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Recently developed scaling concepts in the theory of quasiperiodic dynamical systems are used to

develop an exam» renorn alization group applicable to the discrete, quasiperiodic Schrodinger equa-

tion. To illustrate the power of the method, me calculate the universal scaling properties of the

states and eigenvalue spectrum at and below the localization transition for an energy which corre-

sponds to an integrated density of states of 2. The modulating potential has a frequency

T(l 5 —1) relative to the underlying lattice for the example we work out in greatest detail.

I. INTRODUCTION

A. Overview

Schrodinger equations with quasiperiodic potentials
have been studied for many years. The motivation for
this study is both physical and mathematical. Quasi-
pcr1od1c potcnt1als ar1sc natUI'ally ln 1ncom mensurate
structures, in nonstoichiometric intergrowth compounds,
such as Hgs sASF6, in the calculation of band structures
of periodic crystals in magnetic fields, 7 '6 and in super-
conducting lattices in magnetic fields. ' Mathematically,
quasiperiodic potentials aI'e interesting because Bloch's
theorem is inapplicable. These potentials lead to rich
spectra and wave functions because they are, in some
scnsc, intermediate bctwccn periodic Rnd 1andoID. Period-
ic potentials lead to absolutely continuous spectra' and
extended c1gcnstatcs, whcrcas random potcnt181s lead to
pure-point spectra and localized eigenstates in one dimen-
sion. Though there are no rigorous proofs, the general be-
lief is that generic quasiperiodic potentials lead to spectra
that are Cantor sets, have both absolutely continuous and
puI'c-po1nt co1Tlponcnts» Rnd, ln Rdd1tlon, 8 slngulal coQ-
tlllUous colllpoiicIlt. Tllc wave fllIlctlolls CRIl bc ex-
tended, localized, or "critical" in a sense that we will
specify below.

Quasiperiodic potentials pose mathematical problems
that have a fundamental connection with the small-divisor
problems that were investigated by Kolmogorov, Arnol'd,
and Moser' (KAM) in classical mechanics. If the effect
of 8 quasiperiodic potential is calculated within perturba-
tloIl theory, * ' then high-order tcfIDs 1Q thc pcrtUIba-
tion expansion (for, say, the wave function) have small
denominators. However, D1QabUlg Rnd Sinai ' showed
that for a sufficiently weak quasiperiodic potential, a large
part of the spectrum is still absolutely continuous. These
proofs use the ideas of the KAM theory and the results
are the analog of the KAM theorem, which states that
most of the invariant tori in the phase space of an inte-
grable Hamiltonian system are not destroyed by a suffi-

ciently weak nonintegrable perturbation.
Recently, nonperturbative renormalization-group (RG)

methods have been used to study scaling phenorDena in a
variety of small-divisor problems. These include invariant
circles of area-preserving maps, circle maps, ' and in-
variant curves 111 nlapplllgs of tllc coIilplcx plaIic ollto It-
self. Recent work has shown that similar RG methods
can be used to study the scaling properties of the spectra
and wave functions of a discrete, one-dimensional
SchI'odlngcI' cquatlon with 8 spcc181 QOQRQalytlc~ quas1-
periodic potential with two incommensurate frequencies.
These ideas are extended to analytic, quasiperiodic poten-
tials with two incommensurate frequencies in the present
work.

We believe scaling properties of the spectra and wave
fuIlctlolls of quaslpcrlodlc Schrodinger opclatols cRI1 bc
studied most conveniently by RG methods. The ex-
ponents that characterize scaling behavior (which we de-
fine in Sec. II) are simply related to the eigenvalues of the
linearized RG transformation in the vicinity of its fixed
points. The universality of these exponents follows
naturally because different quasiperiodic Schrodinger
operators that flow to the same fixed point under succes-
sive iterations of the RG transformation share the same
scaling behavior. Thus, even though we study a specific

Uaslpcr1odlc potcnt181~ wc can prcdlct thc sca11ng propcI'-
ties of the spectra and wave functions for a large class of
quaslpcrlodic potclltlals. II1 addlt10n to tllcsc fundamental
insights, the exact RG that we construct in Sec. IV gives a
very efficient numerical algorithm for computing various
properties of quasiperiodic operators.

Thcrc have been soIIlc pl cvloUs attcIDpts to cxplaln
properties of quasiperiodic operators using RG
1dcas. ' ' These 1Ilvcstigat1ons c1thcI' Usc approxima-
tions or do not carry out a fixed-point analysis with which
scaling could be investigated. By contrast, we analyze the
fixed point of an exact renormalization group which
governs the scaling properties of the states and spectra.
One of the most powerful aspects of the present analysis is
that the exact formulation can be implemented using a nu-
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B. Model and principal results

Thc c1gcnvaluc cquat1on wc analyze 1s

(4.+I 20—.+4. —I)+«( .W-. =EP. * (1.1a)

where V(x) = V(x + 1) and x„satisfies the recursion for-
mula

merical algorithm which allows identification and calcula-
tion of scaling properties to any desired accuracy. A com-
bination of an exact RG theory and a numerically stable
algorithm with which it can be implemented has formed
the basis of a rigorous mathematical investigation of simi-
lar problems. ' We believe that the present ideas could be
developed into a rigorous mathematical theory as well. In
addition, oux' RG analysis complements rigorous
mathematical work on quasiperiodic potentials that has
not focused on scaling properties and calculations of scal-
1ng 1nd1ccs.

The remainder of this paper is organized as follows. In
Sec. IB we define the model we work with and present
our principal results. In Sec. II we use transfer-matrix
methods to obtain empirical scaling results for the spectra
and wave functions of our model. Section III reviews the
renormalization group used to study circle maps. 2 In
Sec. IV we use the results of Sec. III to construct a RG for
a Schrodinger equation with a quasiperiodic potential. In
Sec. V we show how to find and analyze the fixed points
of this RG. Section VI is devoted to the results of this
fixed-point analysis. These results are related to the
empirical results of Sec. II in Sec. VII. The latter section
also contains some concluding remarks. In the Appendix
we give some definitions and some results of number
theory which we use in this paper.

state whose Rmphtude grows (or decays) linearly. This
linear solution is usually discarded by imposing periodic
boundary colldltlolls, but 111 R fllllr8 system 1t llas to bc
considered.

If o is irrational, V(x„) is quasiperiodic. It has either
been proved or is believed to be true that generic quasi-
periodic Schrodinger operators lead to ' ' ' ' the fol-
lowing.

(1) A Cantor-set spectrum with a dense set of gaps (see,
e.g., Fig. 1): the spectrum can have absolutely-continuous,
singular-cont1nuous, and/or pux'c-po1nt components.

(2) It has been proved that the gaps can be labeled by
the Bloch index ~(E) which (suitably defined as in Sec. II
and Ref. 39) continues to exist for all energies E. All evi-
dcllcc illdlcatcs tllRt tllc pllllclpR1 gRps Rl'c Rt K= T~(no'}
and a.= —,'(1—(nor}) and their size generally decreases
with 1ncrcas1ng Pl.

(3) States can be localized, extended, or neither localized
1101' extended (wc call tllcsc crltlcR1 sfates); whctllcl R

state is localized, extended, or critical in general depends
on the strength of the potential e, the Bloch index ~(E),
and o.

Foi tllc special case of HRrpcl' s equation (1.2) R variety
of additional results are known. Some of these results are
llstcd below. Mole detail 111Ry bc found 111 Rcfs. 4, 5, Rnd
32.

(a) If we substitute

2miz(E)n ~ ~ 2~'~~~" ++0~n=e Jme

in Harper's equation (1.2), we obtain its "dual" representa-
tion

(f +1 2f—+f I—)+encos[2m(om+yo]f =Ef
x„+I f(x„) . —— (1.1b)

The "circle map" f satisfies f(x+1)=1+f(x). Note
that if xo ——yo, f(x)=x+0., and V(x)=cos(2mx), we get
Harper's equation, also called the "almost Matthieu"
equation, for which

V(x„)=e cos[2n.(o n +go) ] . (1.2)

We discuss this potential throughout much of this paper.
Although our results are, in principle, more genex'al, we
shall usually assume f (x)=x +o.

If o =p/q, with p and q relatively prime integers, V(x„)
is periodic. The unit cell has length q and the spectrum
consists of q —1 gaps and q bands. We normalize the
Bloch index x in an extended-zone scheme by 2mq, so
0&~& —,'. The gaps are at a= —,'[no(mod 1)]=—,

' (no }
and ~= —,

' (1—(no })(see Ref. 33). For sufficiently small
e in Eq. (1.1), the size of the gaps decreases ' with increas-
ing n, for 1 & n & 2 q.

In the bands, there are, of course, extended states,
whose normalization scales with system size. For energies
in the gap one usually says that because

~ P„~ diverges ex-
ponentially at + or —oo (or both), there are no states.
However, for a finite system, there may be a pair of states
which are exponentially localized at the ends. Px'ecisely at
thc gap cdgc, t4cx'c 18 onc cxtcndcd state. Thcx'c 1s also R

cD ——4/e, go z(E)(m——od o ), E=2E je .

