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Failure of bulk-correlation-length scaling for the superfluid density of confined He
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We present new measurements of the superAuid density of He confined between sheets of Mylar
at 4600 A average separation. These data show a full range of behavior, from bulk, to finite size,
to two dimensional. We analyze these data, as well as those from three other experiments, to test
predictions of finite-size scaling theory. We use a scaling function from the Ginzburg-Pitaevskii-
Mamaladze theory, as well as a function we suggest in analogy to the work of Josephson. We find
that only this latter function is consistent with the data. Furthermore, we find that the deviations
from bulk behavior do not scale with the bulk-correlation-length exponent. We find this to be in
quant1tatlvc agrccIIlcnt with carllcr Icsults fol thc spcclflc heat of conf lncd helium.

I. INTRODUCTION

Near a second-order phase transition the behavior of a
system is characterized by the divergence of the correla-
tion length g at the critical point T, The fin. ite extent of
any laboratory systeIn typically presents no limitations in
measuring bulk properties, since the correlation length
Rchlcvcs macroscopic dlIIlcnslons 1Il a I'cglon too close to
thc tI'ansltlon to bc cxpcrirncntally accessible. On thc oth-
er hand, it is not too difficult to arrange a situation where-

by one is dealing with, say, a film whose thickness be-
comes comparable to g at some temperature close to T, .
Such a system will have a rather more complicated
behavior, showing the effects of its finite extent as a
rounding of sharp oi' divei'geilt thermodynam1c pioperties,
with eventual crossover into a lower dimensionality, i.e.,
for a film, from three dimensions (3D) to two.

A different situation can also be realized which would
not show crossover behavior. This is the case where the
thickness of the film is so small, less than about two
atom1c layers, tliat i't is smaller tllaii g eveiywlmi'e near tile
transition, Its behavior will thus be nearly 2D at all tern-
peratures. Both these limits can be achieved with liquid
helium, which forms a film on all surfaces in contact with
it. The transition of interest is the superfluid transition.
Onc has lQ onc llmlt thc bulk~ 3D transltlon at a tempera-
ture T~. This is characterized by a near divergence in the
specific heat and a power-law vanishing of the superfluid
density p,b. In the other limit, the 2D behavior, one has a
discontinuous drop in the superfluid density and an an-
alytic behavior of the specific heat at the transition
temperature T„which depends on the film thickness.
The 2D liInit has received much attention lately and ap-
pears to be well described by the theory of Kosterlitz and
Thouless. "

The crossover from 3D to finite size, but not the strictly
2D behavior, has been examined by Chen and Cxasparini
in specific-Beat studies. Their work shows that one can-

not scale the data in any reasonable way with the exponent
of the bulk correlation length. This exponent is derived
from the behavior of the superfluid density and hyperscal-
ing arguments. Scaling with this exponent can be
achieved only in an analysis in which very large correc-
tions to scaling terms are introduced. This difficulty in
scaling thc data ls particularly surprlslng, slncc lt ls be-
lieved that for the superfluid transition the confining
walls do not couple directly to the order parameter, and
thus are not expected to play as important a role as they
do in other transitions.

There has been, up to now, no analogous analysis of the
superfluid density p, as was done for the specific heat.
%C present in this paper such an analysis as well as new
data taken with a torsional oscillator. These data, which
were taken with helium confined between sheets of Mylar
at an average separation of 4600 A, show the full range of
behavior: bulk far away from T„ finite size in an inter-
mediate region, and 2D behavior in a region very close to
the transition.

II. SCALING OF p,

When superfluid helium is confined in a geometry
whose smallest dimension is d, one may write the super-
fluid density in the critical region as

where t=l —TITS, with Tx the bulk superfluid transi-
tion, and f(d t) is a scaling function. This equation as-
surnes that there is a single length which scales the data.
The function f must have the properties such that
f(ao)=0 and f(d t, )=1. That is, p, must revert to its
bulk value for infinite separation and must vanish at some
temperature T, below T~. Furthermore, under the as-
sumption that the bulk-correlation-length exponent, de-
fined via
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governs the finite-size effects, one must have'~'6

8=1/v .

Thus at t =t, = 1 —T, /Ti„, we must have

(2)

(3)

(4)

p, =—p,b(1 —gl/d ),
where g depends on the geometry of confinement, and d,
the smallest dimension, is much larger than I, a charac-
teristic healing length. This equation can also be derived
without using the concept of a healing length. This was
done by Padmore and Reppy. They point out that the
confinement of the helium modifies the excitation spec-
trum, thereby leading to an excess normal mass, given by
an equation identical in form to Eq. (5). The length I in
this equa. tion is assumed to have the same temperature
dependence as the correlation length, i.e., I-t . Thus
we can write Eq. (5) as

which is in the scaling form of Eq. (1) and of course satis-
fies Eqs. (3) and (4). This equation is also implied in the
wolk of Rcf. 15. Tlic approximate cqilallty ilscd 111 Eq. (5)
denotes the fact that terms of order (l/d) and higher
have been omitted. From more rigorous solutions in the
case of a cylindrical and planar geometry, we find this
approximation to be at worst no more than a few percent
off for the range of data, we will use. This has a negligible
effect on our analysis.

We note that since near T~

This equation for the shift in the transition temperature
with confinement size has received a considerable amount
of experimental attention both in the case of p, (Refs.
18—22) and in the case of the specific heat, ' ' where
one may take the specific-heat maximum to denote r, .
One should note, however, as was emphasized in Ref. 9,
that this equation describes but a single feature in the
behavior of the confined superfluid: the point at which p,
vanishes. Equation (1), on the other hand, deals with all
the data near the transition, and therefore gives a much
more stringent test of the scaling hypothesis in general,
and of the exponent relation, Eq. (3), in particular. The
difficulty in testing the data this way is that the explicit
functional form of f(d t) is not known.

