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The square-lattice gas with several ratios (R) of next-nearest-neighbor coupling to nearest-neighbor cou-

pling is studied by finite-size scaling using transfer-matrix methods. Results are obtained for the phase dia-

gram and critical exponents for the 2 &&1 and 2 &2 order-disorder transitions, for the case R =1. While the
correlation length exponent v seems to be nonuniversal, weak universality appears to hold for the (2 x2)
transition and possibly for the 2 &1 transition. Reentrant behavior is observed for the 2 &&1 transition line

but appears to decrease with increasing strip width. The variation of the 2 &&1 transition line with different
values of R (R =1, 2, 5, ~) is also studied.

INTRODUCTION

Recently, various two-dimensional lattice gas models have
been the subject of intensive theoretical studies. These
models are of interest as models of chemi- and physisorbed
systems, as well as displaying a rich variety of phase transi-
tions and critical phenomena. One such model which has
received considerable attention is the simple square-lattice
model with competing nearest-neighbor and next-nearest-
neighbor repulsive interactions. This model is of particular
interest for the case R &0.5 (where R is the ratio of the
next-nearest-neighbor coupling J2 to the nearest-neighbor
coupling J~). For these values of R, this model exhibits
two phases, namely, the (2&&l) and (2 x2) ordered struc-
tures. ' The order-disorder transitions for these phases are
thought to belong to the universality class of the X-Ymodel
with cubic anisotropy. As such, they should exhibit vari-
able (nonuniversal) critical exponents.

This model has recently been studied with use of a
number of different techniques, including Monte Carlo
simulations, transfer-matrix finite-size scaling, and the in-
terfacial free-energy method, 4 with somewhat different
results. The Monte Carlo simulations (R =1) gave a good
overall estimate of the phase diagram, but missed the disor-
dered region between the (2 && 1) and (2 && 2) ordered
phases. In addition, the critical exponents were calculated
in a small region of the (2&&I) transition line, and it was
found that the exponents did indeed vary slightly both with
8 and external magnetic field H. However, the reduced
critical exponents [y = y/w, p = p/v, and p = (2 —o. )/r ]
were found to be virtually indistinguishable from the 8 = 0
(Ising) values. Thus, in this study, Suzuki's weak universal-
ity was held to be valid, at least for the region of the phase
diagram which was studied.

In a later transfer-matrix study' an entire phase diagram
was calculated for the R = 1 case. A disordered region
between the (2 &&I) and (2 &&2) ordered phases was found
and, somewhat surprisingly, reentrant behavior was found
for the (2 XI) transition line. It was not clear whether this
reentrant behavior was due to finite-size effects or whether
it was a genuine property of the model. Also, no estimates
of the critical exponents were given.

In a more recent study by Slotte the interfacial free-
energy technique4 was used to study the phase diagram for
all values of R. In this study, the (2 & I) transition line was

found to be independent of R, for R &0.669 (with tem-
perature and field scaled in units of J2, the next-nearest-
neighbor interaction). In addition, this transition line did
not exhibit reentrant behavior. Also, an estimate was given
for the critical value of the chemical potential at a second-
order phase transition of the hard-square-lattice gas, which
was considerably higher than the currently accepted value.

In light of the previous results it was found useful to con-
duct a more detailed study, both of the exponents and of
the phase diagram, with use of transfer-matrix scaling. Our
results, which we discuss in more detail below, are as fol-
lows. We find that the correlation length critical exponent v

varies throughout the phase diagram and is nonuniversal.
Our results for the correlation function exponent r) (based
on the Derrida-deSeze conjecture) indicate that weak
universality holds for the (2 X2) transition line, and that it
may possibly hold for the (2 x 1) transition as well. We find
that the (2 x 1) transition line varies as R is varied
(R &0.669) in contrast to the results of Slotte. (This is
particularly evident in comparing the critical temperature at
H =0 for the R =1 case with that for the R = ~ case.) Fi-
nally, we find that the reentrant behavior of the (2 &&I)

transition line tends to decrease with increasing strip width.

METHOD AND RESULTS

The well-known transfer-matrix scaling technique' " in-
volves studying the scaling properties of the correlation
length for semi-infinite strips of width N for different values
of N The ratio of the largest eigenvalue Xo to the next-
largest eigenvalue (in magnitude) h. ~ of the transfer matrix
gives the correlation length

'=ln—

From (1) one obtains the correlation length g(T, I/Ã) as a
function of temperature T and strip width N. In the limit

one assumes the scaling behavior ((t, I/N)
=b((b~'t, b/N), where t = (~ T —T, ~)/T„and T, is the crit-
cal temperature. From this one obtains, at the critical tem-
perature,

(~/X = g /N'
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Similarly, one has for the thermal exponent y, ( = I/t )

d(N/ rjr
yr =ln ln, —1

t)(~ r)t N' (3)
l.o—

(a)

To obtain the critical exponent q we have used the fol-
lowing relation conjectured by Derrida and deSeze':

q = N/m)~ (at 1,) (4)

This relation has been shown to hold for the Ising and X-Y
models and it is believed to hold for several isotropic sys-
tems in two dimensions. '

Since for a strip of width N, the transfer matrix has
dimensions 2~X2~, we found it necessary in our study to
use an additional technique for reducing the size of the
transfer matrix. This consisted essentially of using the
translational symmetry of the finite strip to block diagonal-
ize the matrix into N different blocks, each corresponding to
a different symmetry class. " This permitted a reduction of
the dimension of the matrix to approximately 2~/N and thus
a 1/N' reduction in computer storage space.

