
PHYSICAL REVIEW B VOLUME 29, NUMBER 3 1 FEBRUARY 1984
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Monte Carlo methods are employed to measure the internal energy, sublattice magnetization, and spin-

spin correlation function of the fcc antiferromagnetic Ising model as a function of temperature. The inter-

nal energy of both the ordered and disordered phases is fitted by appropriate series expansions, and the
free energy is obtained analytically from the series. The ordering transition is seen to be of first order with

a transition temperature of 1.736+0.001 in units of the nearest-neighbor coupling J. These results are
compared with earlier approximations of the model, in particular, the low-temperature series expansion

and the Kikuchi tetrahedron approximation, and other Monte Carlo results. The spin-spin correlation
function was measured in the disordered phase up to eight lattice spacings in the [100j direction. The
correlation length at the transition is found to be -2.5a. The behavior of the correlation length is approx-
imately mean-field-like.

I. INTRODUCTION II. FREE ENERGY OF THE ORDERED PHASE

There has been considerable effort expended recently to-
ward understanding the behavior of the order-disorder tran-
sition in CuAu. The fcc antiferromagnetic Ising model is
particularly relevent to this understanding. Recent work in-

cludes extension of the Kikuchi cluster variation method to
large clusters, ' ' extension of the low-temperature series ex-
pansion to five terms, and Monte Carlo measurements in
the neighborhood of the transition. ' This paper presents
the thermodynamic functions of the model determined from
Monte Carlo measurements. In addition the spin-spin
correlation function has been measured yielding correlation
lengths in the disordered phase.

The Ising model of interest is defined by the Hamiltonian

0= JX(r;(ri
(v&

where J &0, crI= +1, and the sum is over nearest neigh-
bors of the fcc lattice. This is the zero-field nearest-
neighbor antiferromagnetic Ising model. %e wish to know
the free energy of this model for temperatures near the
order-disorder transition. The Monte Carlo method allows
us to measure the internal energy of the model over a wide
range of temperatures. Then we can calculate the free ener-

gy from a basic thermodynamic relation.
In practice the internal energy data are fitted to a power

series in the temperature and the free energy is calculated
analytically from the power series. The free energy of the
ordered phase and the disordered phase are calculated
separately. The first-order phase transition occurs at the
temperature at which the free energies of the two phases are
equal. This method is similar to one employed by Binder'
on the next-neighbor fcc antiferromagnetic Ising model in
nonzero magnetic field.

Sections II and III describe the determination of the free
energy of the ordered and disordered phases, respectively.
The correlation function fitting procedure is described in
Sec. IV. Section V describes the Monte Carlo procedure.
The results are presented in Sec. VI.

Slawny and MacKenzie and Young have shown that the
free energy of this model in the low-temperature limit is
given by the free energy of the P phase. The P phase (de-
fined by Danielian'o ") at T=0 is a ground state of max-
imum symmetry and consists of two spin-up and two spin-
down cubic sublattices of the fcc lattice. (An fcc lattice with
lattice constant a may be formed from four cubic sublattices
of lattice constant a.) This phase is equivalent to L'o order-
ing and, more specifically, the structure of CuAuI.

The free energy per spin FL' of the P phase in the low-

temperature (LT) limit is given by the series expansion

PER+ = —
PEO+ —X&(x'+'

I

where x=exp( —4PJ), P=l/AT, and Eo= —2J is the
ground-state energy per spin. The first five coefficients
have been calculated. 4

The internal energy per spin U may be determined from
the thermodynamic relation

yielding the low-temperature-series form

U„,=E, +4Jgb, (I+i)x'+' .