One approach in deducing this function is via the
phenomenological theory of Ginzburg and Pitaevskii, as
subsequently modified by Mamaladze. In this theory,
one expands the free energy in the order parameter, but al-
lows the expansion coefficients to be nonanalytic func-
tions of the temperature. The dependence on temperature
is fixed by forcing agreement with the bulk superfluid
density and the specific heat. In this theory, one has a
differential equation for the order parameter which can be
solved for the case of confined helium. With the order pa-
rameter vanishing at the confining walls one has

where p 1s thc total «Icns1ty Rnd k ls R constant, and with
g=v according to scaling, then Eq. (6) states that the
difference between the confined and unconfined superfluid
density is independent of r and depends inversely on the
smallest dimension. The total density p is introduced so
that one can deal more conveniently with dimensionless

Uant1tlcs.
There is another approach which one may follow to

determine f(d t). Josephson pointed out that the rela-
tionship between the order parameter g, which is not
directly measurable, and the superfluid density can be ob-
tained by identifying p, in the kinetic energy term of a
free-energy density expansion. Thus he obtained

'2

p„=A, (&)

where riv' is the exponent associated with Ai and P is the
exponent of the order parameter. Via scaling relations
and the hyperscaling relation 3v=2 —a, one then obtains
g= v. In the case of a bounded superfluid, say n layers in
a film geometry, we may introduce a surface order param-
eter per unit volume (2/n )f, with which, in an analogous
way for g, we may define a surface superfluid density,

Pl
ps. =~s~

The total superfluid density is then given by

ps =psb+pss ~

From this, we then obtain

p, /p=(p, i, /p)(i —g2&
* /d ),

where we have introduced the smallest dimension d, and
have absorbed all constants in g2. We have also intro-
duced explicitly R Qcgat1vc sign, slncc pss must bc sUb-
tlac'tcd fl'oili pub.

The exponent g, is unknown, and one should consider it
as such in testing the data. If, however, one must have
agreement with the shift equation and the scaling condi-
tion, Eq. (3), then clearly one must have

(12)

In this way, both Eqs. (6) and (11) predict the same rela-
tion between T, and the confining size. In Eq. (6), howev-

er, only the bulk exponent v appears, while Eq. (11) has
the new exponent g, . The latter equation emphasizes that
for g to govern the finite-size scaling the bulk-surface re-

lation, Eq. (12), must hold. There are other major differ-
ences in these two equations away from the point where p,
vanishes. One scales the data as 1/d, the other as 1/d .
One predicts a temperature-independent difference be-
tween p, and p,b, while the other a difference behaving as

The 1/d dependence in Eq. (11) might at first be
surprising. We point out, however, that in the case of sur-
face scaling for a finite magnetic system, one obtains the
fact that the order parameter, the total magnetization, is
the sum of a bulk plus a surface magnetization divided by
thc SIIlallcst dimension. S1ncc 1Il thc cRsc of helium p, dc-
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pends on the square of the order parameter, one might ex-
pect that the smallest dimension would come in as a
square.

We also note that Eq. (11), with g —(, =2v, may be
viewed as the quadratic term in a series expansion of a
scaling function P(g/d) (see later discussion). More gen-
erally, it might be viewed as the quadratic term of
P(g, /d ), where g, is a new critical length which allows for
the possibility that g —g, &2v.

III. EXPERIMENTAL PROCEDURE

We determined the superfluid density of confined heli-
um by measuring the mass loading of a torsional pendu-
lum. This technique has been described before. Our par-
ticular cell consists of a Mylar roll formed on a magnesi-
um toroidal shell. The Mylar substrate has dimensions
2.5 pm && 1 cm && 100 m, which gives a geometrical area of
2.0m .

The cell was intended to be used for helium films and
thus was designed to maximize the ratio of surface to
volume. Two trial cells were prepared and wound with
different tension on the Mylar ribbon. The area deter-
mination, using nitrogen absorption isotherms, showed
that one can easily overwind a cell, causing the net surface
area to be less than the geometric area because of the con-
tacts between the Mylar ribbon. For the cell of our exper-
iment, we used 0.3-pm alumina powder as an intended
spacer. We estimate that the alumina contributed only
1.5% increase in the total surface area. From the
geometry of the cell and the amount of Mylar used, we
deduce that the average separation between surfaces is
about 4600 A.

Upon cooling to helium temperatures, the torsional pen-
dulum with an empty cell had a Q of 2.3&&10 at a
resonant frequency of 1A kHz. The period could be mea-
sured with a precision of 3 psec. For thermometry, we
used an Allen Bradley resistor calibrated against the vapor
pressure of He in the range 2.5—1.2 K. The temperature
data, 32 points, were fitted with a five-term polynomial
with a scatter typically less than 0.5 mK.

For the experiment we report here, the cell was filled
with helium slightly below the A, point. Complete filling
was indicated by monitoring the change in the period of
the oscillator. The cell was then warmed above T~ and al-
lowed to cool slowly. Data of the period and amplitude of
the oscillator and the thermometer resistance were taken
simultaneously as the cell cooled.

IV. DATA AND ANALYSIS

of the resonant frequency of a Helmholtz oscillator which
is governed almost entirely by the superfluid density of
the helium confined in a superleak.
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A. Torsional oscillator, present work

This method of determining the superfluid density was
first used by Andronikashvili. It relies on the fact that
when helium is confined between surfaces whose separa-
tion is much smaller than the viscous penetration depth,
then for T & Ti„, the helium just follows the motion of the
surfaces. For T& Ti, however, only the normal com-
ponent remains locked, and the frequency variation of the
oscillator with temperature is a measure of the amount of
superfluid. With this technique one does not obtain an
absolute value of p„but instead one is forced to normalize
the data with results obtained by other methods. One of
the advantages of this technique is that it can be used to
look at the behavior of helium through the region of the
superfluid transition without loss of signal, as is the case
when one uses resonant sound modes.

