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Metastable chaotic state and the soliton density in incommensurate R12znC4
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The temperature dependence of the soliton density n, derived from the dielectric data in Rb2ZnC14 is

compared with the one obtained from nuclear-magnetic-resonance measurements and x-ray scattering data.
The finite value of n, at the "lock-in" transition T, and the nonzero value of n, below T, demonstrate
that on cooling through T, a rnetastable chaotic state with randomly pinned solitons is reached.

I. INTRODUCTION

Recent dielectric constant measurements' have shown
the existence of a large thermal hysteresis in Rb2ZnC14 both
above and below the "lock-in" transition T,. The dielectric
constant is finite3 at the incommensurate (I)-commensurate
(C) transition T, and —on cooling from above —exhibits an
anomalously high value below T, . The incommensurate sat-
ellite x-ray reflections are anomalously broadened in the
neighborhood of T, and show similar hysteresis phenomena
as the dielectric constant.

The above phenomena and the apparent lack of long-
range order have been interpreted in terms of the destruc-
tion of the multisoliton lattice due to random-phase pinning.
A metastable chaotic state with randomly spaced pinned soli-
tons7 8 has been indeed predicted to exist intermediate
between the I and C phases. Randomly pinned solitons may
occur as metastable entities even in the C phase below T,
~here the soliton formation energy becomes positive.

In this Rapid Communciation we introduce a theoretical
model for these effects and present some quantitative infor-
mation for the magnitude of the pinned soliton density in
Rb2ZnC14 as derived from dielectric constant and x-ray
broadening data, and checked by "Rb nuclear magnetic res-
onance measurements.

where the parameter k is within the constant amplitude ap-
proximation determined from the condition

(s)

The temperature T enters expressions (4) and (5) through
the amplitude of the complex order parameter A p

=no(TI —T)/P E(k) .and E(k) are complete elliptic in-

tegrals awhile the parameters 5, ~, and y are defined in Refs.
3 and 9. From expression (4) it follows that n, 0 as
T T,+ in view of the divergence of the intersoliton dis-
tance xp.

In the vicinity of the I-C transition impurities and discrete
lattice effects become important. They induce a chaotic
state with randomly spaced pinned solitons. Here we intro-
duce a simple one-dimensional model which simulates the
effect of impurities in destroying the periodicity of the mul-
tisoliton lattice. We consider a sequence of phase solitons
with the single soliton formation free energy F, and the
nearest-neighbor interaction falling off exponentially with
the intersoliton distance. The effect of impurities is
described by an electric field which varies spatially in a ran-
dom way and acts on the polarization pattern (see Fig. 1).

II. THEORY

The classical Landau theory of the I-C transition in
R12ZnC14 predicts ' that the dielectric susceptibility exhi-
bits a Curie-gneiss law on approaching T, from above

X.i-1 Xt

whereas it should abruptly drop to Xp below T, in the C
phase:

X=Xp, T & Tc

X is rather low as long as the incommensurate modulation
wave can be described by a plane wave. It strongly in-
creases with decreasing soliton density in the multisoliton
lattice limit on approaching T, . The soliton density

n, = da/Xp,

Xl

E;I

where dp is the soliton width and xp the intersoliton spacing,
is here given by

m/2

X(k)

FIG. l. Action of the pressure field p;= —E;AP; on the polari-

zation (P) and displacement (u) pattern in R12ZnCl4. The ran-
dom internal electric field E; simulates the effective impurities.

dP; represents the change of the polarization over the phase soli-
ton.
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FIG. 3. Temperature dependence of the soliton density n, in

Rb2ZnC14 as derived from the dielectric data in cooling and heating
runs with the help of the Landau theory. The circles show the soli-

ton density, derived from the Rb
2

—
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nuclear magnetic res-S7

onance line shapes (Ref. 13).

sures the volume fraction of the crystal occupied by the
discornmensurations, decreases from 1 at T~ = 27 'C to
about —0.8 at —26'C and reaches 0.6 at —61'C. The
dielectric constant data show that n, reaches a finite value of
about 0.33 at T,+, whereas NMR data" yield a value —0.30
in the same temperature range. Below T„n, drops relative-
ly fast from about 0.3 to 0.06 in a temperature interval of
about 2'C and then decreases rather slowly to zero with de-
creasing temperature. Twenty degrees below T„around
—100'C, the soliton density is still more than 1%. This
value is, however, so small that it is indistinguishable from
zero for NMR techniques and can be seen only through
dielectric data.

On heating from below n, practically equals zero up to
T, where it abruptly jumps to about 0.33 and then slowly
increases with increasing temperature.

The above temperature dependence of n, agrees with the
one deduced from the anomalous broadening of the x-ray
satellites below T, (Fig. 4). From the same figure we as
well see that the x-ray line shape and temperature depen-
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dence above T, follow the predictions of the random-field
model.

The finite value of n, at T„ the hysteresis in n, on cool-
ing below T„and the anomalous x-ray satellite broadening
represent strong additional evidence for the existence of a
metastable chaotic state with randomly pinned solitons in-
termediate between the I and C phases.

FIG. 4. (i) Comparison between the experimental and theoretical
x-ray I satellite line shape in Rb2ZnCI4 at T= —80'C assuming a
Gaussian distribution of internal electric fields due to impurities.
(ii) Comparison between the experimental and theoretical tempera-
ture dependences of the x-ray I satellite linewidth above T, [Eq.
(10)] and below T, [Eq. (11)]. The temperature variation of n,
below T, is taken from the dielectric data. The constant a equals
0.018, and the constant 8 equals 0.0018 K.
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