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Effective-field model for a spin-1 Ising system with dipolar and quadrupolar interactions
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The effective-field model of a spin-1 Ising system with both dipolar and quadrupolar interactions is stud-

ied. From the generalized Suzuki identity the exact expressions for the dipolar and the quadrupolar order-

ing parameters are found in the form of ensemble averages. Two different operators are introduced to

write the above expressions in the form of exponentials, which are then simplified. The transition tem-

peratures for linear, honeycomb, and simple cubic lattices are computed and compared with the results of
previous theories.

I. INTRODUCTION

The two-state or spin-
2

Ising model was introduced by Is-
ing' in 1925 as a possible model for ferromagnetism. Ising
himself solved the model in one dimension and some time
later Qnsager solved the two-dimensional Ising model ex-
actly. In three dimensions, no exact solution has been ob-
tained. However, several alternative approaches were
developed. These are (i) closed-form approximations, 3 (ii)
Green s-function approximations, (iii) series-expansion
method, and (iv) renormalization-group calculations.

It should be appreciated that among the above methods
the molecular-field approximation (MFA) is indeed able to
give a simple and satisfactory description of the statistical
mechanics of the Ising models over a large range of tem-
peratures. One significant defect of MFA is that it leads to
the unphysical result for a linear chain. Also, the results for
Curie temperatures for different lattices calculated by MFA
are much higher than the exact results.

Incorporating the effects of many-body static spin correla-
tions in MFA, Lines developed the correlated effective-
field approximation which was later applied to some prob-
lems in magnetism. But this method also has some serious
drawbacks. Firstly, it predicts a vanishing Curie tempera-
ture for a two-dimensional Ising model. Secondly, the
results are essentially equivalent to those of the spherical
model which provides lower transition temperatures. The
exact result should, in fact, lie between those of the spheri-
cal model and MFA.

With the motivation of deriving more accurate expres-
sions for the magnetization and Curie temperatures for a
spin- —, Ising system Honmura and Kaneyoshi9 (HK)
developed an effective-field model by introducing an ex-
ponential operator technique and by utilizing a correlation
identity derived previously by Callen. ' This technique
(which we call HK-MFA) was found by them to yield the
transition temperatures which are more accurate than those
obtained in MFA. Later, Kaneyoshi and his co-workers"
developed the technique elaborately. Recently, Taggart'
and Taggart and Fittipaldi' performed calculations for
linear, honeycomb, square, and cubic lattices using the Cal-
len identity and an inverse Callen identity. They found that
the quantitative agreement with the exact results is better
than that obtained in MFA, HK-MFA, and Bethe approxi-
mations. The most encouraging feature of the HK
technique is that it reproduces the exact results for a

linear chain.
The review presented above is concerned only with the

spin-2 Ising model. The Ising model with spins greater

than
2

received relatively less attention. The chief difficul-

ty behind this is that the Hamiltonians in these cases are
indeed very complicated. The generalized spin-5 Ising
model as proposed by Taggart' is, however, solvable in
some special cases. The Blume-Emery-Griffiths (BEG)
model'5 and the Blume-Capel (BC) model' are two such
simple special cases and are spin-1 models. Mukamel and
Blume" adopted the BEG Hamiltonian and employed the
mean-field approximation to study the tricritical points in
ternary mixtures. Sivardiere and Lajzerowicz" and Chakra-
borty' adopted the above Hamiltonian to construct the ap-
propriate lattice gas models for solid, liquid, and gaseous
phases and the related phase transitions. The MFA was
used by Furman, Dattagupta, and Griffiths' to propose the
global phase diagram for a ternary system.
Renormalization-group calculations for the BEG model have
also been performed by some authors 2i, 22 Obkata and Ogu-
chi' derived the results for Curie temperatures by Bethe ap-
proximation. Recently, Tamura and Kaneyoshi utilized
the HK technique to study a Blume-Capel model.

The purpose of the present paper is to employ the HK
technique to study a spin-1 Ising system described by a
Hamiltonian which consists of dipolar and quadrupolar in-
teractions. Using the generalized correlation identity of
Suzuki' and introducing two exponential operators the HK
expressions for dipolar and quadrupolar ordering parameters
are worked out. The results for the transition temperatures
are computed for linear, honeycomb, and cubic lattices and
compared with the results of earlier theories.

II. MOLECULAR-FIELD APPROXIMATION
AND SUZUKI'S IDENTITY

%e consider a spin-1 Ising system whose spins are cou-
pled by the following Hamiltonian:

H = —QJgrS Sf—$Jgf(Sg Sg)
gf gf

where Jgf is the dipolar exchange and jgf is the quadrupolar
exchange.

