 5 we discussed the convergence of one-electron
eigenvalues at high-symmetry points in the Brillouin zone
(BZ) by comparing results obtained with our 34-basis-
function set (three s, p, and d and one f Gaussians) to an
887-plane-wave basis set. We used the same set here (68
basis functions in this case because of spin) and then to
improve the convergence, a mixed basis set consisting of
one s and p and two d Gaussians plus all plane waves with
k &50(m/a), i.e., at I all plane waves through (2m/a)
(2,2,2). The largest secular determinant obtained
throughout the BZ was of size 232&&232 with complex en-
tries. The convergence at points I and H was improved
by about 70%%uo. The binding energy increased by 0.07 eV

on going from the former to the latter basis set and, as-
suming total energies converge at the same rate as one-
electron energies, leads us to estimate that the remaining
convergence error in the cohesive and binding energies is
about 0.03 eV.

II. ENERGY BANDS AND COHESIVE ENERGY

The self-consistent calculation was performed with the
same 50-point sample in the 4, th irreducible wedge of the
BZ and with the same Gaussian weighting used in Ref. 5.
In Fig. 2 we display the energy bands calculated for lattice
constant a =5.972 bohr. After self-consistency was
achieved the bands were calculated at all the points indi-
cated by tick marks on the abscissa of the figure. In Table
I we compare our eigenvalues with those of Christensen
and Feuerbacher (CF). They performed the calculation
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FIG. 1. Spin-orbit pseudopotentials Vi" for W.
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TABLE I. Comparison of our eigenvalues {designated as BK)
at high-symmetry points with those of CF (Ref. 2). The asterisk
identifies a state whose degeneracy in Ref. 2 appear to be in-
correct. The lattice constants used in the two calculations are
5.972 and 5.981 bohr, respectively.
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FIG. 2. Relativistic energy bands of W for lattice constant
a =5.792 bohr.

for several lattice constants and non-self-consistent poten-
tials. Those in Table I are for a =5.981 bohr (the room-
temperature lattice constant) and Slater exchange. Our
calculation was performed with relativistic Kohn-Sham
exchange ' and Wigner correlation. In Kohn-Sham
theory, the one-electron eigenvalues are in principle mean-
ingless. In practice for metals they are a good approxima-
tion to the measured excitation energies with the worst er-
rors occurring in the relative positions of bands of dif-
ferent symmetry. Since the Fermi energy is mainly deter-
mined by the d bands, one would expect the position of
the bottom of the p bands relative to EF to be a severe test
of the energy-band calculation. Although the position of
the lowest N& level which is the bottom of the p bands
has not been determined experimentally, the dimensions of
the hole ellipsoid around it have. " In Table II we corn-
pare kz measured in A ' away from point X in the X, D,
and G directions with experiment and with calculations of
CF (Ref. 2) made at two lattice constants. ' The Fermi
energy used by CF here was not calculated but chosen to
give a good fit to other pieces of the Fermi surface. We
note that the size of the hole ellipsoid is extremely sensi-
tive to lattice constant and a comparison of the size of our
calculated ellipsoid with experiment indicates that our %5
lies a few tenths of an eV too high above E~. Errors of
this magnitude in first-principles local-density approxima-
tion calculations are not unusual for the relative position

N5
N5+

N+
1V'5+

++
~+

N+

—6.256
—3.354

0.170
1.959
2.891
5.902

10.711
11.060
17.107

—6.272
—3.663

0.871
1.978
2.938
5.882
9.972

11.672
16.092
18.066

of states of different symmetry. Feuerbacher and
Christensen' have determined from photoemission data
that the onset of transitions from the third X band where
it crosses Ez near point X to the seventh X band occurs at
10.1 eV. At the experimental point where the X band
crosses EF our seventh X band lies 10.27 eV above EF
whereas CF's lies about 11 eV above EF. The major

kp{X)
kp(D)
kF{G)

0.871
0.217
0.291
0.178

0.170
0.087
0.120
0.075

0.124
0.173
0.106

0.143
0.195
0.121

TABLE II. X~ level (in eV above EF) and the Fermi-surface
dimensions in A ' in three directions compared with two calcu-
lations (at lattice constants shown in bohr) from Ref. 2 and with
experiment.