Note tllat tllc Illodcls (1.2) Rlld (1.3) are self-dual for c =2.
'I'his duality was first noted by Aubry Rnd A.ndrc. '

(b) For o a Roth number (see the Appendix), e suffi-
ciently large, and for almost all yo, Harper's equation (1.2)
has a pux'c-po1nt spcctruGl and cxponcnt1ally loca11zcd
eigenstates.

(c) For fixed po, the measure of the bands approaches
zclo Rs E Rppl'0Rcllcs its self-dual VRluc 2 froln below.
This approach 1S 11ncax' m 6' —2.

(d) There is good evidence ' that, for o a Roth number
and any yo, all states are extended for e ~ 2 and localized
for c'&2. However, as far as we know, there is no
rigorous proof of this statement. In the remainder of this
paper we shall assume that the localization transition does
occur at the self-dual point c =2. All our results are con-
sistent with this.

New results have been obtained by two Incthods. Using
standax'd numcr1cal cxper1IIlents, wc have calculated scal-
ing properties of the spectrum and eigenstates of Harper' s
equation (1.2). More importantly, we have also derived
these scaling properties from a RG analysis. Our princi-
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pal results, some of which are contained in Ref. 27, are
summarized below.

(i) If o is a quadratic irrational, we find that the local
scale invariance of the spectrum around point E(a) is
determined by the equation

transformation at a fixed point, and there is therefore no
rigorous way to argue for the universal character of the
properties calculated in this manner.

E
[
a

f
-&'"-"x+~)—E(~)

E
i
a

/

~"x+Ir)—E(a.)

II. EMPIRICAL RESULTS

A. Transfer-matrix method

where the limit exists independent of x for some finite in-
teger p (a) and a scaling exponent y(a. ) at certain values of
Ir. a is related to o (see Sec. III). For e &2, y is indepen-
dent of yo and is 1 for all cr and a.. For a=2, the scaling
described by Eq. (1.5) may hold only for special values of
qro (Secs. II and VII). Our most extensive calculations
have been done for o =oo ———,(v 5 —1) and ~= —,'. In this
case, rr =o—o, and f'or &=2 and fo ——,——+ —,o.o,

—I 1 1

y( —,
'

) =1.829+0.001 and p =3.
(ii) The degree of localization of a state can be charac-

terized by the exponent

where

I.„p=- lim ln
pin(a [ n L„+~

(1.6a)

X
9'n J=

(1.6b)

and q„ is the denominator of the nth rational approximant
to o (see the Appendix) and p is defined in Eq. (1.5). The
exponent P is 0 for an extended state and —1 for a local-
ized state. We find that p=0 (p= —1) for @&2 (for
e&2). For @=2 we find —1&P&0, i.e., the states are
neither localized nor extended, but what we call "critical."
These critical states do not decay to zero and are in fact
scale invariant. This is made precise in Sec. II.

(iii) We construct an exact RG that allows us to map
the model (1.1), for any o, onto a similar, but coarse-
grained, model. The structure of this RG gives fixed
points only when o. is a quadratic irrational and then only
for certain values of I~. For Harper's equation with o =o.o
and ~= 4 we show explicitly how our empirical scaling
results emerge from this RG: The a&2 behavior is
governed by a "weak-coupling" fixed point with one
relevant eigenvalue, whereas the e= 2 behavior is
governed by a "critical" fixed point with two physically
relevant eigenvalues. It is also shown that a large class of
quasiperiodic potentials that can be expressed as sums of
harmonics of Harper s potential lie in the same universali-
ty class, i.e., their spectra and wave functions scale with
the same exponents as those of Harper's equation (1.2).

Interesting questions we cannot address directly follow.
What is the total measure of the energy for which states
are localized? How do the energies for which states are
extended, localized, and critical fill up the spectrum,
respectively? These questions can be answered numerical-
ly for particular models by using the RG as a tool to mul-
tiply matrices efficiently. However, this is not the most
powerful application of RG theory, since it does not
derive scaling and universality from eigenvalues of the

Equation (1.1) can be recast into the recursion formula
I

4.+i
=M i(x„) (2.1a)

x„+i f(x„),—— (2.1b)

M i(x)=
2 E+V(x—) —1

1 0 Q.2)

If the sequence [x„J"„:o"is of period q, so that x~ =xo+p
where p and q are integers, the band structure is obtained
by investigating the matrix M v(xo) defined by

q —1

M q(xo)—:g M i(x„) (2.3)
n=0

(see Ref. 43).
Since detM q

——1, the condition that a band exists at en-

ergy E is

~
TrMs(E)

~
&2, (2.4)

which makes the eigenvalues of M&(E) complex. Our
normalization of the Bloch index ~ in an extended-zone
scheme enables us to write

2 cos[2n.qa.(E)]=TrM s(E) . Q.5)

This definition of the Bloch index is independent of the
choice of length of the unit cell, and we can sensibly dis-
cuss the irrational limit.

It is important to realize that this definition of the
Bloch index makes lr(E) equivalent to half the integrated
density of states, i.e.,

a(E)= —,
' f dE'p(E'), (2.6)

and to the average rotation rate of the phase of the wave
function of an eigenstate

1
N 1 lp +1-

m(E)= - lim —g Imln2m' ~N„ (2.7)

where we define the complex logarithm to have a branch
cut below the negative real axis. The latter two definitions
remain well defined in the limit when o. becomes irration-
al.

In the remainder of this section we give certain scaling
properties of the spectra, wave functions, and the matrices
M

qk
which we have obtained by numerical experiments.

These results are related to our RG results in Secs.
V—VII. Since we have done exp/icit RG calculations only
for a = 4, we present empirical results only for this value
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of «. Related results for other values of «, both at band
edges and in the bands, are summarized in Ref. 27. Thou-
1css 81M' N1U 8Qd KOhm0to h8vc 8130 stmIIcd soIDc
scaling properties of the spectra and wave function for
Harper's potential (1.2), but not for fixed ~. (See also ¹te
added. )

S. Empirical scahng results fox' spectra

Using formula (2.7) we calculated «(E) vs E for e &2
when V(x) =cos(2nx) and f(x)=x +crG, where

oG ——(~5—1)l2= "golden mean. " Results for e=1.5
and e=2 are shown in Pigs. 1 and 2 (see the Appendix).

BLOCH INDEX

(I-a )]4
G.25 BLGCH INDEX

HLGCH INDEX x

FIG. I. (a) The energy E(x j is plotted as a function of the Bloch index ~ for Harper s equation, when the incommensurability 0 is
the golden mean. This figure shows the spectrum when m=1.5. The normahzation corresponds to the full band extending from
0&x& 2, so that half of the spectrum is shown. The full spectrum from x=o to x= 2 is antisymmetric about the point E =2 and
x= ~ . There is a dense set of gaps, but only about a dozen gaps can be resolved in this picture. The spectrum in the box in the upper
right corner is expanded to full scale in the next figure. (b) The spectrum from ~= 20 = 4 (1—~ ) to x= ~ is shown. This corre-
sponds to the box in the upper right hand corner of (a) and is obtained by rescahng the domain of x by a factor o G. (c) The spectrum
from Ir= ~ (1 rr~) to «= ~ is shown. This i—s the box in the upper right corner of (b) but the domain is magnified by a factor o
On this scale the gaps have all but vanished. By continuing these rescalings one obtains a linear function, which is trivially scale in-
variant. The construction illustrates the scaling index y =1,which occurs below the localization threshold for this value of x.



All the results for @&2 are qualitatively similar to Fig.
1(a). The band structure in the vicinity of a = —,, which by
symmetry is at E(~)=2, is found to have a scale invari-
ance determined by a scaling index y(a. ) and an integer
p(lr)=3 defined by (o =oo)

E(oJ' "x +a) E(—a)Ic:o— = hm
E(o~ x+~) E—(a)

The index y is independent of x, but depends on whether
or not e is less than or equal to 2. %e make explicit the
dependence on a because the form of the scaling holds for
other values of a, although p (a ) and y(a ) may vary.

The advantage of using Harper's equation is that it has
a reflection summetry in the band structure which yields
E =2 for ~= —,. Furthermore (see Sec. IB), the locahza-

BLQCH INDEX SLGCH INDEX

(1-o~ )/4
BLQCH INDEX

FIG. 2. The same construction as in Figs. 1(a)—1(c) is shown, but for m=2 corresponding to the localization threshold. In this
case, the gaps remain on the scale of the plots. It is seen that these plots are scale invariant, since there is no visible difference be-
tween the three figures. Each successive plot is obtained by magnifying the E by a factor 0 ~=14.01. . . while rescaling a by a fac-
tor 0 =4.23. . . in the previous plot. These plots are scale invariant in the limit of large magnification about E( ~ ) and ~= 4, a
feature which we show is universal for a large class of potentials with o =0.~. The fact that these plots show this scale invariance so
precisely for relatively large energy scales is a nonuniversal property of the cosine potential.
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tion transition occurs at e=2. This simplifies the calcula-
tions considerably since, in contrast to the case of a gen-
eral potential, we do not have to search for the e and E at
which the localization transition occurs. Of course, we
run the risk of using a potential which is so restrictive
that we cannot reach any conclusions about the universali-

ty of our results. However, we show in Sec. V that this is
not the case. The addition of higher harmonics to
Harper's potential turns out to be an irrelevant perturba-
tion at the fixed point we investigate.

