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Magnetic Kapitza resistance and surface random spins
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It is emphasized that the randomly distributed spins near the surface play an important role on the mag-

netic Kapitza resistance. Under the assumption that dipolar spin-glass is formed in the vicinity of the sur-

face of magnetic salt, the formulation of the Kapitza resistance is presented. The temperature dependence

of magnetic Kapitza resistance is found to be proportional to T at sufficiently low temperatures.

The problem of magnetic Kapitza resistance is of interest
not only from practical implications in low-temperature
physics but also in its own right. ' In 1966, Abel, Anderson,
Black, and Wheatley' discovered that below 20 mK the Ka-
pitza resistance RIt between liquid He and cerium magnesi-
um nitrate (CMN) shows a different temperature depen-
dence varying approximately as T rather than T depen-
dence expected from the normal Kapitza resistance. Legget
and Vuorio3 have developed a theory to explain these obser-
vations in which the heat exchange is assumed to occur
through the magnetic coupling between the cerium spins
and the nuclear 3He spins. This theory derived the resis-
tance R~ proportional to T as observed by Abel et al. ' above
the magnetic ordering temperature (T, =2 mK) of CMN.
It remains, however, an open question' whether or not the
magnetic coupling is necessarily important to understand
various experiments~8 performed after that of Abel et al. ,

and more detailed study on the effects of magnetic coupling
has been called for both experimentally and theoretically.

The motivation of this Brief Report is based on the possi-
ble existence of dipolar spin-glass in the vicinity of the sur-
face of the salt. This should be due to the unavoidable sur-
face inhomogeneity of the magnetic substance exposed to
air and due to the magnetic impurities such as 02 molecules
or 0 atoms with spin which are adsorbed randomly at the
surface. As a consequence, the magnetic Kapitza resistance
can be drastically different from that expected in an ordi-
nary magnetic salt.

The viewpoint is described as follows: since the magnetic
dipole interaction falls off as r ', the effective magnetic
coupling seems likely to take place from the localized spins
located in the vicinity of the surface of the salt. In particu-
lar, the surface of magnetic substances might be covered
with adsorbed impurities with the magnetic moments such
as 02 molecules or 0 atoms as pointed out by Potter. The
adsorbed magnetic impurities and the magnetic ions near
the surface of the salt are randomly distributed resulting
from unavoidable surface inhomogeneity and adsorption site
irregularity. The possible existence of dipolar spin-glass in
such a system has been pointed out' from the analogy
between the Ruderman-Kittel-Kasuya-Yosida (RKKY) ex-
change potential and the magnetic dipole-dipole interaction.
Dipole interactions are in many respects similar to the
RKKY interactions: competition between ferro- and antifer-
romagnetic interactions, and r behavior. In fact, this ex-
pectation is supported experimentally.

As is well known, the magnetic Kapitza resistance R~ is
proportional to r/C~, where CM is the heat capacity of mag-
netic substance and ~ is the relaxation time between two

systems to reach the equilibrium. For instance, in the tem-
perature regime above the magnetic ordering temperature
T„ the heat capacity C~ is proportional to T, and I/r
varies as T reflecting the sharpness of the Fermi distribution
function of normal liquid 'He at low temperatures. As a

result, the Rg behaves as T above T, as obtained by Legget
and Vuorio. From the similar arguments, if a spin-glass
state is present in the vicinity of the surface where the mag-
netic moments are frozen in randomly oriented local fields,
the heat capacity will be proportional to T in most cases at
sufficiently low temperatures. As seen later, this rather
general feature of the heat capacity is well interpreted by in-

troducing the magnetic two-level systems with the broadly
distributed energy difference. ' In such a case, the Kapitza
resistance R~ is expected to be proportional roughly to T
at sufficiently low temperatures. Now a quantitative treat-
ment of the magnetic Kapitza resistance between a spin-
glass state and liquid 'He is given below. Let us consider
the situation where the He quasiparticle with momentum k

approached to the interface and is scattered by flipping the
He nuclear spin due to the magnetic interaction with local-

ized electronic spins near the surface. Under this situation
the Kapitza resistance R~ is expressed as

X x t d~ (~) d f(k) [1 f(k')] k k'-
1+exp( —6/ks T ) ks T

(I)

where f ( k ) is the Fermi distribution function for the He
quasiparticles and W-„-„, is the transition rate of a He atom

from an occupied state k to an empty state k'. In Eq. (1),
the localized spins contributing to the transition are ex-
pressed by the two-level system with a energy splitting 6
with the distribution (nA). The expression for n (6) is

very important in the present analysis and we shall discuss it
fully later. Now the transition rate 8'--, from the state k

k k

is written down as

where H' is the interaction Hamiltonian of the two-level
system. The magnetic coupling between He nuclear spins
and the electronic spins is taken to be dipolar type. Then
we can write down the dominant interaction Hamiltonian in
the second quantized form as

H'= X /exp[i(k —k') R„]x J(k, k')S„a
k a-„

2V
k k

1984 The American Physical Society



29 BRIEF REPORTS 1437

f ( k) [1—f (k') ] = 5(e —ef)/[exp(ek/ks T) —1]

The exchange enhancement effect E,ff of quasiparticles is
included through in Eq. (4) which increases the conductance
h~ =Rg ' by one order of magnitude for pure 'He.

