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We study a continuum random-field model of domain growth in quenched nonequilibrium systems. We
derive an equation of motion for the interfaces separating domains and find approximate solutions for the
growth laws in two and three dimensions. We find what may be a dynamical mechanism for the theoreti-
cal prediction that the lower critical dimension of this model is d;=2. Our theoretical predictions can be

tested experimentally or by computer simulation.

Recently there has been much interest in systems with
random external fields.!” Theories have consisted of
equilibrium analyses of Ising-type systems.!™ These are
systems which, in the absence of a random field, phase
separate at low temperatures. When the random field is
turned on, there exists a lower critical dimension d=d,,
such that, for d =d,, there is no phase separation for any
temperature. Interfaces wander and become infinitely rough
at d;. Thus a two-phase system effectively becomes one
“mixed’’ phase. Several authors have obtained 4;=2 in
their equilibrium analyses of random-field models.? The
value of d; remains, however, a controversial theoretical is-
sue.!” It has been argued that the random-field model is
equivalent to dilute antiferromagnetic systems in a uniform
external field.* Such systems have been studied experimen-
tally.’ However, subtle effects have been seen in dilute an-
tiferromagnets which have no obvious origin in the simpler
random-field models.” For example, hysteresis effects com-
plicate interpretation of the experiments. (Those dynamical
effects are not the subject of this paper, however.®) Study
of the random-field models may nevertheless lead to useful
insights into dilute antiferromagnets. In any case, random-
field models are of interest in their own right.

So far, the effect of a random external field has been
analyzed only in systems at or close to equilibrium. Howev-
er, the behavior of systems far from equilibrium is a prob-
lem of great current interest.”"!> In this paper we will study
the growth of unstable domains far from equilibrium (*‘spi-
nodal decomposition’’) in a random-field system.

We consider a simple relaxational model of a system with
a (continuous) nonconserved order parameter . The sys-
tem is quenched from an initially disordered state to a low-
temperature nonequilibrium state where phase separation
would take place if there were no random field. We consid-
er an intermediate time following the quench, namely, when
random interfaces (which separate the domains) have
formed but before complicated thermodynamic fluctuations
close to equilibrium dominate the dynamics. Therefore, we
can discuss the dynamical breaking of long-range order at d|.
For d =d,, domains of the ordered phase will eventually
stop growing because the system cannot become ordered,
even at zero temperature. In two dimensions we find a
novel growth mechanism which is consistent with the pre-
diction that d;=2 in this model. Our results for d =2 and
d =3 can be tested experimentally, or by computer simula-
tion of a quenched system.

In the intermediate time regime following the quench, we
locate the interface at the nonequilibrium surface
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u(1,t) =0. Positions on this surface are determined by the
(d —1) dimensional vector S. This can be done if the inter-
face is thin, and gently curved.®-!2 The equation of motion
can be derived (i) through analysis of a time-dependent
Ginzburg-Landau equation for the nonconserved order
parameter ¢ (following Allen and Cahn® and Kawasaki and
Ohta®), or (ii) from physical arguments and the require-
ment of Euclidean invariance (following Bausch, Domb,
Janssen, and Zia'®). In a subsequent paper we will present
the detailed derivation of the equation of motion. For now
we will only state the result.

We find that the interfacial motion is due to two opposing
forces: The surface free energy acts to flatten interfaces
through the thermodynamic force K (the curvature),!’ while
the random field H makes interfaces wander and become
rough. Explicitly, the equation of motion for the velocity
normal to the interface is'

v=(D'/o)8F;/(hdu)=D'(K—g) , 1

at u =0, where D’ is a diffusion coefficient, o is the surface
tension, h is the differential length in the u direction,!® and

Fs=ofd""1S—fd“rH( D) y(w (@)

is the free energy of the interface in the continuum
random-field model.’2!* The first term in Eq. (2) is the
“thermodynamic” surface free energy, while the second
term gives the interfacial energy due to the random field.!s
We have not included the thermal noise term in Eq. (1). It
will have the same form as is given in Refs. 9-12. Thermal
noise effects are briefly discussed following Eq. (6b).

If the external field H(r) is a random Gaussian!6 variable
with (H(T)) =0 and

(H(T)H(T)) =v§s%r—r") ,

where v} is a constant, then it can be shown that

(g(S)g(§"))=v2(A/2w)3‘d84_1(§—§’) . 3)
In this equation, »? is the dimensionless random-field
strength,

v =v§Q27)} U CA*a/A4") L, 4)

where C is the coefficient of the gradient term in the
Ginzburg-Landau free energy. It is related to the surface
tension through

cr=th au(dy/h du)? .
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We have also introduced the ultraviolet cutoff A, where
aA/(27) = 0(1) where a is the lattice constant.!’

We have solved Eq. (1) using a physically appealing
linearization scheme of Ohta, Jasnow, and Kawasaki.!l:12
The linearization is based on the (approximately) isotropic
configuration of interfaces, which exists in the intermediate
time regime. Equation (1) becomes tractable in this limit.
For example, when there is no random field or thermal
fluctuation, Eq. (1) reduces to a linear diffusion equation.
The area density & (which is inversely proportional to the
characteristic length scale of the evolving domains, R) can
then be straightforwardly, though tediously, obtained. We
now display our results. Details of the derivation will be
presented in a later paper.

