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Results of the shape and stability of finite-amplitude cellular interfaces arising in directional soli-

dification are reported for a binary alloy described by a "one-sided" solidification model in which an

imposed temperature gradient is unaffected by changes in interface shape. Asymptotic results valid
for slightly deformed melt-solid interface shapes describe both smooth and sudden transitions to cel-
lular interfaces in terms of supercritical and subcritical bifurcations with decreasing temperature
gradient. Computer-implemented perturbation methods are combined with finite-element approxi-
mations of interface shape and concentration field to verify the asymptotic results for small-
amplitude cells and extend the analysis to highly deformed interfaces. Numerical results predict
that at large amplitudes, families of cellular interfaces which first evolved unstably toward in-

creased temperature gradient reverse direction and regain stability. A discontinuous change in the
stable interface morphology with an effective halving of its spatial wavelength is predicted to occur
for highly deformed interfaces by secondary bifurcation between two neighboring shape familes and
is related to the existence of second-order critical points for the onset of cellular forms.

I. INTRODUCTION

Morphological stability theory describes the tendency of
a microscopically planar solidification front separating a
binary melt from its solid to develop undulations that
eventually lead to cellular and dendritic crystal growth.
The physics describing the onset of these undulations,
known as constitutional supercooling, was first laid out by
Rutter and Chalmers' in terms of the quasistatic interface.
As a binary crystal freezes from an otherwise quiescent
melt, solute is rejected at the interface (corresponding to
an equilibrium segregation coefficient k less than unity)
and diffuses into the bulk melt at concentration c„.The
increase in concentration decreases the freezing point of
melt adjacent to the interface, and, depending on the tem-
perature gradient there, may lead to the spatially irregular
freezing of melt ahead of the initially planar front.

Mullins and Sekerka ' used linear theory to analyze the
stability of a flat melt-solid interface with respect to small
shape disturbances and obtained the exact relationship be-
tween the critical temperature gradient 6 at the onset of
the instability, the spatial wavelength A, of the disturbance,
and other thermophysical parameters. For temperature
gradients less than a minimum value G (= G, ), distur-
bances with a continuous range of wavelengths
A, i(G) &A, &A2(G) were found to be unstable, with only
perturbations having the limiting values of A, being neu-
trally stable. At G =G„a single disturbance is neutrally
stable and planar interfaces grown in any gradient above
this value are stable to small-amplitude fluctuations.

Since this pioneering work, linear stability analysis has
been applied to planar interfaces solidifying under a
myriad of conditions (see the review by Delves ), but only
a few studies have addressed the question of the mor-
phology of the interface beyond the point of incipient in-
stability of the planar shape. The intricate patterns seen

during cellular and dendritic solidification point to the
rich mathematical structure that must be described by
models of the solidification of a constitutionally unstable
binary alloy. In this and two related papers, we present
asymptotic and computer-aided analysis of the shape and
stability of cellular interfaces for a model solidification
system in the hope of elucidating some of this structure.

We study a binary crystal solidifying into a static melt
in which the thermal properties of both phases are con-
stant with temperature and identical, and where the latent
heat of solidification is negligible. These assumptions lead
to the "one-sided" model for solidification employed by
others; ' here the temperature field is described solely by
its gradient near the interface and is independent of
growth rate and morphology. Since the temperature field
is decoupled froin the free-boundary problem that governs
interface shape, the complexity of both asymptotic and
numerical analysis is greatly reduced. Moreover, the one-
sided model is appropriate for qualitatively describing
many metallic and semiconductor systems at slow growth
rates; it is described in Sec. II.

Our analyses follow the approach of bifurcation theory
and trace families of interface morphologies in terms of
parameters such as the applied temperature gradient and
the crystal growth rate. The asymptotic analysis is found-
ed on expansion of the interface shape in terms of its devi-
ation from planarity and so is limited to forms that differ
only mildly from the flat configuration. The numerical
analysis combines a newly developed finite-element
method for solution of free-boundary problems' with
computer-implemented perturbation techniques for track-
ing families of steadily growing interface shapes, "'2 and
for determining their stability. ' These techniques are
described fully elsewhere and the application to the one-
sided solidification model is only sketched in Sec. IV.