BK (5.972) CF (5.981) CF (5.973)
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TABLE III. Contributions to the binding energy of tungsten (in rydbergs) for three different lattice constants and the cohesive en-
ergy in eV. The last row is the cohesive energy when the calculation was repeated using a tetrahedron integration scheme.

a (bohr)

QE„(k)

—
z 8nQQ'p (K)/K

~„(PT)P„l
~xc(pT )p T &xc(pcore)pcore

Ebinding

Ecohesive

Tetrahedron (eV)

5.793

6.963418
—6.224062

—22.615 660
—15.980 852

15.324 816
8.9254

8.8494

5.345 805

—0.121 795

6.811623
—6.087 135

—21.937 796
—15.989 297

15.324 816
9.0403

8.9775

6.151

4.769 952

—0.161482

6.680444
—5.971 412

—21.299 384
—15.981882

15.324816
8.9394
8.8863

discrepancy between CF and us in Table I is in the high-
lying I" levels, and this appears to be due to a misprint in
their Table II. They list three twofold degenerate levels
which are nearly degenerate but mention in the text a two-
fold and a fourfold level which are nearly degenerate,
which is what we find.

We note the so-called energy dependence of the spin-
orbit interaction. The splitting of the I"2q and H25 d
states into I 8+ and I"7+ at —1.531 and —1.007 CV and
H8+ and H7 at 4.685 and 5.408 CV is larger at point H be-
cause the phase introduced by the finite wave vector turns
states which RIc bonding Rt po1nt I 1nto antlbond1ng
states at point H. Antibonding wave functions, since they
vanish between atoms, must have larger amplitudes than
bonding functions in the core region and therefore have
larger spin-orbit splittings. The H~z p state splits into H6
and Hs with a splitting more than four times larger than
thc P4 state which spl1ts 1nto P7 and P8 at 1 1 527 and
12.104 cV. This ls duc in part to thc fact that P4 1s mixed

p and f symmetry whereas H» is almost of pure p charac-
ter. Finally we note that the I 25 state (which contains no
spherical harmonics below f) lying 29.9 CV above the bot-
tom of the valence bands in Ref. 5 is barely split into I 7

and I 8 levels here lying only 24.38 CV above the bottom
of the bands. This is due to the far better convergence
achieved here with 87 plane waves than obtained previous-

ly with a single f Gaussian.
Table III lists the various contributions to the binding

and cohesive energy for three lattice constants. The first
cIltry, thc suIIl of thc ollc-clcctI011 cncI'g1cs of occup1cd
states, contains the spin-orbit as well as other contribu-
tions to the binding energy. A discussion is given in Ref.

5 concerning how the otherwise arbitrary zero of Coulomb
potential is included in the one-electron energies so as to
be consistent with the Ewald contribution to the binding
energy. The second entry subtracts half the valence
Coulomb self-interaction which is counted twice in sum-

ming the one-electron energies. The third entry subtracts
the exchange-correlation contribution to the one-electron
energies and the fourth entry adds the exchange-
correlation contribution to the binding energy. As in Ref.
5, because of the nonlinearity of the exchange and correla-
tion potentials and energy functionals, the valence terms
are not separable from the core and we work with the to-
tal charge density pr. [The ionic pseudopotential is
formed by subtracting V„","=V„,(pr) —V„,(p„„) as well
as the valence Coulomb potential from the atomic pseudo-
potential. ] p„„is taken to be rigid so the V„,(p„„)term
is cancelled when the self-consistent V"„,'is added to the
Ionic pscudopotcnt1Rl 81m1larly thc pcorc term 1Il thc cx
change energy (fourth entry of Table III) also occurs in
the atomic valence total energy but does not cancel in the
cohesive energy' because of core-core overlap in the crys-
tal. The cohesive energy obtained by adding —Eb,„d;„z to
E~gom 1s glvcn 1Q thc next to last row of Table III. Fltt1ng

E„h„;„,at the three values of lattice constant with a para-
bola, the equilibrium lattice constant, cohesive energy, and
bulk modulus are obtained and compared with experiment
in Table IV. We' have recently calculated the total
valence electron energy of W and Mo atoms in d5s and
d s configurations with broken symmetry so that the
smgle Slater detcrm1nant requ1 red by the local-spIQ-
density approximation could account for both the ex-
change energy which forces the spins to be nearly parallel

Expt.Core

TABLE IV. Comparison with experiment of lattice constant (at 4.2 K), cohesive energy, and bulk
modulus of tungsten calculated with two k-space integration schemes and also with the inclusion of
core overlap contributions to the exchange-correlation energy (with tetrahedron integration).