Now let us describe the nature of the distribution func-
tion n (5) in Eq. (4). The important point in the spin-glass
behavior is the potential energy as a function of the simul-
taneously specified orientations of all of the spins. In this
connection, the specific heat of dipolar spin-glass is well

described by assuming the two-level system as shown by
Villain, ' which implies that the transition involves the
simultaneous rearrangement of a small number of spins.
The width X of the energy distribution function n (5) of the
above-mentioned two-level system can be estimated as
X = z p, z/a 3, where z is a number of order unity representing
the effective coordination number and a is the mean dis-
tance from any localized spin to the nearest one. This es-
timation of 4 is reasonable since the effective field acting
on any given spin is dominated by the few spins which hap-
pen to be the closest. Following the discussion of Villain, "
the nonvanishing distribution function at 6=0 is assumed.
We take the energy distribution function n (5) in Eq. (4) as
a Gaussian such as

n (5) = npexp( —5'/Z')/JvrZ,

where no is the areal density of the two-level system near
the surface in a projected mean. Combining the density no
and the width 4, we can write down the distribution func-
tion n (5) as a function of one variable from b, =zpzn p3~2,

By changing the variable b in the integral of Eq. (4) to
the dimensionless one x =5/ksT, we can find the charac-
teristic feature of thc temperature dependence of the resis-
tance as follows. Using a dimensionless variable x, Eq. (4)
becomes

J'm "kF'&0'rrks T' t'" n (b, )x'
~5 3 p ex e

—x (5)

The width of the distribution function 5/ksT in Eq. (5)

~here a -„and a -„are the creation and annihilation operator
for the He atoms with the momentum k and spin a-. The
factor V is the volume of a half space occupied by liquid
He. The symbol S„+ expresses the rising operator for the

spin state characterizing localized state at site R„ in the ef-
fective mean near the surface. The factor J(k, k') is
the Fourier transform of dipole interactions d p( x )
=(r 8 & 3r rs—)r in a half space. It is shown' that the
dipole interaction behaves like an effective contact interac-
tion when the heat exchange is dominated by scattering with

the momentum transfer of the order of the 'He Fermi
momentum pf." Therefore we can take J(k, k') to be the
contact type by setting the dipole interaction d ( x ) = Js ( x ),
thus we have J(k, k') = J with the magnitude of 10
crgs cm' ~

Substituting Eq. (3) into Eq. (1), we obtain the Kapitza
resistance R~ as

J m' kgb, ff n(~)a'
2f 5~ kz T ~ p exp(A/ks T) —exp( —6/ks T)

(4)

where the use is made of

varies as the temperature. Combining this function n(h)
with the factor x /(e" —e ") in Eq. (5), we see that at suffi-
ciently low temperatures T ((Z/ks the integral can be
easily obtained as npm /(4JnZ) and the resistance R»
behaves as T . On the other hand, at high temperatures
T ))X/ks we can also integrate Eq. (4) as n pA'ksT/8. As
a result, the resistance R~ becomes proportional to T,
whose temperature dependence is the same with the Legget
and Vuorio reflecting free-spin states. At the intermediate
temperature range, the theoretical curve of R~ is connected
smoothly with the minimum around T = Z/2. 5k s.

Let us discuss the ratio of the magnetic Kapitza resistance
to the resistance due to zero-sound excitation. The explicit
form of the Kapitza resistance due to zero-sound excitation
was derived by Bekarevich and Khalatnikov' and Gavoret, "
which is expressed as

2rr'kspL, cpFt T'

15e3psc
(6)

Here, pL and pg are the mass densities of liquid He and a
solid, and co and cL arc the velocities of zero-sound and
transverse acoustic phonons, respectively. I'] is the numeri-
cal factor of about 1.5. This formula can be applied to the
whole scale of temperature. The ratio of Eq. (6) to the
magnetic Kapitza resistance at high temperatures derived
from Eq. (4) becomes

R» (magnetic) 32rr pL, cpkP Ft T
R»(zero sound) 15psc,'J'm "kf'X,'pn pZ'

From Eq. (8), it is concluded that the heat transfer due to
the magnetic coupling is a dominant channel below about 1

K compared with the heat transfer due to the zero-sound
excitation, as far as we consider the reasonable areal density
of states of spins of the order of no —10' '" cm

It is interesting to note that the temperature dependence
( —T '5) derived from Eq. (5) is close to that observed by
Hebral et al. in which the observed resistance decreased
with increasing temperature up to around 10 mK. Recently,
Fujii and Shigi' have used the potassium tutton salt
(CPS):CuKz(SO4)26HzO in order to clarify the role of the
magnetic coupling for the Kapitza resistance. This sub-
stance is, in fact, suitable to reveal the role of magnetic cou-
pling because its magnetic ordering temperature T, =29.6
mK is tractable. Fujii and Shigi' obtained similar tendency
of the resistance for CPS with those of Hebral et aI. , i.e.,
the observed resistance' decreased rapidly from 15 up to 60
mK and its temperature dependence varies rather like T
below 50 mK. This temperature dependence can be
recovered from Eq. (5) in addition to the agreement on the
magnitude of R~ by taking 4 = 130 mK.

To summarize, the present work suggests an important
mechanism together with the suggestion of the existence of
dipolar spin-glass in the vicinity of the surface of the salt
causing from thc surface inhomogeneity and magnetic ad-
sorbed impurities. Finally, I predict the temperature depen-
dence of the resistance when liquid He is solidified in the
present system. As shown by Legget and Vuorio, the con-

Using the known values of physical quantities used in Eq.
(7), we find that the ratio can be expressed as

1051n —4T4
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ductance h~ is proportional to the product of susceptibilities
of two systems: h~~ X~Xp, where X~ is the suceptibility for
the magnetic substance, and X~, for the helium system. For
solid He, the magnetic susceptibility X~, follows a Curie-
Weiss law T ' above the ordering temperature T~ —1 mK
and the suceptibility for the spin-glass at sufficiently lower
than freezing temperature should be roughly proportional to
T if the specific heat behaves as T. As a result, we have
the conductance h~ proportional to T in the temperature

range considered above. This observation will confirm the
model proposed in the present work.
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