The two cases e&2 and e=2 behave very differently.
For e&2, we find that y( —,)=1. This is illustrated in

Figs. 1(a)—1(c). In Fig. 1(a) we show E(«) for 0&«& —„'.
The portion of the spectrum obtained by rescaling «by o.

in the vicinity of «= —, is shown in the upper right-hand

corner of Fig. 1(a), and shown expanded to full scale in

Fig. 1(b). A similar construction generates Fig. 1(c) from
Fig. 1(b). Thus Fig. 1(c) is a scaled version of the second
tiny box just inside the upper right-hand corner of Fig.
1(b). The size of the gaps at values of «. in the vicinity of
«*= —,

'
vanish on an energy scale [E(«) E(«*)]—as «~«*.

In this limit, the spectrum in units of energy which scale
with E(«) becomes linear. (This does not imply that the
spectrum becomes differentiable in this limit; hence the
density of states can still have structure. )

The spectrum for e=2 is very different. In this case,
we find cr I'r=14.017. . . which results in y=1.829
+0.001. The sequence of rescalings described for Figs.
1(a)—1(c) is repeated in Fig. 2 for this case. The scale fac-
tor y converges remarkably fast as a function of k in (2.8),
and to the accuracy of the width of the lines drawn in Fig.
2, we see no difference between Figs. 2(a)—2(c). In fact,
even for k =1, we have y to 2—3 decimal places, and we
cannot rule out the possibility that Fq. (2.8) may'hold ex-
actly for finite «. This very rapid "crossover" is surely an
artifact of the special choice of our starting model. In
Sec. V this value of y, in the limit of formula (2.8), is de-
rived from our RG and shown to be "universal. "

Throughout this discussion, we set E=2, so that we are
working at z= 4 and p =3. %hen &~2, the states are
clearly "extended. " By this we mean that for any initial
condition chosen, i.e., [QI Pp] Rnd xp —=Pp thc successive
P„neither diverge nor decay to zero and the exponent P is
0 for all boundary conditions. Setting [gp, g, ]=[1,0] and
yp=0. 1234 we plot P„vs n in Fig. 3(a).

The rapid oscillations in
~ P„~ make it hard to inter-

pret, so it is useful to look at the hull function X(x) de-
fined as

y+ e+2%lllK+(rI ~) (2.11)

Let us repeat the above exercise for e=2. In Fig. 4(a)
we plot f„vs n for the arbitrary initial condition

[Pp, QI]=[1,0] and @p=0.1234. We see that g„grows
and in fact keeps growing as n~oo. Furthermore, the
hull function in Fig. 4(b) is discontinuous.

However, we can still extract the following important
fact. As n —+ 00, the local structure of f„raoudnsucces-
sivc maxima stRrts looklllg slIIlllar. [Tllls ls 11ot RppR1'cllt

from Fig. 4(a) for two reasons: Not enough points have
been plotted, and to see the scale invariance the length
must be expanded around the maximum to exclude all
other local maxima where

~ P„~ is larger than the central
value. ] Let us define Nk to be the location of the largest
value of

~ f„~ up to n =qk, i.e.,

where g(x) is of period 1. Siilcc cRC11 of tllc states Rt

E =2 is a superposition of states with «.=+—,', we plot
( —I)"$2„vs {2no) to recover X(x). This function is
shown in Fig. 3(b) and is clearly continuous. The con-
tinuity of the hull function implies P=O and is indepen-
dent of yp and boundary conditions.

C. Scaling of the states for Harper's equation with o =og

l. General definitions

We measure the degree of localization around the site
where the wave function attains a maximum (say site 0)
by the exponent P defined by

«m.

Let us further define qr„ to be the phase at site rt:

(2.12)

(2.13)

P= lim ln
@)~co p lno I~+p

where the norm L~ is defined by

(2.10)

p is some integer whi. ch may depend on x, and q
represents the denominator of successive rational approxi-
mants to o. An ordinary extended state has P=O, while a
localized state has P= —1. A priori P may depend on the
boundary condition [fi,%pl and Possibly on xp =Pp.

We then find that, as k~ oo, yz tend to any one of the

values 4 + —,n+o.m =y' where n and m are low-order in-
tegers: n, m =0,+1,+2. Since a lattice translation by m
shifts y„by mo. , the om is unimportant. Changing the
sign of the potential corresponds to adding a half-integer
to yp. This is equivalent to transforming g„—+( —1)g„ in
the case E =2. Thus we can set yo ——

4 and investigate
the structure around the site of the maximum by investi-
gating the structure of f„r aodunthe origin given the
boundary condition that f~ & ao and yp ———,. With these
boundary conditions, we obtained Pigs. 5(a)—5(c). In Figs.
5(a), 5(b), and 5(c) we plot if„ i

at the q, I=4181,
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SITES n

FIG. 3. (a) The wave function t(„at 2584 successive points is shown for arbitrary initial conditions on [t(I,/II], an arbitrary choice
of go ——0.1234, e= 1.5, and E =2. It appears to be extended. (b) The hull function g(x ) is plotted for the wave function in (a). Since
jr= 4 we recover the hull function by plotting ( —1)"tt&„vs (2ncrG ). The plot therefore includes half the points in (a), but the order

of the points are rearranged by this transformation. The continuity of the hull function is further proof that the wave function is ex-

tended.

(a) 6=2, K = /w, pa=0. I234, (fg=j(I,, O)

q(r = O. I 234

0 S ITE S n
2585

I

0.0 I.G

FI+. 4- (a) *he w»e function is shown for arbitrary initial conditions at the localization threshold p=2. Parameters are identical
to those which generated Fig. 3(a) except for the value of e. The wave function has structure which cannot be easily identified as lo-
calized or extended The structure around successive maxima becomes self-similar for very long lattices but ln this figure this ls not
apparent since we have onlY inciuded 25g4 iattice sites. The phase (no'a+rpa) at successive maxima approaches one of
well-defined constants 4 +no G where yg =O+ $. (b) The hull function for (a) appears to be highly dlscontlnuous.
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I

o o lilililiilillllt I~I IlitililiUllsl: IIl". alii'ii'iliIII'i I lliii! „ liiIlI! il, iiiillIIJJII~I Ii!Il~
—4l8l 0 4 I Bl

SIT ES n

„iiii~llj i I!ii!iIII l! iL!!Ii''l! I i! '!!'iiIi!! 'III!iiII I!chili

FIG. 5. (a) The magnitude of the wave function at 2F~7 ——8362 sites around the s't f ' fc sl c o a ma»mum o an cx«emely»rge (in~»ite)
systeln 18 shown at thc locallzatlon thlcshold 6=2. Slncc this maxirnuID tth hs —. maxilnum occuls at t c p Rsc 4

—o'g wc simply chose +0= 4
—O'6 and

plotted the magnitude of the wave function subject to the restriction that g remains finit t k Th h
'

h r"lni c a 00. c clg ts oI thc wave-function
su peaks far from the center approach a well-defined fraction g of the main eak hei ht. Thus haln pca clg . us, t c wave function ncvcI' decays to
zero, a oug t c pomts where there is a large amplitude are further and further apart from the ori Th llrom e origin. e overall normalization of

nction scales as a nonintegral but universal power P of the number of 1 tt' ' t '
1 da ice poln s inc u ed ln the sum. (b) The centx'al

po ion 14
—— 7 sites) o (a) is replotted. This displays the self-similarity of the wave functi n th'wave unc ion, since t ls picture corresponds to

rescaling lengths by o G relative to (a). (c) The central portions (466 sites) of (a) and (b) further illustrate the scale invariance 4
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q~4
——987, and q~~

——233 points, respectively, on either side
of the origin. Clearly

~ f„~ is scale invariant, since these
pictures appear identical.

Actually, it is a little tricky to precisely define scale in-
variance on a discrete lattice, and closer inspection reveals
that only the dominant features (large amplitudes) are in
fact scale invariant. We define the scale invariance seen in
these pictures by the following formula (p =3):

as (o n)~ 0. (2.14)

Thus, lattice sites which fall closely on top of other lattice
sites under rescaling also have amplitudes which are ap-
proximately equal.

We note the following important property of
The wave function does not vanish as n~ Oo and, in fact,
local maxima approach a constant fraction g of the peak
height at n =0 for special points which are spaced further
and further apart. The structure around the subpeaks ap-
proaches a length-rescaled version of the structure around
zero, in the limit that the peak is infinitely far from zero.
Thus we define the scale invariance by the formula

k~ Dp ) at the same rate, i.e., their ratios are finite when n

is a small integer. Thus, in contrast to the situation for
@&2 when Mq remains bounded for all yp and K happ

plays an important role in determining the asymptotic
properties of M s (q&p) when @=2.

The divergence of M& (gp) makes the analysis of these

matrices particularly difficult. Thus, we ask another

question: Is there a yp such that Ms (yp) does not

diverge? To answer this question we simply search for the

yp which minimizes

2

lim g I[Ms„(yp)] I;1k~eo (
k

and find, for K= —,, that yp ————, + —,o. We do not yet
understand why this phase is singled out by this prescrip-
tion, and present this as an experimental fact. Numerical-
ly, using this value of gp we find that

lim P- (2.15) lim M (yp)=M*

4. e&2

When e & 2, the states are localized. We retain
the phase pp

——
4 and investigate the state in the vicinity

of the origin with finite boundary conditions. The locali-
zation length l obeys (see also Rote added)

l~ /e e, /— (2.16)

where v= 1 and e, =2. In particular, defining e=e —e„
we find the following stronger scaling formula:

g„(e)—+P(, , l(e/o. ) as (cr n }~0.