The earliest treatment of the nonlinear evolution of con-
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(a) subcritical (b) supercritic al

FIG. 1. Characterization of weakly nonlinear cellular melt-

solid interfaces as either (a) subcritical or (b} supercritical bifur-

cation in terms of 6 from the planar shape.

stitutionally unstable solidification interfaces was the
asymptotic analysis of Wollkind and Segel. These au-
thors used an expansion correct to second order in the am-
plitude of the deformed interface to examine the shape
and stability of the weakly nonlinear cellular morpholo-
gies for a model binary alloy without heat generation at
the melt-solid interface. Two types of interface behavior
were discovered, depending on the value of the growth
rate and other thermophysical parameters. For low
growth rates cellular interfaces existed only for values of
the temperature gradient 6 greater than 6, and were un-
stable to small-amplitude perturbations. At high growth
rates the deformed interfaces evolved toward lower values
of 6 and were stable. These two cases are classified in
Fig. 1 as sub- and supercritical bifurcations from the fam-
ily of planar shapes with e representing a measure of the
amplitude of the deformed interface; e=O corresponds to
the planar shape. When the cellular forms bifurcated to-
ward higher values of 6 (the subcritical case) the analysis
in Ref. 5 yielded no prediction for the shape and spatial
frequency of steady-state interface shapes that may exist
for temperature gradients less than the value of neutral
stability.

Langer analyzed the cellular interface shapes predicted
for a symmetric model of solidification where the dif-
fusivity of solute is equal in both melt and solid. His
work gives some indication of the fate of cellular inter-
faces that cvolvc subcrltlcally ln 6 lnltlally. By contlQu-
ing an asymptotic analysis to cubic interactions in the arn-
plitude, I anger traced similar shape families to the point
where they eventually reversed direction toward lower
values of 6 and regained stability. The results presented
in Sec. V show the same behavior for the one-sided solidi-
fication model.

Langcr s analysis also prcdictcd other lntcl cstlng
features of the cellular families. The amplitude of inter-
faces with set wavelength passed through a maximum and
then decreased with decreasing G until a new minimum
value of the temperature gradient was reached where the
family ended discontinuously. We show in Sec. V that
both phenomena are predicted by the one-sided model,
and that the ending of the interface family described by
Langer marked, in our representation, the connection be-
tween two families of interfaces with wavelengths A, and
A, /2, respectively. As shown below, this connectivity
gives a qualitative description for the change in frequency
of cellular interfaces with decreasing temperature gradient
as a secondary bifurcation point between two families of

tol

FIG. 2. Schematic of melt-solid interface in a unidirectional
solidification system. Wavelength of the cells is denoted as A, .

interface shapes and hnks the existence of second-order bi-
furcation points at particular values of 6 and wavelength.
The connection between multiple bifurcation at a second-
order critical point and secondary bifurcation between
neighboring families is well known in reaction-diffusion'
and hydrodynamic"" problems.

II. ONE-SIDED SOLIDIFICATION MODEL
AND LINEAR STABILITY ANALYSIS

We view unidirectional solidification of a binary melt
from a reference frame attached to a planar melt-solid in-
terface moving at the constant velocity V. The shape of
the interface and the field quantities, e.g., temperature and
composition, in melt and solid, are described in the
Cartesian-coordinate system shown in Fig. 2. The melt-
solid interface is located at y =h(x, t ) and the vector field
n everywhere normal to this interface is

where h„-=—Bh /Bx and e, e~ are unit vectors.
Unidirectional solidification takes place when the tem-

perature gradient far from the interface is parallel with
the growth direction and is constant with distance from
the solidification front, . In this case, the temperature field
near the interface is determined entirely by temperature
gradients in the melt and solid. In a typical melt and
crystal of metal ol semiconductor, heat transfers mainly

conduction and ls much morc rRpid thari solute
transfer. Then, if the thermal conductivities of melt and
crystal are similar and the latent heat released upon solidi-
fication is small, the imposed temperature gradient will be
constant through both melt and crystal and will not be al-
tered by changes in the shape of the melt-solid interface.
We refer to this solidification melt as one sided ' in the
sense that the shape of the melt-solid interface is set solely
by the deformation of the solute composition field in the



CELI.ULAR INTERFACE MORPHOLOGIES IN DIRECTIONAL SOLIDIFICATION. . .

melt and its interaction with the imposed temperature
f11eld

(2.3)

where & is the diffusion coefficient and

~1( )
BC BC
Bx Bjl

18 thc I aplaclan opcratol. Thc sohltc baj,ance cqUatlon
(2.3) is solved inside a slice of melt (0&x & A„h &y & ao )

along the boundaries of which

( V+ Bh /Br )c(k —1)
n Vc, y=h x,t, 0&x &A,

where k is the equilibrium (subscript eq) partition coeffi-
cient for solute between melt and crystal at the interface,
i.e., the composition of the crystal is

c, ,q(x, t)=c (x,h(x, t), t)k .

