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New look at the line shape of differential reflectograms for dilute alloys
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A complete line-shape analysis of experimental differential reflectograms of dilute alloys is

presented. Two different types of transitions near the L-symmetry point are considered for transi-
tions in the near-infrared, visible, and near-ultraviolet spectrum. The energies for interband transi-
tions as well as the lifetime-broadening energy are obtained directly from the experimental differen-

tial reflectograms without using an unmodulated reflectivity spectrum and a Kramers-Kronig
analysis. Transition energies obtained from an experimental differential reflectogram for a Cu —1.5
at. % Ga alloy are given.

I. INTRODUCTION

Differential reflectometry has proven valuable in inves-
tigating details about the electron structure around the
Fermi surface of metals and alloys. ' This technique has
been shown to provide, within one-hundredth of an elec-
tron volt, the energies which electrons absorb from pho-
tons as they are raised into higher, allowed states. The
technique involves the periodic and small variation of the
solute content within a binary-alloy system ("composition-
al modulation" ).

Enderlein et al. have developed a line-shape analysis
for differential reflectrograms for the fundamental ab-
sorption edge which reproduced remarkably well the ex-
perimental spectra of copper-based alloys. From this
line-shape analysis, the threshold energy for interband
transitions and the lifetime-broadening parameter were
obtained.

Other investigators ' used modulated reflectivity data
in conjunction with static reflectivity data and deduced
from them be2, using Kramers-Kronig analyses (e2 is the
imaginary part of the complex dielectric constant). The
latter analysis requires the extrapolation of R and AR/R
beyond the experimental range. This procedure does not
cause substantial error if one can assume that no structure
exists beyond the measured spectral range, an assumption
which is probably valid only in rare occasions. Rosei
et al. calculated separately the imaginary part of the
dielectric constant for copper and for the alloys. Then
they convoluted them with different "broadening parame-

ters" and subsequently obtained A@2 spectra by numerical
subtraction.

This paper presents a rigorous approach to the analysis
of the line shape of differential reflectrograms which in-
cludes all the observed peaks in compositional modulation
spectra in the near ir, visible, and near uv for o.=copper-
based alloys. The transition energies and the lifetime-
broadening parameter are obtained directly from the ex-
perirnental differential reflectograms without the aid of a
Kramers-Kronig analysis and static reflectivity data.

II. CALCULATION OF LINE SHAPE

It is suggested that two different types of transitions
near the L-symmetry point are mainly responsible for the
structures seen in compositional modulation spectra (in
the near ir, visible, and near uv) of a-copper-based alloys:
transitions from d bands well below the Fermi level into
the free-electron-like L2 band just above the Fermi level
[Fig. 1(a)], transitions from the same Lz band into the L~
band well above the Fermi level [Fig. 1(b)]. The initial
band will be referred to as band 1, and the final one as
band 2. The change ~ of alloy composition X affects
both types of transitions for the same reasons: Firstly, be-
muse of a shift of energy bands; secondly, because of the
change of lifetime broadening; and thirdly, because of a
shift of the Fermi level with respect to the bottom of the
L2 band. All three changes are taken into account in our
calculation. Other effects, such as changes of transition
matrix elements or changes of effective masses are as-
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gy of the IIltelballd excltatloll, p2I is the trallsltloll matrix
element, and f is the Fermi distribution function.

Let us consider at first the model of isotropic parabolic
bands using
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FIG. 1. Band model for optical transitions around the L,-

symmetry point; 4,
'a) transitions to the Fermi level, and (b) transi-

tions from the Fermi level.

sumed to be small. The result of the effects mentioned is
a change of the complex dielectric function
he=(de/dX)~, which can be related to the relative
change hR /R of reflectance by means of the equation

AR a +P (1)

where a and p are the Seraphin coefficients and ei and e2
are the real and imaginary parts of e, respectively. In the
spectral region of interband transitions, e can be calculat-
ed from the expression

4~e'
Rcu I 4m.

f(Ei(k)) —f(E2(k))
X (2)

Ace —[E2(k )—Ei ( k )]+ilril

where E~ and E2 are the energies of the initial and the fi-
nal bands, respectively, Al is the lifetime-broadening ener-

vE
fun E2i —(rn2/—I2i )E +i T'AI

(4)

where Ez] means the energy separation between bands 2
and 1 at I., and m2i is the corresponding reduced effective
mass (we assume m2i ~0). The derivative of e from Eq.
(4) with respect to the alloy composition X consists of two
terms, one term denoted by (de/dX)z for the derivative
with respect to the Fermi energy EI; at the lower integral
boundary in (4) and one term denoted by (de/dX)T for the
derivative of the denominator of the integral in (4) with
respect to —E2]. One obtains

This model does not reproduce completely the transition
in compositional modulation spectra. Actually the transi-
tions terminate or start at the 1.2 band in the vicinity of
the Fermi level at which the band structure is far from be-

ing isotropic. The present case, however, provides some
qualitative insights which aid in the understanding of tbe
actual case which we wiH treat below.