Thus, if we rescale the length by o and move away from
the localization potential by a factor of 1/o in the pa-
rameter e, the plot of the wave function is unchanged. In
Figs. 6(a), 6(b), and 6(c) we show

~ f„~ on 233=qii sites
on either side of the origin for @=0.05, on 987 sites for
@=0.05o, and on 4181 sites for @=0.05cr, respectively,
to illustrate this point.

(2.17)

where Nk is the location of the kth subpeak and n is fin-
ite. The scaling relations (2.14) and (2.15) define the scale
invariance of the structure, and there is thus a whole
hierarchy of subpeaks with peak height g of the central
peak. We find empirically that the scaling indices g and P
(2.10) are /=0. 315+0.005 and —P=0.639+0.005.

so that the matrices go to a six-cycle, with all members of
the six-cycle having finite entries.

III. RENQRMALIZATION OF THE CIRCLE MAP

A. Preliminaries

Since V(x) is of period 1, only the value of x modulo 1

enters the equations, and f(x) in Eq. (1.1) defines a map-
ping of the unit circle onto itself. We make some elemen-
tary observations and definitions based on this. The wind
ing number p(f) is defined to be

p(f)= lim
n —+00

X~ —Xp
(3.1)

where x„+i——f(x„). The special case f(x)=x +o gives
p=o. It is known that for invertible maps, p(f) is in-
dependent of xp. (See, for instance, Ref. 25.) The map f
has a cycle of length q if we can find integers p and q and
an xp such that x~ =xp+p. (We only consider p and q rel-
atively prime. )

We next define the reduced map [gp, i)p](x) which is
equivalent to (f(x)) by the following formulas:

D. Scaling of the matrices M ~ (yo) for @=2

To understand the previous results, it is natural to in-
quire about the behavior of Mz (yp) [Eq. (2.3)], with

xp=yp as usual. When @=2,we find that M~„(yp) varies

greatly with happ for most values of yp. For
g7p= 4 + &

n +om, where the wave function for K= 4 at-
tains a maximum, all entries of Mz go to infinity (as

gp(x)=f(x) when f(0)—1&x &0,

i?p(x) =f(x)—1 when 0(x &f(1) .

(3.2)

The value of an arbitrary reduced map [g,ri](x) is defined
by
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FIG. 6. The magnitude of the wave function around the site of locahzation is shown for (a) e=(e—2) =0.95 and 2EI& ——466 sites,
(b) a=0.05o~ and 2I'~~ ——1974 sites, and (c) e=O.OSo G and 2F~7 ——8362 sites. The phase yo is again 4

—o G. Clearly graphs (a), (b),

and (c) are essentially the same. This illustrates the similarity of the wave function at e and the wave function at eo. after rescaling
the length by o . This scaling near the localization point is a universal of the localization transition.

C[g,rt](x) =gil(x) —gg(x) .

According to (3.2), C [go,qo] =0 (see Ref. 45).

(3A)

t

g(x) when g(0) ~x (0,[~™x
ri( ) when 0~ (g(0).

The construction is shown in Fig. 7 for f(x)=x +crG
where oG ——(V5 —i)/2. We next define the functional
commutator C[g,rt](x) as~

B. Rcnorma11zation transforation

We review in this section the renormalization group for
the circle map as described by Rand, Gstlund, Sethna, and
Siggia (ROSS). We refer the reader to the original refer-
ences for further details.

Given an arbitrary reduced map [g,il], we define the in-
teger n[g, rt]:nby the sma—llest n such that the number a
defined by



open-closed interval Io—:(O,g(0)] contains the origin. The
length of the image of this interval is precisely

~

a
Given these values of n and a, we define the renormali-

zation transformation T on [g, i/] by

(3 6)

We remark that the space of reduced maps [g', r/] which
obey C([g', 1/]) =0 is closed under T, so that

C([g,r/])=0 —C(T[g, r/]) =0 . (3.7)

q (0)
q (0)

FIG. '7. Construction of the reduced circle map [g, r/](x)
[Eqs. (3.2) and (3.3)]. Ill this figure f(x)=x +o'G.

a ' =P 'r/(0) —P 'r/g(0) (3.5)

is not greater than zero. The integer n is therefore the
smallest number n &0 such that [g, r/]" applied to the

We now explain what the transformation (3.6) accom-
plishes.

Let us suppose that [g, r/] has a cycle of length q and
winding number /1/q containing the origin. We define
xo —=0 and label the po1nts 1n the cycle by
Ix (v p 1), . . . , x l,o,x ip. . . p xp I. Tllc filllction 7/ is
defined on the points IO, . . . , x~ ), while g is defined on

1), . . . , OI. (Note that both r/ and g are defined
at 0). It is clear that x~ =g(0), since on this set of points,
[g, r/](x )=x( +~) ( ~) must be valid for [g, r/] to have
rotation number p/q. To illustrate this let us choose
n [g, r/] =4 for defiiuteness in the rest of this section. The
intervals relevant to the problem are shown below.

(3.8)

-(cl-p-1 ) 2p-q+ 1

As discussed by ROSS ' ' each interval IO,I~,I2,I3 gets
mapped into Ii,I2,I&,I4, respectively, where I4 is the first
interval which contains the origin. I4 is the image of Io
under [g;r/J" and, according to (3.5) has length a
Furthermore, according to (3.6) and (3.3), I4 corresponds
to the renormalized domain of T[g, r/], since the left-hand
point is g r/(0), while the right-hand point is g' r/g(0).

Note that under T[g, r/], the portion of the domain
I4 AIo is mapped by P 'i/ back into I4, while I4 Iois-
mapped by P 'r/g into I4. Thus, T[(;1/] certainly maps
I4 into I4. FurthcHIlorc, siiicc each g, 'f/ was 111oilotoillc,
so is T[g, r/], and the new mapping is in fact one-one on
thc interval I4..

Since mc have not destroyed any cycle structure, we can
easily find out how the winding number has changed.

The image of the origin under P 'r/ is now the
(q —np)th point to the left of the origin since
[g,i/](x )=x( +z)( ~s). [The fact that a is negative
causes the left and right sides of the domain to be
switched when rescaled by a in Eq. (3.6). This is impor-
tant for the winding number to be positive. ] The number
of po1nts 1n thc complete interval I4 ls p, slncc 1t 18 thc im-
age of Ic, so the renormalization integers p' and q', which
define the p'/q' cycle of T [g,r/], must obey

Taking the limit where p and q may be large, wc f»d

1
p = —n

P
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Thus, according to the Appendix, the transformation re-
moues exactly one integer from the continued fra-ction ex
mansion of p. We observe that this construction does not
require prior knowledge of p. We can find what p is by
using the n calculated recursively by iterating the renor-
malization transformation. Thus defining

[4 nk]=T'fko no] (3.10)

we see that p= 1 /I n I + 1/[n2+ 1/(n3+ ' ' )]I
Let us ask what the sequence of functions is which

maps a point in the image interval I~ through the lattice.
Starting on the right at the origin of the lattice and work-
ing toward the left through the lattice points, each time
we move to the left one lattice point we skip over p points
ordered as (3.8). Each application of the reduced map act-
IIlg oII RIly lattice site maps x~ to x(~+p) (mod q). Thus If
Il acts on x, the composition with Ii must be followed by
composition with at least three g's. After the third g we
may have another g and then an q must occur. Thus,
denoting by a subscript 7 the Ps which may be present or
absent from the string of functional compositions required
to get successive x 's, we find the following sequence of
functional compositions (spaces have been put in to guide
the eye only):

BBBAB BBBAB BBBAB

(4.2)

when n =4. Here again the subscript '? denotes a matrix
that may or may not be absent from each block. This
string of A's and 8's is derived by substituting an A for an

Ii and a 8 for a g in (3.10), since 8 acts whenever g is used
to map x~ Rnd A acts %'hcncvcr g 1s Used. By consldcring
how the argument of each matrix gets passed by [g,Ii] to
the argument of the next matrix, we find that the renor-
malization transformation induced by T[g,sl] is

8(P Ii) B(g)&(1)8
8(P Iig) 8(Ilg)A(g)8(1)

(4.3)

The argument of the innermost function that occurs as the
argument of each matrix is taken from the right-hand side
of the bracket and as usual 1 is the identity function

1(x)=x. When n =2 or 1, Eq. (4.3) becomes

'gÃk g4nk ENrik gunk (3.11)

T„,[B,A ]=[2(1),A (g)8(1)](x/a), (4.4a)

Any sequence of compositions is made of a string of
blocks each one of which can be either gg71 or gggg.
These groupings RI'c pI'cclscly thc scqucnccs 1Q thc rcnor-
malization transformation in (3.6) which define the renor-
malized g and g. This was first pointed by Feigenbaum
Rnd Hasslacher.

T„,[B,a ](x)=[8(q)a(1),8(qg)a(g)8(1)](x/a) .