%e have measured the internal energy of this system via
Monte Carlo methods over the temperature range
T=1.00J-1.76J and find that the low-temperature series
expansion and the Monte Carlo measurements disagree for
temperatures greater than —1.3J. The internal energy data
are fitted to a series of the form

Ur, = Eo+4JXb;(i+i) x'+'

The series is integrated from T =J to obtain the free energy

—PE"„=—PEO+ gb;x'+'+const

The constant is evaluated 'by setting Er, (T=J)
=FLr(T= J).
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III. FREE ENERGY OF THE DISORDERED PHASE

The free energy of the disordered phase is determined in
a manner similar to that for the ordered phase. The high-
temperature series expansion of Sykes" is of the form

—pFHT ——ln(2) +61n[cosh(E) ] + Xa;[tanh(E)]',

where HT denotes high temperature, and

UHT/J =6tanh(E) + Xb, [tanh(E) ]',
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where E = —pJ and bf = (i +1)a;+~ —(i —1)a; ~. Coeffi-
cients have been calculated up to a]4.'

The measured internal energy agrees with this expansion
only for temperatures greater than 2OJ. Therefore, we have
made measurements over the temperature range 1.74J-SOJ
and fitted the data to

Ur„/J =6 tanh(E) —gd;[tanh(E) ] '

Upon integration we have

pF&, ——6—1n[cosh(E) ] + Xc;[tanh(E) ]'—const

where d, = (i + 1)c; +~
—(i —1)c; ~ and the constant is

determined by setting Fr„(T = 50J) = FHT( T = 50J).

IV. SPIN-SPIN CORRELATIONS

The spin-spin correlation function has been measured in
the disordered phase for spins separated along the [100] axis
by distances up to 8a. The correlation function may be
written as

D (8/gr)
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FIG. 1. Internal energy per spin of the nearest-neighbor fcc Ising
antiferromagnetic in zero field plotted vs temperature. &, Monte
Carlo data;, series expansion fit to data; ---, Monte Carlo
transition; —- --, low-tem perature series expansion; —--, Kikuchi
tetrahedron approximation; ——,Kikuchi transition.

ously. For the fcc lattice, the four cubic sublattices are such
sets. The Metropolis spin-flip method' is employed to up-
date the state of every site in a given sublattice. Each of the
sublattices is updated in turn so that after four steps all of
the sites of the lattice have been updated once; i.e., one
Monte Carlo step per site (MCS). At this point, the inter-
nal energy, sublattice magnetization, and spin-spin correla-
tions are measured. At each temperature the first 500 MCS
are discarded to ensure equilibration. Then the measured
values are averaged over 2000 MCS. For the spin-spin
correlations, 20 sets of 1000 MCS were averaged after dis-
carding the first 1000 MCS.

At temperatures near the transition, finite-size effects be-
come important. Binder' indicates that the internal energy
scales as

where gr is the correlation length. The form of the func-
tion D(R/(T) is chosen so as to correctly describe the
large-R behavior. We write

3

D(Z/g, ) = XD„e

Ug= U +3e

1.2
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All of the correlation data are fitted to G(JIT) simultane-
ously, yielding g(T), q(T), and the scaled function D (x).

V. MONTE CARLO METHOD
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The Monte Carlo method is performed on the fcc
nearest-neighbor antiferromagnetic Ising model. The lattice
consists of four cubic sublattices each containing 16 &&16 &&16

sites for a total of 16384 sites. The boundary conditions ap-
plied to each sublattice are skew periodic, i.e., periodic along
the x and z axes and periodic but shifted by ax along the y
axis. The initial condition of the lattice is either the ordered
p phase or the disordered phase depending upon the phase
to be measured.

A combination of bit logic and an array processor allows
the processing of many sites essentially simultaneously.
Thus it is necessary to find sets of sites upon which Monte
Carlo dynamics may be legitimately performed simultane-

-2.1

4l

-2.3--

-2.4

FIG. 2. Free energy per spin of the nearest-neighbor fcc Ising an-
tiferromagnet in zero field plotted vs temperature. Results of the
Kikuchi method, low-temperature series expansion, and the current
Monte Carlo method for the low-temperature phase are indistin-
guishable at this scale. , analytic function from data; —---,
low-temperature series expansion; —--, Kikuchi tetrahedron ap-
proximation.