Using this technique, we have taken data from slightly
above the superfluid transition to about 1.19 K. These
data are shown in Fig. 1 as p, /p vs t in the range
2 && 10 & t & 10 . The primary measurement of the
shift in the period of oscillation has been reduced to p, /p
by normalizing the data at low temperature. We will dis-
cuss this procedure shortly. The obvious feature of the
data is that far away from Ti, the temperature depen-
dence is a pure power law as in bulk helium, while as one
gets closer to T~, there is a marked deviation. A closer in-
spection of this deviation already indicates that it is not a

In this section we discuss and analyze the results of
several experiments in addition to our own, from which
one can obtain the superfluid density of confined helium.
We start with our own data, then proceed to the data of
Henkel and Reppy, which are the measurements of the
angular momentum of a superfluid current. We then deal
with the data of Smith and Reppy, which involve the
critical flow of superfluid through a slit, and lastly, we
discuss the measurements of Brooks, Sabo, Schubert, and
Zimmermann (BSSZ). These involve the determination
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FIG. 1. SuperAuid density of helium confined between sheets
of Mylar at 4600 A average separation. Data show bulk
behavior for t & 10 . This is indicated by the solid line of slope

A sharp deviation from bulk behavior appears as one ap-
proaches Tq.



29 FAILURE OF BULK-CORRELATION-LENGTH SCALING FOR. . . He 141

constant, as would be suggested by Eq. (6), with p,b-t"
and I -t ", but rather that it does depend on temperature.

We show the data on a linear scale in the neighborhood
of the transition in Fig. 2. We have plotted here the frac-
tional period shift, the expected bulk behavior p,b, scaled
to the period shift, and the reciprocal of the amplitude of
oscillation. This, in the case of our experiment, is a mea-
sure of the inverse Q, i.e., the dissipative loss in the helium
flow. We note that in the case of helium films, a dramatic
peak in the dissipation is observed near the transition.
This has been shown to be associated with the dynamics
of the motion of vortices and is a characteristic of 2D
behavior. For thin films, the excess dissipation is typi-
cally manifest over a region of a few millikelvins near the
transition. In our case, we are dealing with a situation
where the film is several hundred times thicker than has
been studied previously, and the region of enhanced dissi-
pation is visible over a much narrower temperature range.
As one can see from this graph, this region is less than
100 pK wide. We take this dissipation as a mark that our
system has become 20 in character. The dissipation peak
is superimposed on a smooth background which becomes
a constant as one goes above the transition. The period
shift through the region of the transition decreases with
the same curvature as p,b until one gets close to T~.
Then, at a temperature very near the point where the dis-
sipation increases, the curvature changes sign and the data
approach zero in a more gentle manner. An important
feature of the data which we have indicated by arrows is
the expected universal jump in p, for a 2D film with

T, =2.172 K.' This point occurs at nearly the tempera-
ture where the dissipation has a maximum. This is in
agreement with similar measurements on films having

T, 's as low as 0.05 K. We do not measure a discontinuous
jump at this temperature, very likely because of the finite
frequency of the experiment and because within this nar-
row temperature region there is bound to be rounding due

4.2

to nonuniformity in the confining dimension. We have
further marked on Fig. 2 a width of about 60 pK below
Ti as the region in which the 3D correlation length g,
were it to grow unimpeded, would exceed the average
separation between the Mylar sheets.

We have chosen for this graph the bulk transition tem-
perature T~ as 20 pK beyond the point where the period
and amplitude stop changing. This is our estimate of the
expected shift in the transition temperature for the con-
finement of our experiment. We have no independent
measurement of Ti„. This uncertainty in Ti introduces a
possible systematic error in our subsequent analysis which
we will discuss shortly.

To test the behavior of p, /p, both Eqs. (6) and (11) re-
quire that we subtract this quantity from p,b/p at the
same temperature. Since the difference between these two
quantities can be very small, it is important that a careful
normalization of the data be made. We proceeded as fol-
lows. We have divided the shift in period from its value
at the transition by 3.85 psec, which is the total shift in
going from Ti to T=0. This number involves the mea-
sured period shift at 1.186 K, 3.75 psec, plus an additional
0.10 psec, which is our estimate of the change in p,b/p
down to 0 K. In this way, the fractional period shift
ranges from 0 to 1, as does p,blp. More important, how-
ever, than the above normalization is the prefactor k of
Eq. (7), which our data would obey in the critical region if
the helium were not confined. To establish this, we have
taken away the leading temperature dependence by multi-

plying the data near the transition by t ~. Clearly in
this way, if there is a portion of the critical region where

p, /p and p,b/p become indistinguishable within our ex-
perimental resolution, then our data, when multiplied by
this factor, would be temperature independent. We show
this in Fig. 3. We see that over a limited region the data
are temperature independent. Near t =10, there are de-
viations which signal the effect of confinement. The devi-
ations near t=0. 1 indicate that one is exceeding the
asymptotic power-law region where Eq. (7) applies. This
range of validity is in agreement with measurements on
bulk helium. The systematic s-shaped deviation near
t =0.01 is very likely the result of a fourth sound-resonant
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FIG. 2. Fractional period shift and Q
' of the torsional os-