As usual we denote T"[8o 2 o]=[8 k ~ k]
There are hvo length scales I.g and I.LI corresponding to

the number of matrix multiplications of the original ma-
trix M(x) that have been absorbed into 2 and B. Thus

A. Transfof'm. ation

Analogous to our definition of a reduced map con-
structed from a function pair [g,I)] we define an associat-
ed matrix pair whose entries are functions of x:

(4.5)

We define the renormalized Bloch index pair normalized
relative to the length scale of the renormalized lattice by
[a.s, I(z „].For these Bloch indices we find

[Ifs,Kg ]=[((nk —1)ICs +Kg ), (nklCS +ICg )] ~

8(x) when Ii(0) &x &0,
B,A (x=

A(x) when 0&x &g'(0).

(4.6)

Since we want [BO,A o](x) to be equivalent to M i(x), we
choose A o(x) =M i(x) and Bo(x)=M i(x) according to
Eq. (2.2). The matrix 8 gets used at site m to map
[P,g~ ij to [P~+),P~] whenever the function g gets
used to map xl to x~+), and A gets Used whenever 'g 1s

used to map x~ to x~+I. Thus, it follows by arguments
identical to those used when we derived (3.1) that the
string of matrices that maPs [gi,go] into [g)v, g)v, j has
the form [Ref. 25(b), Sec. IX]

8. Conditions under which we can hope
to find a fixed point

A necessary condition for a fixed point to exist for our
recursion relation is that the sequence nk defined by Eq.
(3.5) eventually becomes periodic. This is equivalent to
llavillg a periodic tRil iii tllc continued-fraction cxpRiision
of p(f), which in turn is equivalent to p satisfying a quad-
ratic equation with integer coefficients (see the Appendix).
Let us assume that for k ~K we find that nk=nk+~ .
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This condition is necessary (but not sufficient) for [gk, rik]
to approach a cycle of length p& as k~ 00. However, the
recursion of the complete eigenvalue problem cannot have
a fixed point unless [8k,A k] also converges to a cycle,
which cannot be shorter than pz. In order that we find a
matrix cycle structure of length, say p„, it is necessary
that the renormalized Bloch index [Kg Icy ] obeys

0= llnl [Ks ~Kg ]—[KLI ~ICg ]
I k k

It is then possible to have an overall cycle structure of
length p where p is a common multiple of p„and pz. The
existence of a fixed point is by no means guaranteed, and
this is simply a necessary condition in order that a cycle
structure of length p to exist.

As an example, let us assume p=crG. In this case
nk ——1 so that p&

——1 for all k. Since every sixth Fibonacci
number is divisible by four, p„~~q ——6. Indeed, we shall
see in Sec. V that we do find a six-cycle in this case, al-
though if there are additional symmetries present, a sub-
cycle of the matrix cycle may determine the scaling of the
spectrum. This is discussed in more detail in Sec. VII A.

C. Commutators and conservation laws

D. Matrix-functional commutators

Analogous to (3 4), we define

C([B,A], [g,ri))=A(g)B(1) —8(ri)A(1) . (4.7)

It is straightforward to verify that

c([80A0] [k bio])=o (4.8)

and somewhat tedious to prove that if C([g', ri]) =0 in Eq.
(3.4) and C([B,A ][g',ri]) =0 then

C( T[B,A ), T [g', vy]) =0 .

It therefore follows that renormalized matrices remain in
the subspace where

C([Bk A k] [4 haik])=o

Since detA o ——det8 0——1, it follows that

(4 9)

The space in which we do our renormalization group
includes (in principle) all 2)&2 matrix pairs of functions
[B,A]. This space is much larger than the subspace of
matrix pairs generated by M i(x) [Eq. (2.1)]. There turns
out to be marginal and releUant directions at the fixed
points of our RG that take us out of the subspace of ma-
trix pairs accessible by varying M, (x). Using various
constraints and commutation laws that must be obeyed by
the space of matrices generated by M &(x)=[80A 0](x),
we can eliminate these "unphysical" or "spurious" eigen-
vectors. This must be done in two steps. We must first
identify the constraints and conservation laws, then show
how their violation leads to relevant and marginal eigen-
vectors. These eigenvalues can be discarded because they
represent variations which are inaccessible by using M i(x)
to define [80,A 0].

detA I,
——det8 k ——1 . (4.10)

Further, define m I by

(m")kI =&;k&,I (4.12)

In the space Sd„, a rather tedious calculation shows that
there are four independent functions I», I «», I «»,
and I »». A straightforward but somewhat tedious cal-

m m

culation shows that if C[g, ri] =0 [(Eq. (3.7)], then

IC D T [B,A ](x ) =IcD [B,A ](x /a ), (4.13)

even if Eq. (4.9) is violated. a is the product of the two
successive A s.

Given that we are in the space S«„„«, it follows that
IC D [B,A ]=det(C D) from wh—ich it follows that
I&&

——I )) 2) —I l2 22 —0 and I ll 22
———1.

m m m m m m

Equation (4.13) shows that there are four invariants in
the larger space S«„namely

ICD(T [B,A])(0)=ICD[B,A](0) (4.14)

This equation is important, because it generates a conser-
Uation law in the space Sd«under the operation T . This,
in turn, generates marginal operators in Sd„. It is impor-
tant to keep track of which space one is dealing with. Be-
ing constant, IcD(x) is conserved for all x in S„„,„,but
not Sd„, while IcD(0) is conserved in Sd«but not Sf„s.

V. IMPLEMENTATION OF THE RG

A. Setting up the transformation

Working with Harper's equation V(x„)=cos[2ir(o Gn

++0)] f(x) =O'G+x aild x0=(p0 we rederive the results
of Sec. II within the RG framework. In this special case,
it can be verified that the following equalities hold for all
k:

—1
CXk =A = —O'6

7lk =—n = 1

gk(X) =g(X) =X+OG,
haik(x) =g(x)—:x crG . —

Furthermore, the Fibonacci integers (see the Appendix)
define the length scales [I.s „,I.~ ] to be

This constraint also determines a closed space. Note that
(4.9) represents four functional constraints, one for each
matrix entry, and (4.10) represents two constraints all of
which may or may not be independent constraints. There
are therefore three closed spaces of interest:

(i) Sr„~i is the space of all pairs of matrices [8 k,A k]
whose entries are functions;

(ii) Sd«&Sf~~ is the subspace of Sr„0 consisting of uni-
modular matrix pairs;

(iii) S„st„„CSq«CSr„&~ is the subspace of Sf„0 obeying
(4.9), containing the space generated by M ~(x).

The commutation relations (4.9) are closely related to
four invariants in the subspace Sd„. Let us define arbi-
trary constant matrices C and D and the functions

ICD([B,A ])=det[CA (g) 8(1) DB(g—)A (1)] . (4.11)
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Bk +k —1~ A k
~k

Equations (4.3) and (4.4a) reduce to

8 A( —oGx)
T A (x)= A( —OGx+oG)B( —oGx)

(5.2)

(5.3)

We represent the matrices 3 and 8 as power series in x,
N —1

Bz(x)= g b;J(n)x",

N —1

A,J(x)= g aij(n)x",
n=0

(5.4)

and perform the operations (5.3) exactly using (5.4), each
time truncating to the basis (5.4).

B. Finding the fixed point

To start our renormalization procedure, we choose N
and define A o(x) =80(x) according to Eq. (5.4) by keep-
ing the first N terms in a Taylor-series expansion of
Ecos[2ir(x+go)]. As expected by the discussion in Sec.
II, we choose po

———,——,
' o in order that A k(x) and 8 k(x)

remain finite for e =2 as k ~ ao. We observe that
[8k,A k] approaches a six-cycle for large k, and we moni-
tor numerically quantity b,k defined by

2 N —1

b.k = g g [a,j(n) —a,~j (n)]
sw, , , „,
+[b;~(n) —b,j (n)] (5.5)

We find that Ak attains a minimum at, say, k =k,p„be-
cause of the approximations introduced by numerical
roundoff and the truncation to finite N. Using 16-figure
numerical operations and N =30, we find k,~, =31 and
b, k =10,whereas if quadruple precision (32 figures) is

opt

used with N =60, Ak -10 at kppt 60.
OPt

We use the value [8 I, ,A k ] as the best approxima-
opt opt

tion to the fixed point of T . This is accurate to nine

decimal places. We have not used a Newton-Raphson
method for finding the solution to the equation
T [B*,A'] =[8',A'] because severe complications are in-

troduced by the many marginal eigenvalues and the asso-
ciated many-dimensional surface of solutions of the
fixed-point equations. Previous methods that have used

projections to get rid of unphysical marginal and
relevant directions have been unsuccessful because of the
complexity of the cornrnutation constraints.

As an aside, we note that since the sixtieth Fibonacci
number F60-4X10', with a few seconds of IBM 370
computer CPU (central processing unit) time, we have
multiplied together 4&&10' matrices by iterating T 60
times. By representing an arbitrary integer q (4&(10' as
a sum of Fibonacci numbers, we can compute M ~ (x0 )

with a similar amount of computer time. Multiplying so
many matrices would be impossible by the ordinary
transfer-matrix methods described in Sec. II. The renor-
malization transformation is thus a powerful tool simply
to multiply together large numbers of matrices, even in
the absence of a fixed-point analysis.