In Fig. 1 we show our finite-size scaling results for R =1
as obtained from Eq. (2) for (6-8) [where, for example, (6-
8) denotes ( N =6, N' =8) ] and (10-12) scalings. The
differences between these two scaling results for the (2 x I)
transition line are small for 0 (H/Jt (3.5, suggesting that
finite-size effects are small in this region. In the region
H/Jt )3.5, reentrant behavior is observed, in contrast to
Slotte's results, which show no reentrant behavior. Howev-
er, the temperature at which the reentrant behavior begins
decreases by 11'/o as one goes from the (6-8) scaling results
to the (10-12) results. At the same time, the width (in
field) of the reentrant region is reduced by approximately
20%. Thus, although reentrant behavior is observed, it ap-
pears to be decreasing with increasing strip width. [A simi-
lar but smaller decrease in reentrant behavior was also seen
when comparing (4-6) scaling results with (6-8) results. ]
We note that, with the exception of the reentrant portion of
the (2x I) transition line, the finite-size effects seem to be
larger for the (2 x 2) transition line.

Figure 2(a) shows the behavior of the exponent yr for
R =1 as a function of the field H/Jt for (6-8) and (10-12)
scalings. A smooth variation is observed for both scalings,
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FIG. 1. Phase diagram for the 8 =1 case. The dashed line indi-
cates (6-8) scaling; solid line refers to (10-12) scaling. The reen-
trant region is that portion of the (2X1) transition line for which
H/Jt &4.
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FIG. 2. Exponents yr and q (R =1). Dashed line indicates (6-
8) scaling results. Solid line indicates (10-12) scaling. The ex-
ponent ri is given by N/vrgz (at T, ) if the Derrida-deSeze conjec-
ture holds.

along the (2xl) and (2x2) transition lines. This is in
agreement with the prediction of nonuniversal, variable ex-
ponents for these transitions. ' However, it is clear that
there are still strong finite-size effects in the region near
H/J& =4. This is further indicated by the appearance of
nonphysical negative values for yr (not show in figure) in
the lower half of the (2xl) reentrant region. We note,
however, that the temperature at which negative values for
yr are obtained is smaller for (10-12) scaling than for (6-8)
scaling. Thus it would appear that the nonphysical negative
values of y~ disappear with increasing strip width.

Figure 2(b) shows the behavior of the quantity N/rrgz,
which we are using as an estimate for q, as a function of
field for both scalings. While some variation in our calcu-
lated value of q is observed for the (2 x I) part of the phase
diagram, we observe that in the (2 x 2) transition region
[(10-12) scaling] r) is virtually constant. Thus we may con-
clude that in the (2 x2) region, Suzuki's weak universality
holds, while in the (2 xI) region it appears to hold up to
H/Jt =3 and may possibly hold for the entire phase dia-
grarn. This is in agreement with the suggestion made by
Binder and Landau. ' We note that our value q =0.23 +0.02
for the nonreentrant portion of the (2 xI) transition line is
somewhat below the Ising value of 0.25 and significantly
below the previously estimated value q=0.29+0.15.' In
addition, we note that our result q =0.025 for the (2 x2)
transition line (for which there was no previous estimate) is
extremely small.

In order to study the behavior of the (2xl) transition
line as a function of R, we have plotted, in Fig. 3, the phase
diagram for four different values of R. We note that there
is a significant variation in the (2 x1) transition line for dif-
ferent values of R, not only in the region near H/J& ——4,
but in the low-field region as well. In particular, at 8=0,
we note that the transition temperature (AT, /Jz) increases
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we have performed a scaling analysis for T,. Using the
results from (4-6), (6-8), and (10-12) scalings, and the
Binder-Landau Monte Carlo results, we estimate the
(N=~) value for T, to be 2.11+0.02. This is clearly
below the Ising value (2.269) obtained by Slotte. 6 Thus we
find clear evidence that the transition temperature at H =0
varies, i.e., increases monotonically as 8 is increased.

Finally, we have measured the zero-temperature slope at
high field of the (2 &&2) transition line, which may be used
to obtain an estimate of the critical chemical potential
(p, /ksT, ), for the hard-square-lattice gas with first- and
second-neighbor exclusion. ' " This is given as

FIG. 3. Phase diagram for four different values of R [(4-6) scal-

ing].
From this we have obtained a value of 4.70 for the critical
chemical potential. This is within 4% of the value (4.91)
obtained by Slotte. ' '4 "

monotonically [for (4-6) scaling], from a value of 2.05 for
the R =1 case to a value of 2.26 (close to the Ising value)
for the R =oo (antiferromagnet) curve. This is in contrast
to the R-independent behavior (for R )0.669) found via
the interfacial free-energy method. As a further test of the
correct transition temperature at H=O for the 8 =1 case,
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