cillator near the transition. Expected bulk-helium behavior is in-

dicated with a 20-pK shift in T, (see text). We have also indi-

cated by two arrows the expected jump in p, for a film with

T, =2.172 K, as well as the region where the 3D correlation
length would tend to exceed 4600 A if it were to grow unimped-
ed.
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FIG. 3. Plot of the period shift in such a way as to extract
the constant k of Eq. (7). Data would lie on a horizontal line if
in the asymptotic region they had the same temperature depen-
dence as in the bulk. Data for small values of t show the effect
of confinement; the data for larger t show deviations because the
asymptotic range of Eq. {7) is exceeded. Horizontal line yields
k =2.355. Systematic deviation near 0.01 is a characteristic de-

viation due to a fourth-sound resonance mode.
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TABLE I. Amplitude for the behavior of the superfluid den-

sity, p,b/p=kt&. For the confined helium we have evaluated the
expected value of k in a way discussed in the text.

Experiments on bulk helium k

Persistent cur'rents (Ref. 39)
Torsional oscillator (Ref. 40)
Fourth sound (Ref. 41)
Second sound (Ref. 42)

2.41
2.40
2.38
2.534

Experiments on confined helium
This work
Angular momentum of superfluid current (Ref. 33)
Flow through a slit (Ref. 34)
Helmholtz oscillator (1000, 500, 300 A) (Ref. 20)
Helmholtz oscillator (800 A) (Ref. 20)

k
2.355
2.36
2.465
2.50
2.52

O. l—
!

resonant mode. A similar response of the oscillator is ob-
served in the case of films when one encounters a third
sound IIlodc.

The horizontal line through the data gives us the ampli-
tude of the power-law dependence which our experiment
would yield for bulk helium. This number, 2.355, is close
to what is obtained with other techmques. We summarize
this in TaMe I. This table also shows why one cannot take
this amplitude from other experiments. It is a number
wh1ch, cvcn though 1t can bc reploduccd to w1thln a fcw
percent, is not sufficiently precise for the subtraction
analysis. A self-consistent determination from the data is
not, only dcs1Iablc but csscntlal.

We proceed now to test Eqs. (6) and (11). To do this,
we plot in Fig. 4 k (pglp)t ~ vs t —This, apa. rt from the
power-law factor, is the difference between the solid line
and the data as shown in Fig. I. From Fig. 4, we see that
this difference does obey a power law over a region slight-
ly less than two decades in temperature. Nearer the tran-
sition, for t ~ 5X10, we obtain a sharp deviation from
this behavior as one cx'osses over into the 2D regime. The
arrows on the linear plot of Fig. 2, which indicated the
magnitude of the universal jump in p„are at the tempera-
ture at which this deviation becomes visible. Thus, when
plotted as in Fig. 4, the data show that the onset of 2D
behavior is relatively sharp.

The exponent determined from a least-squares fit of the
straight-line portion of the data in Fig. 4 is 1.206+0.029.
Had we taken T~ as the point where the period and axnpli-
tude become constants x'ather than 20 pK higher, the slope
of the line in Fig. 4 would have been 1.18+0.03. We
might, in light of this, take the exponent as 1.18+0.06.
We postpone a discussion of this exponent until we

FIG. 4. Difference in superfluid density between bulk and
confined helium plotted in such a way as to test Eqs. (6) and
(11). Straight-line portion is the power law predicted by these
equations. Sharp deviation near t =5)&10 ' is the onset of 2D
behavior where these equations are no longer applicable.

present the results from other experiments. These results
will bc summarized 1n Table II.

B. Data of Henkel and Reppy

Henkel and Reppy obtain p, /p from a measurement,
of the angular momentum associated with a superfluid
current. This was done by generating the curx'ent in a
gyroscope which contained the confining medium. The
magnitude of the angular momentum, which is directly
proportional to p„was picked up as a deflection of the
gyroscope and converted into the resonant frequency of a
tunnel diode oscillator. The change in frequency of the
oscillator bf, from its value at Ti„, is directly proportional
to p, . Although various confining geometries were used
in their work, we found that only the data for the 2000-A
GA-Metricel filters covered a sufficient range of tempera-
ture to be useful in our analysis. These filters are of a cel-
lulose triacetate material and do not provide as uniform a
confining geometry as, for instance, the Nuclepore filters
used in the work of BSSZ or, for that matter, the planar
geometry of our own experiment. However, if we just
want to look at the deviation from bulk behavior, and as
long as we do not look too close to the transition, these
data are still useful.

TABLE II. Results of the analysis to extract the finite-size scaling exponent from various experi-
ments. According to bulk-surface scaling this exponent should be g —g, =2v=1.350+0.002. Average
of the exponents below is 1.0+0.1.

Experiment

This work
Ref. 33
Ref. 34
Ref. 20

Confinement
0

4600-A planar separation
2000-A filters
3870-A slit
1000-, 800-, 500-, 300-A pores

Scaling exponent

1.18+0.06
0.97+0.14
0.95+Q.05
0.82+0.02



FAILURE OF BULK-CORRELATION-LENGTH SCALING FOR. . . He 143

To analyze the data in the same manner as our own, we
first must extract the value of k. We chose to work
directly with the frequency shift bf and have plotted first
b ft ~, which should be constant sufficiently far from Ti
but still in the critical region where a power law bf=fot~
is expected to apply. We find that the data which extend
only as far as t=2.7)&10 never quite reach a constant.
However, they approach a value of fo ——213+1 kHz.
This, when converted to an amplitude, yields a value of
k=2. 36 in quite reasonable agreement with other data.
This can be seen in Table I.