2. Analyzing the Jacobian in Spgggpgf f

In Sec. IV, we showed that the values of certain com-
mutators were conserved under T. Since many of the
eigenvectors calculated in Sf„i~ correspond to a violation of
these conservation laws, we must eliminate these in order
to understand physically relevant variations in the starting
parameters. Conceptually, the simplest way to do this is

to somehow parametrize the space S„„„„,since it is

closed under T, and use this parametrization to compute
the Jacobian. However, we have not been able to discover
a convenient parametrization. Instead, we compute D 6 in

Sr„~i, and then locally form a new orthonormal basis
which separates the tangent space at the fixed point into
basis vectors parallel to and orthogonal to the tangent
space of Sres&rici.

In order to perform this change of basis, define the six
functionals P i, . . . , P 6 by

Wi([B,A])= [A(g)8(1)—B(g)A(1)]ii,
~ ~ ~

P 4([B A])= [A(g)8(1)—8(g)A (1)]22 .

(5.6a)

(5.6b)

The definitions for W2 and W3 are analogous, and P ~ and
P 6 are given by

W5( [B,A ]) =detB —1,
W&([B,A ])=detA —1 .

(5.6c)

(5.6d)

The six functional constraints (4.9) and (4.10) can be writ-
ten in the basis (5.4) as

W„([B,A])= g W'„(Ia;J(m), b;~(m)])x =0, (5.7)

where 1 & n & 6 and 0(I ~X. These equalities can be ex-

panded into 6X simple equations, which we can write as

C. Numerical analysis of the fixed point

1. Analyzing the Jacobian in Sf„a

Given our value of [B*,A'](x), we must calculate the
Jacobian D 6[8",A*] in order to obtain its eigenvalues.

We do this using the basis provided by Eq. (5.4) and again
truncate at ¹horder. Since T is fairly simple, we can
calculate DT analytically as a function of [B,A) and do
not have to resort to numerical differentiation. There are
eight functions which define [B,A] so, when N =30, we

get a 240 X 240 Jacobian matrix (real, general) to diagonal-
ize. We use standard numerical routines to perform the
diagonalization. This task is not trivial since we are in-

terested in all eigenvalues whose magnitudes are in the vi-

cinity of, or greater than, one. Although we use the fixed
point obtained from T [8o,A o] using quadruple pre-
cision with N =60, we truncate the fixed point to N =30
and use double precision to compute and diagonahze the
Jacobian. The reason for doing this is that the Jacobian
obtained for N =60 is too large to diagonalize. Also, the
difference between this approximation to the fixed point
and the true fixed point is of the order of the errors in-

volved in the truncation.



O=W„([aj(n),bj(n) J ) . (5 8)

A necessary and sufficient condition that an eigenvector

(X,X) of D 6[B*,A'] be tangent to the space S„,„„„is

that

=D ( [B*,A*] (F,X) (5.10)

DW„[B*,A']. ( Y,X)='0

for all n In. the polynomial basis, if we write X(x)
=Q„X„x and a similar expression for F, this is

equivalent to the 6X constraints

g~l g~~l

()a,J (m ) ()b J (m )

caH "unphysical" or "spurious. " As a consistency check
on the numerical calculations and to further understand
these results, we justify by analytic arguments in the next
section, which eigenvectors of Sr~i are eliminated by re-
stricting the vectors to lie in the tangent space of S„„„„
rather than Sg„g.

D. Analytic investigation of spurious eigenvectors

We first show how a spurious marginal and a spurious
1clcvant clgcnvcctoI' Rrc eliminated by restricting thc space
Sr„)I to Sd«DS„st„«(Sec. IVC). Assume that [BO,A 0] is
a fixed point of T for some integer p {i.e., Bo B', etc——.)
and that [BO,A 0]ESd„and T([Bk,A kj)
= [Bk+ I,A k+I]. If 5q(x) and 5LI(x) are infinitesimal ar-
bitrary functions, to first order,

D (([B*,A*]).D (([B*,A*]))0

space of Srestrict
%c now Usc thc GraII1-SchITlidt ofthogonalization pro-

cedure, starting with the 6X vectors D I as basis vectors

of Sf„ii. This set of vectors has rank t., where I. &6N, is
not in the tangent space of S„„„„,and does not form a
complete basis. By choosing further basis vectors at ran-
dom, while contlnulng to use the Gram-Schmidt pro-
ccdUIc, vvc complete thc space %]tth 8X —I vcctols which
are in the tangent space of S„„„„.Hy construction, these
last 8X I. vectors sati—sfy Eq. (5.9). We denote the
ComPlete baSIS Of Src)i by I rs Is () WllCI'C Caell rs IS a
linear combination of the a J(n) and b J(n) of Eq. (5.9). [It
turns out that the restrictions (5.10) are not independent
and in fact the set of equations have at most rank 5X.
This docs not change thc Gram-SchlTlidt ploccdUrc Bs

long Bs wc arc carcfUl not to lnclUdc vectors which hRvc

length zero after projections into the previous vectors are
lcmovcd by thc orthogonalization proccdUIc. Thc linear
dependence of these equations stems from the fact that the
four commutators, Eqs. (5.6a) and (5.6b), are not indepen-
dent in the space of all pairs of unimodular matrices. ] By
construction wc thcII find

[1+4(q ') ]Bk+ I( 1 )[1+5II (x )]Bk

[1+5'(x)]A k [1+5g{ga ')+5L)(a ')]A k+I(l)

(5.13)

Hence, T scpaI'ates into two parts, with T acting on thc in-
finitesimal function piece as

5~ ((I ')
5I)

5~ j 5z(Pa ')+5L)(c( ')

and T acting on the [Bk,A k] piece as usual. I.et us as-
sume that

(5.15)

5I)
T

for every rn &ma, such that 5g(x)=g„o(5g)„x". We
ask if there is a solution to the equation

@0 if 1&s&I. ,
D )(t )' =0 if I. ~s ~8% (5.12)

(Jr)LXL OI. y(8% —L, )

(J ) !Jsr (8)V —L)XN )( sNr—8L) X(8)V —L)

Since the constraints P „([B,A])=0 are closed under
T6, (i.e., W„([B,A]) =0 for all n implies W„(T[B,A]) =0
for all n ) the Jacobian matrix J„ in the basis t I, j takes
the Mock form

This equation rcdUccs to

l')+=4(tI ')=&5~(1) . (5.17)

&=(a)
OG

By differentiating this equation mo times, at x =0 we find
t4at thcI'c alc two solutions

SInCC I I„J„L IS a baSIS Of Srest~«, It IS SllffICICIIt to diag-
onalize the sub-block J„,where s ~I. and t ~I., in order
to pull out the eigenvcctors and eigenvalues in the restrict-
ed space. Thc clgcnvcctoI's which RI'c not ln Sfe,««wc

and

~=(Lr) '( —trg)

(5.18)
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with a= —(erg) '. This means that there exist functions
(5g,5g) such that (5LI(x)8 0(x),5g(x)A 0(x)) are eigenvec-
tors of Dr/8 O,A 0] with eigenvalue A. ~. There are there-

fore two series of spurious eigenvalues equal to

( —1) ( —gg)
,p(no+1)

( ggf—
(5.19)

Of these, there are two that are marginal or relevant:
(og ) I' and ( —1)I'. In our case p =6, so we find + 1 and
o 6 as spurious eigenvalues.

Let us now consider a point [BO,A 0]ES„„„«andlet
(F,X) be an CIgenvector of eigenvalue A, of T in the
tangent space of Sd„. By Eq. (4.13) it follows that

(DI [8O,A 0] (X,X))(x)

sion of the space of redundant eigenvectors so we know
how many margi. nal eigenvectors can be eliminated when
we obtain a list of relevant and marginal eigenvalues in
the tangent space of S~„~~.

For clarity, instead of considering arbitrary matrix
functions, let us consider the moment pairs of constant
matrices (b,a ). Let us assume that a can be diagonalized.
We can then without further loss of generality, assume
that So diagonalizes a and replace (b,a) by So (b,a)SO.
Tllc dlmcnslon of 'tllc spRcc of matrix pRII s sIIIII1Rr to
(b, a ) is the same as the dimension of the space

(5.25)

where S is arbitrary. The space of generators of such
similarity transformations consists of all traceless ma-
trices M, where we write S s= 1+5M. Then for each ma-
trix M, (X,X) defined by

=(DI T [BO,A o].(X,X))(xla ) . (5.20) (X,X)—= Ss '(b, a)S s
5=0

Using the chain rule, the fact that T [8O,A 0]=[8o,A o],
and our assumption that (X,X) is an eigenvector of DT„
%'e Iewr1te this as

DI [8O,A o ).(X,X)(x)

=A, (DI [BO,A 0].(X,X))(xla ) . (5.21)

Let us now assume that (X,X) is not in the tangent space
to S, ,„„.It follows that

lies in the tangent space of the space of matrix pairs simi-
lar to (b,a ). It is trivial to check that

( I',X)=([b,M]„[a,M], ),
where [ ], means ordinary matrix commutator. Using the
explicit form for (Ll,a) from Eq. (5.25) and parametrizing
M by

DI [BO,A 0](1',X)&0 .