We commence with transitions to the Fermi level [Fig.
1(a)]. In this case the initial band Ei(k) is completely oc-

cupied, I.e., f(EI(k))=1. The final band E2(k) is occu-

pied below the Fermi level, i.e., f(E2( k ) ) = 1 for
R2k2/2m2 &EEL and empty above the Pe~i level, i e.
f(E2(k))=0 for III k /2m2&Ep . Transforming the k in-

tegral in (2) into an integral upon the kinetic energy
E =A' k /2rn2 of band 2, e becomes (disregarding a con-
stant factor)

d(E dF dE
dX dX F dL+

dEF

dX + dX N —6)T+ I, I

dE2) (COO) +(CO —COT+I I )

dX dX ] co —a) +TtI 2 [~0(~—~T+ jI )]1~2 (~o)I~2 —(~—~T+iI )
~ I2

L 2 La)T ——A E2] + E~, mo ——
m2

'E~ .

The two terms for (de/dX)T in the large parentheses of
Eq. (7) were obtained by partial integration. The first
term shows the same ~ dependence as (de/dX)~, whereas
thc second onc docs not. Thc second term, however, is
smaH compared to the first one in the spectral region
aIound 6P =My where thc linc-shape structulc of interest 1s

located. In other words, as long as

Q7 —6)y+l I

is fulfilled, the second term can be neglected. With this
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approximation, the line shape of (de/dX) becomes very

simple,

dCOT d I jL—l-
dX dX co —cu 7+i I

(10)

If we assume m( (the mass of the initial d band) to be in-

finity, and further assuine dI /dX=O, then Eq. (10) pro-
vides the same result as was obtained in our earlier paper
[see Eq. (11) in Ref. 2].

So far we have considered transitions to the Fermi level.
In the case of transitions from the Fermi level [Fig. 1(b)]
we consider f{Ez(k)}=0. Further, f(E,(k))=1 for
A' k /2mi &EP, and f(E((k))=0 for (ri k /2m( &EP.
Instead of Eq. (4) one obtains

~L.——f"dE-
Rco E2( —(m (

—/m z( )E +i AI

D
L L L

fico [—E2 E—p —Ei (Ep, u, U)]

fFs(z
Ace —Ace +i%I

Thus (de/dX)z takes the same form as in (6). The deriva-
tive (de/dX)T can be separated into two terms such as in
the isotropic case, one term being proportional to (15) and
one term being small compared to it in the vicinity of
co=mT. Thus the total derivative of e with respect to X
takes the form (10) which is also true in the case of non-

isotropic parabolic bands. Only the definition of iri(oT has
to be taken from (14) instead of (13). The same arguments

apply to transitions from the Fermi level. In this case ex-

pression (12) holds also for de/dX for nonisotropic para-
bolic bands. Both types of transitions can be combined
into one simple line-shape expression for (bR /R). Equa-
tion (1) can then be written as

With the use of the same arguments as before, relation
(11) yields approximately =Re (a ip)— (16)

. dI 1—l
dX dX CO —Ct)T+ l I (12) With de/dX from (10) and (12) one obtains

m&
%)T——E2] +L

m2)
(13)

. dl-Re (a —ip) —l
dX dX m —~T+l I

(17)

As expected, the line shape of de/dX remains the same as
in the former case. Only the definition of (oT is slightly
altered, and an additional minus sign occurs in (12) which
accounts for the fact that the transition energy is lowered
if the Fermi energy (or the band crossing it) goes up.

Let us consider now the actual case that is an anisotro-
pic band L2. Parabolicity is assumed as before. It will be
shown that the same expressions (10) and (12) can be ap-
plied for de/dX as in the isotropic case. We stipulated
above that the spectral structure of de/dX may be attri-
buted to transitions near I.. Thus the k integral in the
general expression for de/dX [differentiating Eq. (2) with
respect to X] can be restricted to a certain volume V and
I.. The transition matrix element pi((k) will be assumed
to be constant in V. First we consider transitions to the
Fermi surface. For the execution of the k integral upon
V, new variables [Ez(k), u (k), and U(k)] are introduced.
Here, u and v are the surface coordinates of the surface
E2(k)=const. I.et D(E2,u, u) be the Jacobian of this
transformation. The integral upon Ez can be readily tak-
en for the derivative (de/dX)z. The remaining surface in-
tegral upon the part FS(V) of the Fermi surface within
volume V is approximated by replacing the transition en-
ergy in the denominator by the average value

EL+EL f s( v)
dSD

f„, dS D [E( E((Ep,u,v)]—
{14)