1470 BRIEF REPORTS 29

0.98--

p.96--
c= p94--
o~ p.92
c 090--
F
X p88.
.= p.86--8~ 0.84--
CO

0.82--

Monte Carlo Data
———- Mante Carlo Transition——Kikuchi Tetrahedron Approximation

——Kiltuchi Transition

I.OO ~i a—a-~-x—x

x~.
x&.

x

x

x

3.5--

30--

c 25--
CL

C/J

2.0--

l.5-

CL

I.O-

0.5-

I

I

I

I

0.80--

0.78',
I.O I. I I.2 I.3 l.4 I5 I6 I.7 I.8 I.9 2.0

0.0
I.O I.4 1.6 1.8 2.0 2.2 2.4 2.6

Temperature T / J
Temperature T/J

FIG. 3. Sublattice magnetization of the nearest-neighbor Ising
antiferromagnet in zero field plotted vs temperature. x, Monte
Carlo data; ----, Monte Carlo transition; —--, Kikuchi tetrahedron
approximation; ———,Kikuchi transition.

FIG. 5. Specific heat per spin of the nearest-neighbor Ising anti-
ferromagnet in zero field plotted vs temperature. , analytic
function from data; ----, Monte Carlo transition; —--, Kikuchi
tetrahedron approximation; —--, Kikuchi transition.

where U~ is the internal energy measured on a lattice of
linear dimension L, U is the internal energy in the ther-
modynamic limit, and A and b are scaling factors to be
determined. For T/J=1.g, using L =12, 16, 24, and 32,
the scaling factors were found to be A ——0 24 and
b —1.25. (Here we used our value of gr ts —2.3a. )
Therefore, in order to determine the transition temperature
to within T/J —0.001, it is necessary and sufficient to use
L =32 whenever gr) 1.6a. This occurs in the region
1.6 ~ T/J ~ 2.0. For these temperatures, the internal ener-

gy was averaged over 900 MCS after discarding 100 MCS on
an L = 32 lattice.

VI. RESULTS AND DISCUSSION

The measured internal energy is plotted in Fig. 1. The
internal energies of the low-temperature series expansion

and the Kikuchi tetrahedron approximation are included for
comparison. Figure 2 presents the calculated free energy
along with the low-temperature series expansion and Kiku-
chi tetrahedron approximation free energies. The first-order
phase transition occurs at KsT/J =1.736+0.001 compared
with the Kikuchi' result of 1.89. Using Monte Carlo data,
Phani et al. report a transition at KsT/J —1.76. Our stud-
ies indicate that this is most likely the superheating point of
the p phase and not the first-order transition.

The sublattice magnetization of the p phase is plotted in
Fig. 3 along with the Kikuchi tetrahedron result. Finally,
the entropy and specific heat are shown in Figs. 4 and 5,
respectively.

The failure of both the low-temperature series expansion
and the Kikuchi method is understood in terms of the
correlation length which is shown in Fig. 6. Both methods
rely on clusters of "length" less than a. Even for T/J )3,
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FIG. 4. Lattice entropy per spin of the nearest-neighbor Ising an-
tiferromagnet in zero field plotted vs temperature, , analytical
function from data; ----, Monte Carlo transition; —-—,Kikuchi
tetrahedron approximation; ——,Kikuchi transition.
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FIG. 6. Inverse correlation length squared for the disordered
phase in units of 1/a2 plotted vs temperature.
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the correlation length is greater than a, and therefore clus-
ters exist which are too large for either method. It is not
reasonable to expect that adding a few more terms to either
of the methods will result in significant improvement.

It is presently assumed that there exists a multicritical
point when a next-nearest-neighbor coupling is added to this
model. The multicriticality should drive the upper critical
dimension below 1=3. Therefore mean-field behavior is
warranted in the neighborhood of the multicritical point.
Our correlation-length measurements (see Fig. 6) are car-
ried out at a zero value of the next-nearest-neighbor coup-
ling. However, for temperatures greater than the measured
first-order transition temperature, the correlation length ex-
hibits mean-field temperature dependence as follows:

(T —( T T, ) O—', T, —1.5J

Work is in progress to measure the correlation length in
the immediate neighborhood of the multicritical point.
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