In Fig. 5, we show the data plotted in a way to test Eqs.
(6) and (11), i.e., fo hf t—~ vs t W.e find, as in the case
of our own data, that a power law fits these data but over
a rather limited range of t, with deviations closer to the
transition. The exponent for the line in Fig. 5 is
0.97+0.14. The error here is not a statistical error, but re-
flects the uncertainty in fo.
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FIG. 5. Data of Refs. 33 (0) and 34 () plotted in such a way
as to test Eqs. (6) and (11). Straight-line portions yield ex-

ponents given in Table II.

C. Data of Smith and Reppy

In the work of Smith and Reppy, superfluid helium
was allowed to flow at the critical velocity through a slit
with nominal width of 3850 A. The total volume flow
was measured in this experiment, thus yielding the prod-
uct of the superfluid velocity and the superfluid density.
One then must use a model to extract the value of p, /p
within the slit. This is done by obtaining a relationship
between p, /p and U, from the low-temperature region
where p, =p,b We ha. ve taken their tabulated values of
p, /p and followed the same procedure as in the anaylsis of
the previous data to determine k. These data, unlike those
of Henkel and Reppy, extend sufficiently far from Ti that
k can be established rather unambiguously. We find
k =2.465+0.005. With this value of k, we have plotted in
Fig. 5 k —(p, /p)t ~ vs t We no. te that for this experi-
ment the bulk transition temperature is established in-

dependently of the behavior of p„' hence there is no ambi-
guity about the value of Ti, In Fig. 5, we observe again
that far from T~ the data fit a power law, and close to T~
there are deviations similar to what we have already ob-
served. This presumably signals the onset of the 20 re-
gion. We note, however, that this is much sooner than
would be expected when one compares the confining di-
mension between their experiment and that of our own.
This suggests that the slit might have had regions where
the separation was smaller than the quoted values. This
possibility does not affect the present analysis, since we
are not attempting to scale the data with size. The ex-
ponent associated with the line in Fig. 5 is 0.95+0.05 and
is listed in Table II. The error quoted with this exponent
is not statistical but corresponds to the variation in k.

We point out that an analysis to check the applicability
of Eq. (6) was also done by Smith. He generated a plot
very similar to Fig. 5, and by drawing a line to fit the data
closest to the transition, found consistency with this equa-
tion. Apart from our use of the exponent (=0.675 rather
than —', , and of a slightly different choice of k, our

analysis basically differs from his by biasing a straight
line through the data farther away from the transition.
Certainly, if one is concerned with inhomogeneities, this is
the more reliable region to use, and it is in terms of these
inhomogeneities that deviations closer to the transition
can be understood. If the data closer to the transition are
assumed to be representative of Eq. (6), then it is hard to
understand why farther from the transition, but still in a
region where this equation should apply, one obtains sys-
tematic deviations from a straight line.

D. Data of BSSZ

The measurements of BSSZ involve the determination
of the resonant frequency of a Helmholtz oscillator where
the frequency-determining element is the helium confined
in the pores of a Nuclepore filter. Several filters were

used in this experiinent with pores of 1000, 800, 500, and
300 A. . These filters are as uniform a confining cylindri-

cal geometry as one can presently achieve. Hence the
data are useful not only for the determination of devia-
tions from bulk behavior as we have done so far, but also
in scaling the data with size. Data of the specific heat of
helium confined in these filters were taken by Chen and
Gasparini and analyzed in detail for finite-size scaling in
Ref. 9.

In the measurements with a Helmholtz oscillator, one is
not able to follow the behavior of p, too close to the tran-
sition, since the signal amplitude becomes vanishingly
small as g approaches about one-quarter of the pore diam-
eter. Thus one of the difficulties in analyzing these data is
that the region where p, has the strongest deviation from

p,b is not available. Since, especially for the larger con-
finement, one is relegated to look at rather small differ-
ences, it becomes even more crucial for these data to es-
tablish an accurate value of k. We have followed the same
procedure as in the earlier analysis. We have looked at the
region sufficiently far from T~ where one expects the
smallest deviation from p,b. For the case of the 1000- and
800-A size filters k could be extracted relatively easily.



For the smaller confinements there were deviations from
bulk behavior even in the range of t=10 —10 '. For
these, we have taken the same amplitude as for the 1000-
A filters. This is reasonable, and not too crucial of a
choice, since for the 500- and 300-A filters the deviation
from bulk behavior are much larger. The values of k for
these data are given in Table 1.

The data are plotted in Fig. 6 as (kt~ —p, /p)d, where
for the first time we are attempting to scale the data with
size. Clearly one can see from this figure that, while one
could fit a straight line through any one set of data, these
data do not collapse on a umversal curve. This mdlcates
that the size scaling is not correct. The data plotted ac-
cording to Eq. (11) with the d factor are shown in Fig. 7.
The data now do collapse on a single line. We believe this
is the first instance in which the superfluid density for
confined liclllllll llas bccll scRlcd 111 this Iliallncl. T11c ex-
ponent obtained from a least-squares fit of these data is
0.82+0.02. This is tabulated in Table II along with the
results from the analysis of the other data.