The expressions for the magnetization m = (S~) and the
quadrupolar ordering parameter 0 = (Sg) in MFA applied
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to Eq. (1) are'

2e's"~sinh(2P Jm )
1+2e a"~cosh(2PzJm)

2e s*'~cosh(2PzJm )
1 + 2e ~"~cosh(2pzJm)

(2)

(3)

gets from Eqs. (9) and (10)

m ——g (tanh(pEd) )

It is evident that if one writes

Ed = 2zJm, Eq = 2zjg

(13)

(14)

with

m = g tanh(2PzJm ) (4)

where z is the number of nearest neighbors; J and j are the
nearest-neighbor dipolar and quadrupolar exchange con-
stants, respectively.

Now we want to see whether Eqs. (2)-(4) are derivable
from Suzuki's generalized identity. Suzuki considered the
following general Hamiltonian:

then Eqs. (9), (10), and (13) reduce, respectively, to Eqs.
(2), (3), and (4). Hence, one should expect that the results
would be better than those of MFA if one works with the
identities (9), (10), and (13) using the HK technique. We
call Eqs. (9) and (10) the individual identities and Eq. (13)
the joint identity.

III. EXPONENTIAL OPERATOR TECHNIQUE

H= $, . . . V(S,,Sq, . . . )
f&g

(5) The exponential operator technique introduced by Hon-
mura and Kaneyoshi is based on the following identity:

( )
Tr(ae s")

Tre P" (7)

For a spin-1 Ising model with both dipolar and quadrupo-
lar interactions, the contribution to the energy of the gth
spin should consist of dipolar and quadrupolar terms, i.e. ,
we have to replace Eq(Sq) by [Ed(Sq) +Eq(Sq)], where d

stands for the dipolar and q for the quadrupolar contribu-
tions. Hence, considering the case (f] =1, we get the fol-
lowing identity from Eq. (6):

Trq((Sq)»exp(p[Eq(Sq) +Eq(Sq') ]])
Trq (exp(p[Ed(Sq) +Eq(Sq ) ]])

where V(Sf, . . . ) is the dipolar, quadrupolar, or higher-
order function of the spin variables Sf, Sg, etc. Let
—Eq(Sq) be the contribution to the energy of the gth spin.
For such a system Suzuki derived the following correlation
identity:

pe (s )

((fj(s,)') =(l )

Trge

where p =1, 2, etc. , and (f) is any function of Sf's at sites
other than the gth. The symbol (»1 ) denotes the ensemble
average

(e ) tanhx(„o= (tanh0) (15)

2e sinhx 2e~sinh0(e "
1+2e"coshx „00 1+2e~ cosh0

(16)

D„~+D~4, 2e~ coshx 2e~cosh0(e "
1+2e coshx „0 0 1+2e~ cosh0

(17)

The above identities can be proved in a straightforward
manner. We emphasize that since in Eqs. (9), (10), and
(13) the parameters m and Q are coupled it is not possible
to treat the problem using only a single differential operator
as was done by Tamura and Kaneyoshi.

Using (16) and (17) we can transform Eqs. (9), (10), and
(13) in the following forms:

where D —= B/Bx is a differential operator.
However, since the present problem involves two order-

ing parameters m and Q we have to introduce two differen-
tial operators D„—= B/Bx and D» —= B/By such that we arrive at
the following two exponential operator identities:

where

q

~~pE
2e q sinh(PEd)

pE1+2e q cosh(PEd)
pE

(
2e cosh(Phe)

PE1+2e q cosh(PEd)

(9)

(10)

For the spin-1 case above identity leads to the following
expressions for m and Q: D„&ed+D Se, 2e»sinhxm= e"

1+2e coshx 0 & 0

D„PEq+o»Pe
)

2e»coshxQ=(e 1+2e coshx

D pEd
m = Q (e "

) tanhx(„

(18)

(19)

(20)

Ed= QJqrSq

Eq = gj2JSq (12)

The above type of equations were also obtained by Tamura
and Kaneyoshi " for a Blume-Capel model.