Gaussian Tetrahedron

a (A)
Ecohesive

8 (10' erg/cm )

3.163
9.0404
2.703

3.168
8.9783
2.747

3.155
9.0638
2.609

3.162
8.90
3.232
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and the spin-orbit energy which mixes the spin directions.
For Mo, where the sixfold ionization energy is known, an
error of 0.43 Ry was obtained and a similar error is
presumed for W. These are due almost entirely to the
local-density RppI'oxlmatlon Rnd also occUI' 111 thc cI'ystRl;
this accounts for the good agreement between theory and
experiment ln thc cohesive cncI'gy. Thc RtoIDlc cQclgy ln
Table III is for the calculated d s ground state even
though experimentally the d s configuration is the
ground state, lying 0.366 CV below the d s. Thus one
might expect the calculated cohesive energy to be a little
too large, as it is, due to the fact that the atomic valence
binding eneI'gy which was subtracted from the crystal
binding energy was not that of the ground state. We note
in passing that our nominally S3 d s calculated atomic
ground-state energy contained 0.174 CV of spin-orbit ener-
gy without which it would not have been the ground state.
This would be obtained in ordinary calculations by admix-
1Qg P3 terms with thc S3. Wc also note that thc cancel-
lation of local-density-approximation errors is best when
thc atom Rnd cI'ystal RI'c ln approxlolatcly thc sRme con-
figuration. Since the projected' configuration of the crys-
tal is f d '

p s, it would not be correct to cal-
culate the cohesive energy with an atomic energy taken to
be the d s energy plus the 0.366 eV that the true ground
state lies below it. Our calculated lattice constant is seen
to be in excellent agreement with the 4.2-K lattice con-
stant and our bulk modulus in only fair agreement with
experiment.

Although our 50-point Gaussian weighted sampling of
the 4, th wedge of the BZ would appear adequate when
compared with the 14-point sampling used elsewhere, we
decided to repeat the entire self-consistent calculation us-

ing the same 50 k points but evaluating all BZ sums with
thc tetrahedron lntcgr ation scheme. ' Wc rcccntly
pointed out that this scheme has heretofore been in-
corlcctly appllcd Rnd showed how to usc lt with some lat-
tices. In Appendix 8 we describe how the tetrahedra are
constructed for our particular case of a bcc lattice of
points in a bcc BZ (i.e., fcc reciprocal space). We show

only the cohesive energy obtained in the last row of Table
III for three lattice constants and the equilibrium lattice
constant, cohesive energy, and bulk modulus in Table IV.
The improvement over the Gaussian sampling foI' the
cohesive energy may be fortuitous when our discussion of
the atomic energy is considered, the improvement in the
bulk modulus is almost negligible and the equilibrium lat-
tice constant, though still within acceptable agreement
with experiment, is poor when compared with the Gauss-
ian sampling result. In the third column in Table IV we
list the results that are obtained if p«« for a single atom is
substituted for the superposed atomic core charges in
—e„(p«„)p««which appears in the fourth contribution
to Ebinding Q Table III Th s adds thc ongcst"range core
coI'c lntcI'action to the binding cncrgy. It ls what passes
for the van der Waals interaction in the local-density ap-
proximation. Since it is attractive and increases rapidly
with decreasing lattice constant, it increases the cohesive
cncI"gy RIld dccI'cases thc equilibrium lattlcc coQstant RQd

bulk modulus. Thus we see that to within uncertainties
arising from core-core interactions and configurational
differences between the crystal and the atom, the relativis-
tic pseudopotential used in conjunction with the local-
spin-density approximation yields the cohesive energy and
equilibrium lattice constant highly accurately but yields a
bulk modulus about 15% too small. This perhaps is due
to the lack of perfect transferability of the pseudopoten-
tial. The pseudopotential wllicll is exact for a W ioil in a
particular configuration gave errors of about 6 meV in
one-electron eigenvalues of a W atom. A relative error of
36 meV (there are six valence electrons per atom) between
the cohesive energies calculated at two lattice constants is
IDorc than enough to RccouIlt foI' the cI'IQI' ln thc bUlk
modulus.
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APPENDIX A