BSSZ have taken a rather different approach in the
analysis of these data, but their results support our own.
While they point out the relationship between p, and p,b
given by Eq. (5), they fit the data to a relationship where a
prefactor of p,b is treated as a variational parameter. We
note that while with this approach one is able to fit the
data weH, the remaining term of Eq. (5) does not scale
with size as this equation ~ould predict. This is in keep-
ing with our own observations. They also fit the data
with a pure power law by using the bulk exponent g and a
shifted, reduced transition temperature toi. Specifically,

t 000 ~

800 ~
500 &

v Z00 h

0. I

~CA

l

FIG. 7. Same data as in Fig. 6 plotted with the d size scaling
of Eq. {11).Factor of t & is introduced in this figure to make it
analogous to Figs. 4 and 5.

analysis of BSSZ, one finds that c -=k, but their values of
to, scale not with 1/0. 675 but rather with 1/(0. 53+0.08).
Thus, although not emphasized quite in the way we have
done, the results of the analysis of BSSZ show that while
one may successfully use functions which agree in form
with thc flllltc-size scallllg Rllsatz, thc cxpollcnts do Ilot
come out quite correct.

pg Ip=c(t tol )~ . — (13) V. MSCUSSION

This equation, with g=v and Eq. (4), d'~ toi ——a, can be
written as

a 1000 A

800 )(

500 5
v 500 )1

X ( X~~
X XX

PPP P +8~

/ Q ]Q 2

FIG. 6. Data of Ref. 20 for helium confined in cylindrical
pores plotted according to Eq. {6). If the data scaled with size as
this equation predicts, they should collapse on a universal curve.

Thus Eq. (13) is of the proper scaling form. For the re-
sults to support scaling, however, one must have e =k, the
prefactor of p,blp; tol must scale as d ' ". From the

A. Results from the superflMd density

We have seen in the last part of the preceding section
that the data of BSSZ do not vary with d as suggested by
Eq. (6). This equation comes from a mean-field theory
and involves the variation of the order parameter near a
wall over a distance dictated by the bulk correlation
length. This picture does not seem to be adequate to
describe the experimental results. Even if one ignores the
size dependence of Eq. (6), one would still have to contend
with the fact that Eq. (6), when plotted as in Figs. 4, 5,
and 7, predicts the exponent of the t dependence to be
(=0.675. The results from all the experiments, as can be
seen in Table II, clearly do not support this prediction.
Regarding Eq. (11), it seems to have the correct size scal-
ing and, of course, the power-law dependence in t which is
obeyed by all the data. The scaling exponent, g —g„
varies substantially from experiment to experiment; how-
ever, the common feature is that this exponent is always
less than g—$, =2v=1.350. This signals a failure of the
bulk-surface scaling relation, Eq. (12). If we simply aver-
age the results shown in Table II, we would conclude that
g—g, =1.0+0.1.

One might ascribe the lack of agreement with scaling to
a possible lack of homogeneity in confinement. This, one
would argue, would be a serious problem in the interpreta-
tion of these data. This is not really the case if one looks
only at the temperature dependence in a region not too
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close to the transition. This is due to the fact that the de-
viation from bulk behavior is predominantly a surface ef-
fect; thus the details of the geometry are not really impor-
tant. The geometry is, of course, very important if one
looks close to the transition where one crosses over to a
lower dimensionality, or, at any temperature if one scales
the deviation from bulk behavior with confining size.
What is also convincing about our analysis is that we have
looked at data from a variety of experiments with quite
different confining media, using quite different measuring
techniques.

In the case of our own data, they are the only ones
which follow the behavior of p, into a lower dimensionali-
ty. This latter behavior seems to be at least qualitatively
consistent with measurements of thin films and theoretical
expectations for 2D behavior. One would expect that if
gross confinement inhomogeneities were present, they
would tend to smear the character of the 2D transition,
especially the dissipation peak, over a wide temperature
region. This is not observed. In the case of helium con-
fined to Nuclepore filters, one has probably the most
homogeneous confinement geometry. In addition, the
data do not extend very close to Ti so as to be strongly af-
fected by inhomogeneities. In the case of the data of Refs.
33 and 34, we have also limited ourselves to a region far
from the transition where one is least susceptible to inho-
mogeneities. We would conclude after these considera-
tions that the lack of agreement with the scaling predic-
tion is a serious discrepancy. This is further reinforced by
the comparison in the next section.

where we have written the above in such a way that D is
the diameter of the pores in A rather than a film thickness
as in Ref. 9. A, and A are the amplitudes of the surface
and bulk specific heats, respectively, and t~ is the reduced
temperature shift for the specific-heat maximum. From
our equation (11),we obtain

(16)

( bCd/R—) -t (17)

where R is the gas constant. For p, we have

[k (p, /p)t —&]d -t ' (18)

Thus both the specific heat and the superfluid density,
when plotted according to Eqs. (17) and (18), should col-
lapse on curves which will be straight lines on a log-log
plot. In light of the suggestion that 2(a, —a)=g —g„
these lines should be parallel to the extent that
a= —0.02=-0. ' This, as can be seen in Fig. 8, works
quite well. The exponents from the specific heat are

where I;„ is the point where p, vanishes. Thus the ex-
ponents a, —a and (g—g, )/2 play the same role, and we
expect them to be equal. This can be best illustrated as
follows by looking at all the data rather than the points t~
and t„Fro.m the scaling of the specific heat we note (see
Ref. 9) that the difference between the specific heat of
confined and unconfined helium hC can be written as

B. Comparison with results from the specific heat

In the work of Chen and Gasparini on the specific heat
of helium confined to Nuclepore filters, it was also found
that the data disagreed with finite-size scaling. It was
found in addition that agreement with scaling could be
forced if one assumed corrections-to-scaling terms which
are very large, larger than the leading amplitudes and a
factor of 1000 larger than what is encountered in the case
of the bulk specific heat. ' A description of these data
both above and below Tt„was achieved in terms of the
surface specific heat with exponent a, . These data yield a
value for a, which is the same above and below Ti, thus
in agreement with surface scaling. The magnitude of a„
however, a, =0.44+0.01, is in strong disagreement with
bulk surface scaling-where one expects a, =a+ v
=0.655+0.004. In the case of p„we have not attempted
an analysis with corrections-to-scaling terms. This does
not seem warranted for these data. In addition for bulk
helium at saturated pressure p,b does not require
corrections-to-scaling terms in the temperature region we
have used.