The growth laws (i.e., the time dependence of the area
density &) are expressed in terms of the characteristic size
of domains R.'® In d =3,

R?=Dt{1 -3[3/(4m) 1%} , &)

where D=D'(d—1)/d and »* is the dimensionless
random-field strength given by Eq. (4). In d =2,

R2=Dt{l =7 =3%2[In(A2D) — 1} , (62)
or, in dimensionless units (F=RA, 7=DA%),
P=7[1-a"32(nr—y)] , (6b)

where vy is approximately 0.809. Thermal noise effects are
as given in Ref. 12. They do not change the time depen-
dences of the growth laws, wherein the crucial physics of
this problem lies.

We now interpret our results. The time dependence of
the d =3 growth law, Eq. (5), is unchanged from the zero-
field result. However, the diffusion coefficient is renormal-
ized by a field-dependent factor. This renormalization ef-
fectively slows down domain growth. This is reasonable.
The random field (which roughens interfaces) is competing
with the surface free energy (which flattens interfaces).

In two dimensions [Eq. (6)], there are logarithmic correc-
tions to the zero-field linear growth law 72=7. This new
growth law implies that, for any field strength »? 0,
domains cannot grow larger than a maximum size 7., given
below. Physically, the interfaces are evolving through their
curvature from the initially quenched random configuration
to the domain configuration determined by the external
field. Unlike d =3, where domain growth is only slowed
down by a renormalization of D, the random field in d =2
is strong enough to stop domain growth. This is consistent
with earlier predictions that the lower critical dimension is
d;=2.2 Of course, because of our approximations, this
result could be fortuitous. Indeed, as noted above, the
value of ¢, remains somewhat controversial.!-

Equation (6) implies that two-dimensional domains reach
a maximum size 7, at a time 7., and then begin to shrink.?®
These quantities are given by 7.=expl#*2/v2—(1—7v)]
and 7,=7.v?/732. The expression for 7, is in accord with
that found in Binder’s equilibrium analysis.? These quanti-
ties are very sensitive to the value of the dimensionless field
strength. For »*=0.1 we obtain r,=10'! and 7.==10%,
but for v*=1 we obtain 7,=6 and r,=170. This implies
that one might be able to ‘‘tune’’ the random field to obtain
interesting results in computer simulations of finite-size sys-
tems. Note that the scaling of 7 and 7 in our continuum
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theory suggests that they roughly correspond to units of lat-
tice constants and ‘‘Monte Carlo steps,” respectively. How-
ever, a two-dimensional system might have large fluctuation
effects, since 7. changes by ten orders of magnitude when
v? is only changed by one order of magnitude.

Some limitations of our treatment are as follows. Not
surprisingly, the hysteresis effects, seen in d=3 experi-
ments on dilute antiferromagnets close to equilibrium,’ are
not present in Eq. (5). Our simple relaxational model is
probably not sufficiently rich to describe both the domain
growth far from equilibrium, and the detailed fluctuational
dynamics closer to equilibrium. There may also be some
subtle differences between dilute antiferromagnets and the
random-field model. The time scale of validity of the d =3
growth law is examined below, where we discuss the struc-
ture factor.

We stress that the result for d =2 [Eq. (6)] may have lit-
tle physical significance for 7 > 7, (after domains have
reached their maximum size), since the basic assumptions
of the model break down.2! In our approximate continuum
theory, 7 > 7. is when the random field, which roughens in-
terfaces, is driving the system. However, the equation of
motion [Eq. (1)] requires thin, gently curved interfaces.
Further, since the linearization scheme is based on an as-
sumption of isotropy, it will tend to overestimate the effects
of randomness. This is certainly what occurs in d =2 for
T > er,, where 72 changes sign (and in d =3 for large ran-
dom fields v2 > 27).

We have not calculated the nonequilibrium structure fac-
tor S(k,0) ~ {|y(kt)|?),?* which is proportional to the
scattering intensity, where k is the wave number. However,
we can make some comments on its behavior based upon
our results for the growth laws, in the intermediate time re-
gime when self-similar growth takes place. From scaling ar-
guments,”!! we expect the second moment of .#(k,7),
~fd"k K2#(k,0), to be roughly proportional to R 2
Therefore, one can in principle experimentally determine
the growth laws.” Further, if the zeroth moment of S k,?),

~fd‘kf (k,7), is approximately independent of the
random-field strength, then as the second moment of
H(k,1) increases, the height of the Bragg peak in S(k,7) will
decrease, and vice versa.

Thus, in three dimensions as time increases [and so R 2
decreases from Eq. (6)] the peak in S(k,#) will sharpen. If
the random field is increased in a series of experimental
quenches, the theory predicts that, at a given time, J(k,1)
will flatten, although as time increases the peak will still
sharpen. In the later stages, as the system equilibrates, oth-
er processes which we have ignored (e.g., hysteresis effects)
will dominate.?

The situation in two dimensions is more dramatic. For
any nonzero field strength, our approximate theory predicts
that the Bragg peak in J#(k,#) will only sharpen until a time
T.. After this time the peak will decrease. Although the
later stages of the equilibration process are not described by
our theory,?! we would expect that, on a macroscopic length
scale, the peak will disappear. Thus long-range order will
not be established.?*

To summarize, we have considered domain growth in
quenched nonequilibrium systems which have random
fields. We have derived a continuum equation of motion?
for the interfaces separating domains. We have found ap-
proximate solutions for the growth laws in two and three
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dimensions. In two dimensions, the growth law gives a
dynamical mechanism which may be responsible for d;=2
being the lower critical dimension. Our theoretical results
could be tested by experiment or by computer simulation.
Of course, a detailed quantitative description of experimen-
tal systems would require a more realistic dynamical model
(for example, one including spin waves) than we have con-
sidered.
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