Experimental realization of true self-avoiding walks

Fereydoon Family

Department of Physics, Emory University, Atlanta, Georgia 30322

M. Daoud

Laboratoire Leon Brillouin, Centre d'Etudes Nucléaires Saclay, Bôite Postale No. 2, 91191 Gif-sur- Yvette, France (Received 11 October 1983)

We show that the statistics of a linear polymer in an extremely polydispersed solution with a broad distribution of chain sizes is the same as that of a true self-avoiding walk. We also develop a Flory theory for a true self-avoiding walk and determine the upper critical dimension d_c and the correlation-length exponent v. We find $d_c = 2$ and $v = 2/(d + 2)$, in agreement with previous estimates.

Recently, Amit, Parisi, and Peliti¹ have introduced the "true" self-avoiding walk (TSAW) model which describes the path of a random walker that is constrained to avoid visiting a given point in space with a probability that is proportional to the number of times this point has already been visited. This constraint leads to a reduced excluded volume interaction as compared with the usual self-avoiding walk. The net effect is that the chain is less expanded and, in fact, its upper critical dimension d_c is found¹ to be 2 instead of $d_c = 4$ for excluded volume self-avoiding walks.² Although TSAW has been extensively studied recently, $3-6$ thus far it has been thought that it is only a statistical model without any relation to a real physical system. The main theoretical interest in this model stems from its unusual critical proper-'ties.¹

In this Rapid Communication we show that, in fact, true self-avoiding walks describe the statistics of a special type of linear polymers in solution and their properties can be investigated experimentally by means of neutron and light scattering techniques. We also develop a Flory theory^{2,7} for the TSAW and determine the upper critical dimension d_c and the exponent ν .

Before we discuss the physical realization of the TSAW, let us first discuss the difference between this model and the excluded volume problem, i.e., the usual self-avoiding walks.² In the TSAW the probability of moving to a new site depends on the number of times this site has already been visited.¹ In contrast, in the self-avoiding walk the probability of visiting a given site depends on the total number of self-intersections.^{1,2} The net effect is that if we approximate each chain with a cloud of uniform density, then the repulsive energy in the TSAW is proportional to the density of the chain, whereas for the self-avoiding walk this interaction energy is proportional to the square of the chain density. Thus, with the use of a Flory-type theory^{2,7} the interaction free energy for the TSAW can be written as

$$
F_{\rm int} \sim N/R^d \tag{1}
$$

where N is the number of steps in the walk and R is its end-to-end length. Equation (1) should be contrasted with $F_{\text{int}} \sim N^2/R^d$ for self-avoiding walks.^{2,7}

An important remark at this point concerns the upper critical dimension d_c of TSAW. We can estimate the max-

imum repulsive energy by letting R have its minimum value mum repulsive energy by letting *K* have its minimum value corresponding to an unperturbed chain, i.e., $R \sim N^{1/2}$. The repulsive energy for the TSAW is thus proportional to $N^{1-d/2}$. The dimension above which this repulsive energy, i. The annohism above which this replasive energy,
i.e., the excluded volume effect, is negligible is $d_c = 2$, in greement with previous estimates.^{1,3,4} agreement with previous estimates.^{1,3,4}

To obtain the total Flory free energy for the TSAW we add the elastic free energy^{2,7} $F_{el} \sim R^2/N$ to F_{int} and find

$$
F \sim R^2/N + N/R^d \t\t(2)
$$

where we have omitted all the unimportant constants in (2) . Minimizing (2) with respect to R we find

$$
R \sim N^{\nu} \tag{3}
$$

with

$$
\nu = 2/(d+2) \quad . \tag{4}
$$

Equation (4) is the same as the result obtained by Pietronero⁴ using a self-consistent-field approach and shows that, as expected, $²$ these two approaches are very similar.</sup>

Now let us consider the physical situation where the TSAW may be realized. Consider a melt made initially of bifunctional monomers in a vessel. These monomers are allowed to react with each other, thus leading to a very polydispersed condensate. Let us focus attention on a single polymer chain. It has been argued⁸ that two different cases must be considered: (i) a typical chain with a molecular weight of the order of the weight-average molecular weight N_{w} , and (ii) a very long chain, much longer than the typical one.

The very long chain locally feels the presence of the other monomers. On a larger scale, however, the large chain interacts with itself and excluded volume effects are present. The other chains act just as a good solvent. Hence polylispersity has no effect on long chains. Thus, assuming $F_{\text{int}} \sim N^2/R^d$, Flory theory gives $\nu = 3/(d+2)$ for the very long dispersity has no effect on long chains. Thus, assuming F_{int} chain where the excluded volume effect is present.

For the typical chain the excluded volume interaction is screened by the other chains.⁸ As shown by Edwards⁹ and de Gennes,¹⁰ the degree of screening is proportional to the weight-average molecular weight N_w . In a polycondensed melt of linear polymers one finds $N_w \sim N$.⁷ Thus the interaction free energy for the typical chain is given by 8

$$
F_{\rm int} \sim N^2 / N_w R^d \sim N / R^d \quad . \tag{5}
$$

Equation (5) impiies that the interaction energy instead of being proportional to the square of the monomer densityas for the excluded volume chain or self-avoiding walks —is directly proportional to the monomer density. Since the interaction energy is also proportional to the density in the TSAW model, then typical chains in a condensate have the statistics of the TSAW. In particular, for typical chains $d_c = 2$ and $\nu = 2/(d + 2).$ ⁸

In conclusion, the statistics of the TSAW are shown to be related to those of what we⁸ have called "typical" chains in condensate. Properties of these chains can be measured in neutron or light scattering experiments. We have also better of the TSAW. We have also
presented a Flory theory for the TSAW. We find $d_c = 2$ and
 $d_c = 2/(d+2)$, in agreement with previous estimates.^{1, 3–6} $\nu = 2/(d+2)$, in agreement with previous estimates.^{1,3-6}

We would like to thank Kiho Kang for useful discussions. Research of F.F. is supported by NSF Grant No. DMR-82- 08051, Emory University Research Fund, and Research Corporation.

- ¹D. J. Amit, G. Parisi, and L. Peliti, Phys. Rev. B 27, 1635 (1983). ²P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ., Ithaca, NY, 1979).
- ³S. P. Obukov and L. Peliti, J. Phys. A $\underline{16}$, L147 (1983).
- 4L. Pietronero, Phys. Rev. 8 27, 5887 (1983).
- ⁵H. Nakanishi and F. Family, J. Phys. A (to be published).
- ⁶J. Bernasconi and L. Pietronero (unpublished).
- ⁷P. J. Flory, Principles of Polymer Chemistry (Cornell Univ., Ithaca, NY, 1953).
- 8M. Daoud and F. Family, J. Phys. (Paris) (to be published).
- ⁹S. F. Edwards, Proc. Phys. Soc. London 88, 265 (1966).
- ⁰P. G. de Gennes, C. R. Acad. Sci. 291, 17 (1980).