We can now make a more quantitative connection be-
tween our results on the superfluid density and the results
from the specific heat. The exponent a, —a plays the role
of the shift exponent for the specific-heat maximum. In
particular, from Ref. 9, we can write their Eq. (15) in the
case of no corrections-to-scaling as

D =( 12.2A, /3 )t— (15)

Q. l

O
os
(0
O

Q. /

O. I

Q.QI

)
o-4

IO

al

IO
t

FIG. 8. Scaling of specific heat and superfluid density for
confinement in cylindrical pores. If the data are scaled with the
bulk correlation length, the least-squared-fitted lines through the
data should be parallel to the dashed line. See comments in text
about symbols linked with dashed lines and solid symbols.
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2(a, —a) = 0.94+0.03, T ~ Tg

0.91+0.03, T ~ T~ .

These are in reasonable agreement with g—g, =0.82
+0.02, which, as we have already seen, is the result from
the data of BSSZ. These exponents also agree with the re-
sults we have obtained from all the other data, which on
the average yield g —g, —= 1.0+0.1. These exponents
should all be 1.3S according to scaling. This is the slope
of the dashed line in Fig. 8.

In Fig. 8, we have also plotted as symbols linked by
dashed lines the extrapolated points at which BSSZ judged
p, to vanish. As we discussed, two functions were used
for this purpose, hence the two symbols. The scaling
function we have used, Eq. (11), yields the temperature at
which p, vanishes to lie in between the estimates of these
two other functions. It is at first surprising that Eqs. (11)
and (16), derived on the basis of a bulk plus surface contri-
bution, might be able to describe the data up to the van-
ishing of p, . This perhaps is due to the fact that with
channels, one has a crossover from 3D to 1D; hence one
does not have a different transition which intervenes, as is
the case for films when one crosses from 3D to 2D. We
have seen already, in the case of our own data, Fig. 4, that
the deviation from a finite-size description becomes
marked at the start of the 2D region onset. This would
preclude such an extrapolation in case of films. Presum-
ably, in 10 the transition is removed to T=0.

Also in Fig. 8, we note that the specific-heat data for
T & T~ corresponding to the maximum, the solid symbols,
fit quite nicely within the description of the surface plus
bulk specific heat. There is, in a sense, nothing special
about these points. Conventional wisdom would have sug-
gested that this description should break down for the
maximum because of the assumption that the bulk correla-
tion length becomes equal to the confining dimension.
What these data suggest is that the maximum is mainly
the result of a modification of bulk behavior stemming
from a surface effect. This, according to the exponents
we have obtained, is not governed, at least exclusively, by
the bulk correlation length.

The comments about crossover from 3D to 1D, as op-
posed to 2D, apply to the specific heat as well. In fact, it
seems very likely that all features of the specific heat
which have been observed so far, even in the case of 2D
films, are the result of finite-size effects rather than
dimensionality. In strictly two dimensions, the specific
heat is expected to be analytic at the transition with a
broad maximum at a higher temperature. This has yet to
be verified experimentally.

for both films" and filled pores were plotted first. The
solid line represents a least-squares fit of these data only.
The remaining data all represent the determination of su-
perfluid onset. In all cases, except for the specific heat,
the data represent the measurement done on a single filter
of given nominal size. For the specific heat, the data
represent confinement in -500—700 filters of the same
nominal size. Thus if one is concerned with a particular
filter having the specified nominal pore size, the specific-
heat data are probably the most reliable because of the ef-
fective averaging among a large number of filters.

The 8, are the data of Ihas and Pobell. ' These authors
determined the temperature at which a Nuclepore mem-
brane is no longer effective in generating second sound.
This is then taken as the point at which p, vanishes in the
pores. The identification of this temperature is somewhat
ambiguous due to the fact that one must choose a cutoff
signal level. The two linked symbols for these data
represent choosing either 0.1 pV as the cutoff level, or a
somewhat higher level for the smaller pore filters in order
to compensate for the filter's efficiency in generating
second sound. The g are the data of Thomlinson et al.
and are obtained by using the same technique as Ihas and
Pobell.

The linked &&'s are the data of BSSZ. As we have dis-
cussed before, they represent an extrapolation of the mea-
sured superAuid density to the vanishing temperature by
using two functions which are equally good at describing
the data, but are inconsistent with each other in the
asymptotic region. The + 's are the data of Schubert and
Zimmermann, ' who used the same technique as BSSZ
but in addition obtained a shift temperature from the
measurement of the superfluid-mass current. These two
measurements are in good agreement as to the vanishing
of p„except for the two +'s which are linked by the hor-
izontal line.

The T are the measurements of Giordano, which are
obtained from the change in the rate of helium flow
through a Nuclepore filter. These are the only data plot-
ted at the measured average pore diameter rather than the
nominal manufacturer's value.

The solid line in Fig. 9, fitted to the specific-heat data,
gives an exponent of O. S62+0.014, where we quote the

IO

C. Qther experiments; results from onset temperature

There are no other experiments with helium where the
analysis we have described has been carried out. There
are, however, a number of experiments which have ob-
tained the shift in the transition temperature or onset tem-
perature for superfluid behavior as a function of confine-
ment. We show in Fig. 9 all of the data we are aware of
for confinement in Nuclepore filters. Figure 9 was
prepared as follows. The data of specific-heat maximum

Ltj
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I I
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TEMPERATURE SHI FT ( K )

10

FIG. 9. Confinement size vs shift in transition temperature.
Dashed line corresponds to scaling with the bulk correlation
length. See text for meaning of linked symbols.



standard error. The dashed line is the expected scaling
value of v=0.675. It is clear that if one ignores the
specific-heat maximum of the films, most of the remain-
1ng data y1cld exponents which, RIthough R b1t low, Rrc 11ot

completely inconsistent with scaling. Specifically, the in-
dividual data of Refs. 8, 19, 20, and 22 yield, respectively,
0.58+0.05, 0.65+0.02, 0.53+0.08, and 0.65+0.04. If one
includes the data of the specific-heat maximum of the
films, thereby gaining more leverage in drawing the
straight line in Fig. 9, then the data definitely favor an ex-
ponent less than v. This was also the conclusion of BSSZ
in examining data for pore confinement only, but not lim-
ited to Nuclepore filters.