There is, therefore, some mo where

(5.22)

WC flIld

Z —X (5.28)

DI [8O,A 0](F,X) (5.23)

(5.24)

Differentiating (5.21) mo times and using (5.23), it follows
that

& I2& —b2e (b II —&22)y —2b„X '

F=
(b22 —&» )& +2& II& (b2Iy —b I2Z)

0 y
X=(A, I

—A,2)

(5.29)

Thus any eigenvector which violates (4.14) is at worst
marginal. We can, therefore, expect to find a set of spuri-
ous marginal eigenvectors in Sd„ that violate the commu-
tativity restrictions in Sec. IV.

E. Similarity transformations
and redundant eigenvalues

Let us assume that [BO,A o] solves the fixed-point
equation for T&. Clearly, if 5 is a constant invertible ma-
trix, then S '[8 O,A 0]S solves the fixed-point equations
as well. To each independent generator of simultaneous
similarity transformations there corresponds a marginal
eigenvector. A change induced by this eigenvector can be
transformed away by a change of the basis that represents
the wave function. Such a marginal eigenvector is called
redundant since it cannot affect the exponents or spec-
trum. It is therefore necessary to understand the dimen-

Therefore, the redundant space is
(a) zero-dimensional if both b and a are multiples of the

identity,
(b) two-dimensional if [b,a],=0 which holds if bI2 ——0

and b„=o (Ref. 48), or
(c) three-dimensional if [b,a ],&0 which holds if b lz or

For our problem, we must extend the above argument to
the two infinite sets of matrix pairs I b 0(n),g 0(III) I „"', :0
defined by Eq. (5A). SIIIcc S [B,A]S Rcts on cacll cle-
ment in b 0(n), a o(m) separately, it follows that if there is
any a*(m) or b*(n) that can be diagonalized [say a 0(0)7,
unless 0=[1'I o(n), go(0)], =[a o(n), a o(0)], for all II, the
redundant space is three-dimensional. A likely exception
to thIs Rrlscs If tllc flxcd poIIlt coIlsls'ts of colIsIQlII ma-
trices, which then must commute according to (4.7) and
(4.9). In that case the redundant space is two-dimensional.
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F. Coupling of starting parameters
to eigenvectors

Let us assume that [Bp A p](x;r), as a function of ~,
represents a variation in the functional form of [8 p A p]
and that

lim T P[8 o~A o](x ~0) =[8 o~A o](x) .
k~ oo

(5.30)

In the RG description [Bp A p](x 0) flows to the fixed
point under applications of T and v =0 represents the crit-
ical coupling. Let us now vary ~ slightly, so that

( Y,X)",= g (D„[8„,,A „,])~ ( Y,X),
k=0

(5.36)

for n large. We can then find A,, by using the formula

projection. %'e will say that variations in the starting pa-
rameter r project onto the eigenvector ( Y,X)J if AJ dom-
inates Eq. (5.35).

By computing ( Y,X) E, ( Y,X), and (Y,X) from the
'((Pp

Taylor series of [8p, A p] via Eq. (5.33), we calculate nu-
merically the quantity

[8 p A p](x r)=[8 p A p](x 0)+r(Y X) &+O(r )+ lim [(Y,X)", ' —)(,,( Y,X)",]=0 .
n~00

(5.37)

where of course

(Y,X),= [8p,Ap](x;r)
d

r=O

(5.31)

(5.32)

Numerically, for finite n ~&1, the A,, obtained in this way
will reproduce AJ (calculated by diagonalizing the Jacobi-
an at the fixed point) to two or three decimal places. We
then identify this value of AJ as the true A, This
correspondence is also valuable as a consistency check on
our numerics.

In particular, for our initial parametrization,
V(x) =ecos[2)r(x +))()p)], ( Y,X) would be any one of VI. RESULTS

( Y,X) k —— [8(),A ()]
E=2

(Y,X) = [Bp,Ap]
d

dfo
(5.33)

A. %"eak-coupling fixed point

Let us first consider the limit e=O. It is easy to verify
that

0 —1 0

( Y,X),= [8p, A p],
d

where [8 p A o](x'pp E e) is given by (2.2).
By repeated applications of the chain rule it is easy to

see that for k »1

[Bo A o]= (6.1)
1 0 ' 1 0

is an element of a six-cycle (a fixed point of T ). By cal-
culating the Jacobian in S~„~t at this trivial fixed point, we
find, in order of decreasing magnitude, the relevant eigen-
values in S~„~~ to be

TP"[8p, A p](x,~)
d7" v=0

Tp[Bpk A pk ]
gfull gfull

(6.2)

XDTp[B p(k —1)~A p(k —))]

&&D p[8 p, A p].( Y,X), ,

+C2rAJ~, (Yo,Xo)J + (5.35)

where CJ are ("nonuniversal") constants. ( Y'p, Xp)J is the

eigenvector corresponding to the eigenvalue k—:A,», andJ(P
is the next-largest eigenvector into which ( Y,X),has a

(5.34)

where [8k,A k] =T"[8p, A p]. Using the fact that
[8pk A pk]~[8 p A p] foi' laige k tile right-hand side is
dominated by the largest eigenvalue, say A,, into which
successive Jacobians applied to ( Y,X), project. General-
ly, in the absence of symmetries or conservation laws
which ( Y,X), might satisfy, A,,=A, ), is the largest eigen-
value of D p[8 o A o ].

From standard RG arguments, we find

T"P[BoA o](x;r)=[BoA o]+C)rl(,"(Yo Xo)

As discussed in Sec. V, one relevant and one marginal
eigenvector violate the condition (4.10), while three mar-
ginal eigenvectors violate (4.14). We are therefore left
with one relevant eigenvalue A, ~

——0. and the two redun-
dant marginal eigenvalues A, 3

——A,4——1, expected from the
arguments in Sec. V E.

When e& 2, we find that [8 k,A k] approaches a pair of
constant matrices which are similarity transforms of
[Bp,A p] in (6.1). This similarity transformation S, de-
fined by

[8 (),A ()](x,e) =S (e,pp) I [8 (),A ()](x,e=0)]S(e,)(pp)

(6.3)

is a function of e and yo. Thus k, and k& are both mar-

ginal and redundant. We find, using the method of Sec.
V F, that A,E l(.) (cr)——, so——that the only relevant param-
eter for e & 2 is the energy E.

B. Results: Critical-coupling fixed point

When e=2 and p =6, we find that [8 p A p](x) in Eq.
(5.30) is a matrix of nontrivial, finite functions whenever
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VII. RELATION BETWEEN RG RESULTS
AND EMPIRICAL RESULTS

A. Subcycle structure of the renormalization group

The definitions of t'he critical indices 13, y, and v in Sec.
II are independent of the value of p. In particular p =3
gives a well-defined limit in Eqs. (2.8) and Eq. (2.9), and
therefore p =6 also gives a well-defined limit with the
same values for the scaling indices. We have, however,
found that p =6 apparently governs the matrix cycle
structure of the fixed point. The fact that p =3 is the
minimal Li which yields scaling comes from the hidden

symmetry discussed briefly in Sec. II.
Let us write the elements of the six-cycle as [8 k,A k],

T[Bk Ak]=[8k+i Ak+i] and [Bk Ak]
= [8k+6,A k+6]. It turns out that we can find a fixed ma-

trix S p such that

Sp '[8 p(x),A p(x)]So——( —1}[83,A 3](x) . (7.1)

This is a very powerful functional generalization of the
similarity operation discussed in Sec. II since here

[8 p, A p] are functions, whereas S is a 2&(2 fixed matrix.
Therefore, up to an overall sign change and similarity
transformation, the underlying cycle structure of a basis-
independent quantity is governed by the three-subcycle of
the six-cycle. Since our definitions of the scaling indices
are independent of the choice of the length of the cycle,
we will continue working with the six-cycle of the ma-

trices and invoke this hidden symmetry to explain why the
observed minimal p in the scaling equations is 3.

The existence of the six-cycle comes about because we

are working with K= 4 and the Fibonacci integers modulo
4 exhibit a six-cycle. However, the Fibonacci integers
modulo 2 show the three-cycle. This is relevant as long as
we ignore the sign of the wave function. An example of
this point is illustrated by the fact that cos(2n.aFk) shows
a six-cycle, while

~

cos(2ir~Fk )
~

has a three-cycle

%o
———,'+(n —

2 )o. By calculating D,[Bo,A o], we iden-

tify the following eigenvalues in the tangent space of Sf„ii..
A, ) ——196.296. . . , X2——A.3 ——A,4——o.

—A$$ —1 ~

All these are computed to six significant figures. Accord-
ing to the discussion in Sec. VD, one relevant and one
marginal direction corresponds to the spurious eigenvalues
that violate unimodularity of 8 and A. According to Sec.
VE three marginal directions are redundant. It follows
from the analysis in Sec. V C that all other marginal direc-
tions are spurious since they violate Eq. (5.9).

Using the formula (5.37), we identify the three remain-

ing relevant eigenvalues as

A,~ ——A, ]
——196.296. . . ,

=F3=0
=A,4=o

Since A,~ corresponds to a shift in the overall phase, it
can be transformed away by translating the origin. Hence,
only two relevant eigenvalues, A,z and A,„control the spec-
trum.