In Ref. 6 we obtained an ionic pseudopotential,

7+1/2
Vp',"(r)= Q g ~

~&yi (&,$)}Vj)'"(r)&@,i (~,P)
~

j=f—1/2 1, m

)+1/2
g f

@ii (8,$) }[Vi"(r)L'S+V'i'"(r) j&@,i(~,@}[.
j=/ —1/2 l, m

(Al)

which when used in the Schrodinger equation contained all relativistic contributions to order a (not Z a ) where a is
the fine-structure constant. Here

ls —
2t 1

( Vj=i+i/2 Vj~=i —121+ I
(A2)

(A3)
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P~~ is a spherical harmonic, 7 is a spin- —, function, and Nj~~ is an eigenfunction of total angular momentum j. That
the second line of Eq. (Al) is equivalent to the first line is easily seen by observing that all matrix elements are identical
for the two. The third line results from changing from an (lsjm) representation to an (Imso).

Note that because Vj',"(r) is semilocal (i.e., nonlocal in 8 and P but local in r), when crystal wave functions are expand-
ed in localized orbitals, matrix elements of VP,"(r) consist of n /2 different three-center integrals of the form

J V(l )5(l l"')f—l(r Rl—)f2(r ' R2—)Yl~(8,$)Yl~(8', ltd')d r d r',

where n is the number of localized orbitals f;(r —Rj ) which overlap the pseudopotential located at the origin. To obtain
a completely nonlocal pseudopotential which leads to matrix elements consisting of products of two-center integrals, of
which there are only n, we first define 5Vjl(r) = Vjl(r) —VI (r), where VL (r) is an arbitrary average local pseudopotential
so that

Vp',"(l')= VL,'"(l')+ Vs'L (r),
where (SL is the semilocal and NL is the nonlocal pseudopotential)

(A4)

V"„"(r)= g I

4 l (8,&) )5V'~'"(r)(4 l (8,$) I
(A5)

We then construct a nonlocal pseudopotential to replace VsL,

I

Fjl(P)@jim�

(8 0)5~jl (l') ) (5Vjl (l )@jim(8 0)Fjl( r)
IV'„'"„(r)= g (Fjl(~) I

5Vjl'"(~)
I
F l(~) &

(A6)

where Fjl(r) is the radial eigenfunction of the atomic state from which the pseudopotential was originally obtained.
Note that if either VsT or VNL operates on

I
Fjl(r)C&(8, $) ) one obtains

I
Fjl(r)4(B,Q)5VJl "(r)). However, if the pseudo-

potential is transported to a different chemical situation so that the eigenfunction on which it operates is not

I
Fjl(r)4(8,$)), VNL yields a slightly different result than VsL. The pseudopotential is always only approximate when

transported to a different chemical environment so that by a judicious choice of VL'"(r) and therefore the 5Vjl'"(r), VNL
can be made to yield more accurate results than Vs'z. We have obtained a W+ pseudopotential and applied both forms
to self-consistent calculations of W + and W. The 6sl~q, 6p~~2, 6@3&2, 5d3&2, and Sd~&q, eigenvalues obtained from Vga
were in every case closer to the eigenvalue obtained from the Dirac equation than was the Vs'L eigenvalue. The pseudo-
potential used here and in Ref. 5 differs from that of Ref. 7 in that, for reasons discussed in Ref. 5, we used a different
form of valence exchange-correlation potential. This resulted in a pseudopotential which is overall more transferable but
for which V~L was more transferable than VsT(r) only for d electrons. VNL(r) is put in a more useful form by letting

~ Vjl (l ) Fjl(l )5Vjl (l )[ (Fjl(l )
I
5 Vjl (~)