From that we obtain

Introducing the complex numbers

Ce'i'=a ip, —

dcoy"

dX 'dx

1/2
2

dcoT

dX
+

dX

and setting p+1(t=8, Eq. (17) assumes the final form

1/2

dI
dX

CO —NT
, L9

(19)

F(s, 8)=sing(s) cos[P(s) —8], (20)

1
P(s) =arcsin

(1+ 2)(/2

where 3 is a factor which is independent of X and depends
only sl&ghtly on (o. The line-shape curves I'(oi coT/I, 8)—
have been plotted in Ref. 2 for various values of 0 and are
reproduced in Fig. 2. By fitting our experimental hR/R
spectrum (Fig. 3) to the calculated line-shape equation (19)
the transition energy ET ——Ace~ and the broadening energy
(ril can be obtained as a function of X. The shift of the
transition energy E~ results from two contributions, that
is, the shift of the Fermi level EI; and the change of the
band separation with respect to X.



R. E. HUMMEL AND R. ENDERI.EIN

(%%uo)

216

1.6 2.0 2.5 3
I I

800 700 600 500 400

; E(eV)
200 Z(nm)

t4~ —
& O I '2 3 4

FIG, 3. Experimental differential reAectrogram (AR/R vs
photon energy E) for a Cu —1.5 at. % Ga aBoy {average alloy
composition: The two specimens consisted of a Cu —1 at. % Ga
and a Cu—2 at. % Ga alloy, respectively).
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FIG. 2. F{s,g) vs s for selected 8 values {from Ref. 2).

III. DISCUSSIGN

Carotenuto et a/. reanalyzed some of our composition-
al modulation spectra taken on dilute Cu-Al and Cu-Zn
alloys. I'hey utilized their line-shape analysis mentioned
in the Introduction and concluded that even at low solute
concentrations the absorption edge of the L3 1.2 (Ez)—
transition moves toward higher energies with respect to its
position in pure copper. This is in contrast to our find-
ings which indicate that the threshold energy for inter-
band transitions, Er, does not vary appreciably for solute
concentrations up to slightly above 1 at. %.' Our find-
ings confirm the prediction by Friedel" who postulated
screening effects of the solute valence electrons at low
solute concentrations. Carotenuto et aI. argue that a peak
in AR/R can only be explained if one assumes a shift of
the transition energy (Ez.) to higher energies with increas-
ing X. A shift of ET is, however, not necessary for a peak
in hR /E . Equation (17) shows that a AR /FY signal is ob-

tained even for dao T/dX=O because of lifetime-
broadening effects (i.e., d l /dX&0). This becomes partic-
ularly evident in differential reflectograms for copper-
gold" and copper-nickel" alloys in which a broadening
of the threshold peak with high solute concentration can
be clearly seen. It is believed that the data reduction used
by Carotenuto et al. (Kramers-Kronig analysis, etc.) may
have simulated the shift in Ez.——f(X) for small solute
concentrations.

A further point seems to be significant. Both transi-
tions considered here, namely that to the Fermi energy
and that from the Fermi energy lead to a line shape which
has the same features [see Eqs. (10) and (12)]. Only the
value of 8 is different. For example, for peak A (in Fig.
3), 8 is approximately 60' and Er is close to the max-
imum. On the other hand, for features 8 and C in Fig. 3,
0 may be assumed to be close to 0', which leads to a tran-
sition energy somewhere between minimum 8 and max-
imum C. Experimental observations suggest. that features
8 and C are indeed part of one transition: When the ener-
gies of peaks 8 and C are plotted versus the solute concen-
tration, both curves are essentially parallel to each other. '

The inflection points in the curves of Fig. 2 can be used
for the characterization of 8.

Finally, feature D in Fig. 3 behaves in many respects
similarly to peak A (increase in ET with increasing X) and
has therefore been assigned in the past to transition from
the lower d bands to the Fermi energy. The inversion of
peak D with respect to peak A stems from the negative
a/P ratio in the former case. '

The line shape of the differential reflectogram shown in
Fig. 3 (Cu—1.5 at. % Ga) has been analyzed with the
method put forward in this paper. The following results
have been obtained for peak A: 8 =61'; threshold energy
ET——2.19 eV; lifetime-broadening energy RI = 1.6& 10
eV. For the double peak 8,C, one obtains 9 =0' and
ET ——4.02 eV. Finally, for peak D we obtain 8 =330'
and ET——5.1 eV.
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IV. CONCLUSION

The complete line shape of differential reflectograms
obtained in the near ir, visible, and near uv spectra for di-
lute copper-based alloys can be reproduced by assuming

transitions around the L-symmetry point and applying a
non-isotropic but parabolic band model. We further con-
clude that compositional modulation is a first-derivative
technique, and that the energies for interband transitions
and the lifetime broadening can be calculated.
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