B. The equality A, j
——y =cr ~~ when e & 2

Let us define ok[8 k,A k] to be the Bloch index of the
wave function [g„,g„ i] on the decimated lattice (at the
kth level of renormalization}. The matrix which takes

[P„,f„ i ] to the next lattice site, is therefore,
[8k,A k](x„). Inside the block of sites which A k or 8 k

represent, the phase of [g„,f„ i] may rotate by integer
multiples (say N~, Na ) of 2m. . The integers N~, Na
cannot be deduced directly from [8 k, A k], since these ma-
trices only relate wave functions at the boundaries of the
blocks.

Let us assume that the infinite lattice contains a propor-
tion fz„of blocks of length L~„and a proportion fa
= 1 fz of b—locks of length La „. Therefore, the average

rotation of the Phase kp =—ap([B p, A p]) Per unit length in
the original lattice is given by

ak[B k,A k]+fg „Ng „+fakNak
Kp=

f~ N~„+fa„Na„
(7.2)

where the second and third terms represent the average in-

tegral contribution to the rotation per unit length inside
each block. The first term is the nonintegral part of the
rotation represented by [8 k,A k].

The integers Nz „and Na 'can be written in terms of ap

N~„=[L~po]; Na, =[La &ol (7.3)

&o[8 k A k+ o'[&pFk 1+o'[&pFk —i l
Kp=

~+k+~+k i

(7.5)

Let us now consider a set of one-parameter variations as
in Eq. (5.31). We can write

~(r ) =ap I [8p, 2 p]+r(X,X),I .

For sufficiently small r (how small depends on a) it fol-
lows that

kk(T"[8 k,A k](r))—zk(T"[8 k,A k](0))
xp(r) —~p(0) =

o+k+~ +k —1

(7.6)

since if r is sufficiently small

[&o(&)Fk 1 = [&o(0)Fk] (7.7)

(see Ref. 33). The fraction f~ is equal to o k when f(x)
=x+o, and fa„ is 1 —Ok. Putting these formulas to-

gether, we find

&k [8 k A k ]+&k [&oLA
k ]+ ( 1 0 k }[+pLBk ]

Kp=
&kL~, +(I &k)I-a„—

(7.4)

In the special case 0 =O.G (Fk are the Fibonacci numbers}
this reduces to
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To leading order we can thus substitute (5.35) in Eq.
(7.5) to find

This confirms Eq. (2.14) when v =0 and explains the accu-
rate scaling of the features in Figs. 6(a) and 6(b).

~o(r) —~o(0)
lim
-«o(~X. ') —&o(0)

(7.8)

We have used the fact that increasing k by p and decreas-

ing r by a factor A,, ' leaves the argument of ~k un-

changed in (7.6); however, the prefactor changes by a fac-
tor o. ~. The limit ~—+0 is necessary because the above
liniits require k large, which in turn requires r small for
(6.2) to be valid. We note that no differentiability of ~o(r)
is assumed (nor expected). Having identified y with A,z in
this manner (see Refs. 27 and 47), we find [see Eq. (2.8)]

y =1.8286. . . for @=2,

7' = 1 fol' E' (2,

by using

These are precisely the exponents found in Sec. II.

i (r) =0 i'l(ri, ,) . (7.9)

Therefore, by associating r=e —2, we find that v=1 in
Eq. (2.16). (This result has also been obtained in Ref. 5 in
a more general framework. See also the Note added. )

Actually, Eq. (5.35) gives even stronger results. As long
as the undecimated sites determine the visible structure
(i.e., peaks) of g„, then at these sites nk, the values of the
wave function I ~ 1'„~ I at a particular value of r=ro
must be equal to the values of the wave function

~ ] on the decimated sites nj, +~ lattice at a value
Plp+k

Then since the average decimated lattice con-
stant is simultaneously increased by a factor o~, it follows
that

1ig(r):P[ p iy21(&o ) (7.10)

C. Localization length exponent for e ~ 2

I.et us assume that the one-parameter variation ~ pro-
jects into (I'o,Xo ),. This occurs in HarPer's model when

we move along a trajectory in the parameter space (e, yo,
and E) by changing the potential strength only. However,
in a more general model, all three parameters (e, yo, and
E) must be controlled to stay on such a trajectory. In the
RG description, the localization transition is a multicriti-
cal point, and we are now investigating changes along the
critical lines which connect to the localization point.

Our numerical investigations and the work of Aubry
and Andre indicate that there is a localization length
denoted by l (r), which defines the envelope of Fig. 6. Us-
ing the equality (5.35) and the fact that the i scales like a
length, we find that

We have recovered most of the scaling results in Sec. II
with the renormalization group and have shown in what
sense y and v are universal. We have not been able to ob-
tain P from the fixed-point analysis, although preliminary
work indicates that g can be derived from the fixed point.
We believe that both of these quantities are universal, but
in the absence of a direct derivation of this fact from the
fixed-point analysis, this conclusion is still speculative.
We are still puzzled about the role of the special phases
yo ——

4
——,o.G+no. which are required to get a fixed point

out of our recursion relations at a. = —,'. We do not know

why these phases are singled out.
We have worked out the simplest application of the

general renormalization-group theory discussed in Secs.
II—V, and the application to various other points in the
spectrum appears to be fairly straightforward. In contrast
to these direct extensions of the present work, there are
also more subtle questions which we believe could be in
principle answered. What is the behavior of the states and
spectrum near gap edges'? This problem is addressed in
Ref. 27 using the model of Refs. 30 and 27, but with an
analytic potential the problem is more complicated. What
happens for arbitrary choices of o and a when the renor-
malization group does not flow to a fixed point?

It is also worth noting that in our RG it is necessary to
work at a fixed value of the Bloch index. The disadvan-
tage of this approach is that it is not clear how it can be
used to calculate global properties (e.g., the measure of the
gaps in the spectrum. ' ) However, the strength of our
method lies in the uniuersality of its predictions. For a
given value of the Bloch index, a large class of quasi-
periodic potentials made up of harmonics of Harper's po-
tential should share scaling properties characterized by the
exponents y and v. It is not clear to us whether such a
strong statement can be made for the global properties of
the spectrum of a general quasiperiodic potential. For
such a potential, different states may localize at different
values of the potential strength (unlike what happens in
Harper's model), so it seems improbable that the measure
of the gaps would show any universal scaling behavior.

Note added. After this paper had been written, we
carne across a recent paper by Suslov in which the result
(2.16) is obtained for Harper's potential (1.2) by using a re-
normalization group. Also, Kohmoto and Oono have
recently carried out a fixed-point analysis of the RG equa-
tions of Ref. 30. J. Wilkinson has also carried out an ap-
proximate RG on Harper's model. '
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APPENDIX: CONTINUED FRACTIONS

Lc't p bc Rll arbitrary I'Rtlonal ol' lrratlonal Ilunlbel. Wc
call write p ln R coIltlllllcd-flactloI1 cxpaIlsloll Rs

=—[n i,nz, . . . , nk, . ..], (Al)

I
Pl 2+ n3+ '''

where pal, are integers obeying 1 4 peak 4 00. The integers nk
are generated by the recursion formula

I
po=p nk =[1/pk 1] pk+I=

Pk

where [ ] denotes the integer part thereof. We say an ir-
rational number has a periodic tail in the continued frac-
tion if nk =nk+ for every k larger than some fimte X.
This is true if and only if p solves a quadratic equation
with integer coeffirients.

The kth rational approximant to p is given by the ratio
pk/qk defined by

Pk/qk [n1~ & nk~ +] '

These are the "best" rational approximants to p in the
sense that there is no rational number with a smaller
denominator that approximates the irrational number
better.

After a bit of algebra, it is possible to show that the in-

tcgcrs pk Rild qk obey tllc I'ccllrsioll formulas

Pk+ ~ =~kPk+Wk —i 9k+] =~kCk+A —j (A4)

where p I
——0, q I ——1;po ——1; qo ——0. The quadratic irra-

tional p=oG ———,
' (W5 —1), which is the reriprocal of the

golden mean, has nk ——1 for all k. For this case pk=Fk
and qk Ek ——I, where the Fibonacci integers Fk satisfy
Fk+)=Fk+Fk ) %'1th F ) = I and Fo= I.

A Liouville number tz is an irrational number for which
~a —p„/q„~ &1/(q„)", where p„and q„-+Do as n~ao.

Only for the subclass of Liouville numbers for which
there is a constant c such that

~
a —p„/q„~ &c/n ",hasrq„)

it bmn shown that quasiperiodic Schrodinger operators
with cr =a in Eq. (1.2) have no localized states. '

An irrational number 5 is called a Roth number if, for
every e ~ 0, there is a constant e, &0 such that
~8 —p/q ~

&c,/q +' for all positive integers p and q.
The class of Roth numbers is of full Lebesque measure. I

'Present address: Department of Physics, University of
Pennsylvania, Philadelphia, PA 19104.

~The potential V(x) in the Schrodinger equation

+ V(x) g(x)=E|(t(x)
dx

is quasiperiodic on {—Oo, 00 ) if it admits the representation

V(x) = g o~ ~.exp 2%i g nlkcokx
(ml "'m } k=1

J

where mk EZ (the integers} and uk ER (real numbers) for all
1 & k &j, j& 2, a~ . are such that V(x) is well defined,

and the QPk 8 arc 1ncommcnsurate, 1.c., for rk rat1onal,

if and only if vk ——0 for all k. A simple example (with j=2)
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