I Fjl(~) ) ]

Then

V'NL(~)= & I
~Vj'l'"(r)@'jl (8 0) &(@jl (8 0)~Vj'l'"(~)

I

= g I
[av'l'"(r)+ L S a V,"(r)]e,, (B,y) & (e,, (B,y) [tv'l'"(r)+ L S SV,-(r)]

I

J,1, ltd

= g I
[AVl'"(r)+L S EVl"(r)]Yl (8,$)X )(X Yl (8,$)[bVl'"(r)+L Sb V~"(r)]

I
(A7)

Matrix elements of VNL(r) are obviously products of
two-center integrals.

The nonlocal semirelativistic psuedopotential of Ref. 5
was not obtained by setting b, Vl" ——0 in Eq. (A7) but by
setting Vl"——0 in Eq. (Al) and calculating a radial atomic
eigenfunction of VI'" which was used to create the nonlo-
cal form of the semirelativistic pseudopotential, i.e., rather
than averaging nonlocal j=I+ —, pseudopotentials we

averaged semilocal j =I+—,
' pseudopotentials and then

made the averaged pseudopotential nonlocal. The two dif-
ferent ways of averaging lead to atomic eigenvalues which
differ by less than 1 meV.

APPENDIX 8

We have recently pointed out that the tetrahedron in-
tegration scheme' ' as it has previously been applied in
practice seriously misweights the contribution of the vari-
ous mesh points in the BZ at which the integrand is calcu-
lated. We showed how this misweighting (which is due to
assuming cubic symmetry when the tetrahedra are orient-
ed so as to destroy it) could be avoided when the tungsten
fcc reciprocal space was sampled with a simple cubic
mesh or with an fcc mesh. When these calculations were
begun (for semirelativistic W) we had not even considered
using the tetrahedron scheme and were unaware of the
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difficulties associated with it. Thus any cubic array of
points with sufficient density in reciprocal space was as
good as any other and we happened to choose the bcc
mesh (2m/12') (ij,k) (where i, j, and k are all even or all
odd) to sample our fcc reciprocal space.

To perform the tetrahedron integration correctly in this
case we expand our integration to the super BZ cube in re-
cipi'ocal space —2m/a &X,q, g(2m/a which contains the
first four bcc BZ. Our mesh consists of body-centered
cubes, each of which may be filled with six pyramids
whose base is a cube face and whose vertex is the cube
center. Each pyraIllid Illay bc cUt 1nto t%'o tctlahedIR by a
plane containing a base diagonal and the vertex. We thus
fill each cube with 12 tetrahedra. We actually do ttus
twice, using both base diagonals to slice each pyramid.
This makes all the corners of the body-centered mesh
cubes equivalent and thus allows us to reflect all octants
of the super BZ into the first octant. Because each
tetrahedron has the same volume, the weighting of every
point is proportional to the number of tetrahedra touching
it (assuming the Fermi surface does not cut through any

of the tetrahedra). The cube-center points touch all 24
tetrahedra which doubly fill the cube. For each of the
three faces with which they are associated each cube
corner touches three tetrahedra (two when the plane slic-
ing the pyramid contains the point and one when it does
not), but each mesh cube corner is associated with eight
different mesh cubes and thus touches 72 tetrahedra.
(Mesh cube corners on the face of the super BZ are also
assoclatcd with c1ght mesh CUbcs when onc rclIlcmbcrs
that points on opposite faces of the super BZ are con-
sidered to be the same point. ) This 3-to-1 misweighting of
cube coITlcrs w1th Icspcct to cube ccntcIs 1s I'cIIlovcd by
displacing the super BZ by (2ira/12) (1,1,1) which inter-
changes mesh cube corners w«th mesh cube centers, re-
pcat1ng thc 1ntcgratlon, and RvcI'aging with thc pIcv10Us
integration. This slightly complicates the reflection sym-
metry; all octants are reflected into the "enlarged octant, "
—2m/12a &X,i),g & Zm X 13/12a with the mesh cubes
wc1ghtcd I, 2, 4, Rnd 8 accold1ng to whether they arc
corner, edge, face, or interior mesh cubes of the enlarged
octant.
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