Now using the approximation (»t )/(8) = ((»1/8)) one

It may be remarked that if one wants to study the indivi-
dual thermal variations of dipolar and quadrupolar order
parameters then one should work with the identities (18)
and (19) separately. To find the critical temperature T, one
may work with any one of the above three identities consid-
ering the fact that at T, the dipolar order parameter m van-

ishes and Q takes the value
3

. However, it is much simpler

to work with Eq. (20) if one goes to find T, .
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From Eqs. (1) and (18) we get the following expression
for the magnetization:

Trexp[2p gg [(JD„+zJm)Sg+ (jD~+zjg)Sg ]],
ftl =

Tr exp [2p gg (zJmSg+ zjgSg') l I

2e~sinhx
1+2e coshx x 0 y

For a spin-1 case it reduces to the form

D ttt+b
m = A. *[1+2e ~ cosh(D„9+a)]'

(21)

0.45

2e~sinhx
1+2e~coshx —0, —o

0=2pj. b =2pjzg,
8 = 2p J, a = 2pzJm

Z = 1+2e'P~~cosh(2PzJm )

(23)
0.40

3.
Similarly Eqs. (19) and (20) can be simplified to the fol-

lowing form:

D Q+b
g = X '[1+2e ~ cosh(D„8+a)]'

FIG. 1. The nature of variation of E, with respect to n for a
linear Ising chain.

2e slnhx
1+2e coshx ~ () y 0

m = Qh. '[1+2e~cosh(D„8+a)]'tanhxi„-0 . (25)

Equations (22), (24), and (25) are the final expressions
for the ordering parameters m and g in the present
effective-field model for a spin-1 Ising model with dipolar
and quadrupolar interactions. These are completely dif-
ferent from those of MFA but these are much more compli-
cated and a lot of computational labor ls needed. Instead of
performing such complicated computations of the thermal
variations of m and 0 we restrict ourselves to finding the
values of E, = J/ks T, for various lattices.

Detailed computations of Eqs. (22), (24), and (25) have
been carried out to find the Curie temperatures. These

equations are first simplified and the limiting condition
2

m 0, 0 —, is imposed and the resulting equations for

T, are computed, %C do not present here the simplifica-
tions since these can be done in a straightforward manner.
Table I sho~s the values of E, ' for linear, honeycomb,
and simple cubic lattices for the special case where the bi-
quadratic parameter n=j/J is zero. The results are com-
pared with those of MFA, Brown-Luttinger theory, the
Obokata-Oguchi generalized Bethe approximation, "and the
Tamura-Kaneyoshi effective-field model. The values in
Table I have been calculated from two equations —values
for z =2 and z =3 from Eq. (25) and that for z =6 from
Eq. (25). One can alternatively compute the values from
Eq. (24). It may be remarked that the value of Jt, of the
present paper for z =6 as presented in Table I is higher than
the value of Tamura and Kaneyoshi. This difference is evi-
dently due to the fact that this value has been computed
from the joint identity. We have also performed calculation

TABLE I. The values of E, ' for o. =0 calculated from the present paper and compared with those of the

other theories.

MFA
Brown-Luttinger (Ref. 26)
Obokata-Oguchi (Ref. 23)
Tamura-Kaneyoshi (Ref. 24)
Present paper No solution

2.691

8.0
5,4

6.876
7.04

7.2464
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FIG. 2. The nature of variation of k&T,/J with respect to —a for

a honeycomb lattice.
5.0

05

of E, ' for z = 6 from Eq. (22) and we have found that it is

exactly identical with the value of Tamura and Kaneyoshi'
as expected. Table I also shows the self-evident feature of
this kind of model, that the phase transition is absent for a
linear lattice.

Furthermore, the computations of Curie temperatures for
different lattices with nonzero biquadratic parameter o. have
been carried out and the results are demonstrated in Figs.
1-3. It is seen that for a linear lattice T, decreases with the
increases of a and that a nonzero, real, positive T, exists
for both positive and negative values of a, although o, = 0
does not favor any phase transition. In particular, we have
found that for a phase transition the range of o. should be

—~ ( o. ( 0; 0 & o. ~ n,

o., has been found to be approximately equal to 7.18. For
n = o, , we have found that E, goes to infinity, i.e., T, = 0.
In contrast to a linear lattice we have not found any solution
for T, for any positive a in the case of honeycomb and sim-

ple cubic lattices. However, solutions exist for negative a in

FIG. 3. The variation of ksT, /J with —n for a simple cubic lat-

tice.

these lattices. The nature of variation of T, with —n is
sho~n in Figs. 2 and 3 for z =3 and z =6, respectively. We
remark that even such a qualitative nature of the variation
of Curie temperature with the biquadratic parameter is com-
pletely different from that found in MFA. In this connec-
tion it is relevant to mention the work of Takahasi and Ta-
naka" which also shows no phase transition for a ) 0.

In conclusion, we would like to emphasize that although
the HK formalism leads to better accuracy of the values of
the Curie temperatures for all lattices it has the major disad-
vantage that the choice of the effective field even in its sim-
plest form (Weiss field) as used in Eq. (21) leads to much
computational labor. So, although the incorporation of the
Lines correlated effective-field approximation is able to yield
better values, the related equations become so complicated
that the computational problem becomes really formidable.
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