Overall, the evidence for bulk-correlation-length scal-
ing, or lack of it on the basis of Fig. 9, is not very con-
vincing. The use of a single feature of the thermodynamic
response, the specific-heat maximum, or the vanishing of
p, can be very deceiving and is certainly subject to greater
errors than the scaling of all the data as presented in Fig.
8. In the flow experiments, in particular, it is very diffi-
CUIt to cstabIish whether thc chRngcs GQc secs alc dUc to
the variations in the superfluid density or the vanishing of
the critical velocity.

The temperatures at which the specific heat achieves a
maximum or the superfluid density vanishes are but single
points of a function describing all of the data. Except for
historical I'easons, they should carry Qo special weight 1Q

Rsscssillg finite-size scallIlg.

D. Analysis with other scaling functions

We have tried to scale the p, data of helium confined in
Nuclepore by using other functions which retain the scal-
ing with the bulk correlation length. Specifically, if we
write Eq. (1) in the equivalent form

we may expand P for small g/d,

0=4o+NIP'd+A(Vd )'+ @I(P'd )'+
Since in the limit where g/d goes to zero p, =p,b, we must
have $0——1. Hence we have

(P.b P. ) /P. b = —0 Ik/d 42(k—/d ) 0—3(P'd )—

(22) if one sets pi ——0 and retains the next two terms.
While this is true for these data, it is certainly not so for
the data of BSSZ. In Fig. 10, we show a plot of the left-
hand side of Eq. (21) vs (dt") '

T.he data should collapse
Gn a Unlvclsal curve whcIl pIGttcd th1s way. They do Qot.

We have presented new data for the superfluid den-
sity of helium confined between sheets of Mylar at 4600 A
average separation. Unlike previous results, these data
show the full range of behavior from bulk, to finite size,
to 2D. In the latter regime, we have found good qualita-
tive consistency with results on films of helium hundreds
of angstroms thinner.

We have focused the data analysis on the finite-size re-
gioil RIld llavc extended 't1lis analysis to data fI'onl scvclal
other cxpcriIDcnts. TG CRI'I'y out tIlls analysis, wc have
used a scaling function from the theory of Ginzburg, Pi-
taevskii, and Mamaladze as well as a scaling function
which we suggest in analogy with the work of Josephson.
The latter function may also be viewed as resulting from a
series expansion of a general scaling function. In both of
these Rppl"oachcs, Gnc obta1ns R power law with R charac"
teristic exponent which, according to finite-size scaling, is
expected to be that of the bulk corrdation length.

8'e find that the data do obey a Poloer lalo, but the ex-
ponent is not that of the bulk correlation length. This is
summarized in Table II. Furthermore, we find that the
size scaling predicted by the Mama4dze theory is not
correct, but that predicted in analogy with the work of
Josephson agrees with the data,

%c have compared our results with the earlier analysis
of the specific heat of confined helium by Gasparini et al.
1Q wh1ch disagIccGlent %'1th bUIk-correlation-1cngth scal-
ing was also found. We suggest that the exponent which
governs the scaling of the specific heat is related to that
which governs the scaling of p, . We find that this indeed
1s thc case Rnd Gbta1n good numerical RgrccDlent anlong
these data.

We have examined other data for the onset of super-
fluidity. Some of these data yield shift exponents which
are cons1stent w1th bulk-correlation-length scaling. %c
find tllc ovcl all plctlli c, 1lowcvcl, I'Rtllcl llllcollvlilcillg.

By using the bulk scaling relation g=v, this can be writ-
tc1l as

k — t " =—P'i(dt') ' —Pp(dt )
P

—PI(dt')

where we have used Eq. (2) and absorbed all constants in
the P s. This equation is the same as Eq. (11), which is
based on a bulk plus surface contribution to p„ if we have

QI ——0, we accept bulk-surface scaling, Eq. (12), and sim-

ply truncate the expansion at P2. Fisher has pointed out'
that the torsional oscillator data can be fitted with Eq.

G.G3'
G.Gt

FICx. 10. Data of Ref. 20 plotted according to Eq. (21). Sym-
bols have the same meaning as in Fig. 7.



More importantly, however, we emphasize that the onset
temperature, or specific-heat maximum, is but a single
point in the thermodynamic response of confined helium.
They yield no more, or no less, information than any other
point away from onset. We find the overall scaling of the
data to give a much more compelling argument.

The conclusion which our analysis suggests is that the
simplest picture of the bulk correlation length determining
the behavior of confined helium is not correct. The pres-
ence of confining walls affect the behavior in a much
more fundamental way than had been thought. In partic-
ular, the deviation from bulk behavior, to the extent that
it is understood from a bulk-plus-surface contribution,
suggests that there is a length associated with the surface
which has a different, weaker, temperature dependence.
This length could be a reflection of the modification in-
duced by the walls on the order parameter. To the extent
that this is true then, our results suggest that the failure of
bulk-correlation-length scaling is associated with a failure

to satisfy one of its assumptions, an "inert" confining
boundary.
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