Along the sides of the slice and far away from it, the con-
centration field obeys

c(x,y, t)=c„, y:+&x&, 0&x &A, (2.5)

T(y)=T +yG,
where T is the melting temperature of the planar inter-
face located aty =h(x)=0. The one-sided model is a spe-
cial case of the more general formulation considered by
%'o11kind and Segal.

When bulk convection is absent the distribution of
solute in the melt c(x,y, t) is governed by the conservation
cqUation
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where c is the bulk composition of the melt.
The temperature at the solidification front is described

by combining the idealized phase diagram with the
Glbbs- T4OmsOQ COnditiOQ tO yield

Ti(x, t) =T(x,h(x, t ),t) =T +mc+ T I ( 4 ),
y=h(x, r), 0&x &7 (2.7)

111 wlllcll 1H 1s tl1e slope of the solidus curve, I ls the sul'-

face free energy, T is the melting temperature of the
pure material at a planar melt-solid interface, and

d h/dx

[I + (dh /dx ) ]
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TI T+Gh(x, t), 0&——x &A, . (2.8)

Equations (2.2)—(2.8) describe a mathematically non-
linear free- (steady-state) or moving- (time-dependent)

is twice the mean curvature of the interface. Because the
temperature field is not disturbed by interface deforma-
tion, Eq. (2.7) sets its location by

00

FIG. 3. Critical values of temperature gradient G~ predicted
as a function of wavejIength for the Pb-Sb system. The sign of
the coefficient 6'~' is denoted by a soHd or dashed curve.
Curves are shown for Peclet numbers of (a) 0.8, (b) 8.0, and (c)
80.
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boundary problem for the concentration field and inter-
face shape. This problem has multiple steady-state solu-
tions. The family with planar interfaces is the most easily

mc„(k —1)V(a)*—V/&)
T~l Co +6=

&k [ a) '+ (k —1)V/& ]
(2.10)

co(y)=(c„ /k)I1+(k —1)[1—exp( —Vy/&)]I . (2.9b)

We have followed the approach of Mullins and Sekerka, '

and detect the bifurcation of cellular melt-solid interfaces
from the planar form by examining the stability of the
solutions (2.9}to small-amplitude disturbances of interface

shape of the form h(x, t) =h(t) coscox, where co is its spa-
tial wave number. Standard procedures for linear stability
analysis yield a dispersion relation for the neutral stability
of the disturbance with frequency Io satisfying the equa-
t1OIl

Bc Bc

By Bl

at the melt-solid interface [y =h(x), 0&x &A,j,

Gh —m [1—exp( Ph )]—m—c
—1

k

(3.1a)

Bzh Bh

Bx

'2
l
—3/2

Bc Bh Bc —(k —1)P[c+1—exp( Ph )]-
By Bx Bx

picted on Fig. 3(a) in terms of the wavelength A, =A, /A,
* of

the cellular forms.
The asymptotic analyses are carried out on a modified

equation set formed from Eqs. (2.2)—(2.7) by subtracting
out the concentration field (2.9) resulting from a planar
interface and introducing dimensionless variables with
length, temperature, and concentration scaled with A,*,
T~, RQd C ~, respeetlvely. These CqURt1OQS RIC IQ the IDClt

[0&x (A,, h(x) &y & co]

Fo*=(V/2& )+[(V/2& ) +co ]I~I .

Result (2.10) is a special case of the dispersion equation
111 Rcf. 2. Typical stalMhty curves of tclllpcfRtllfc gradient
versQs wavclcngth RI'c plotted OQ F1g. 3 1Il 8 d1IIlcns1onlcss
form defined in the next section. In a real solidification
system, all frequencies are equally probable and stability
of the planar front is first lost at the largest value of 6,
for fixed growth rate, at which the interface is unstable to
at least one disturbance. This extremum is found from
Eq. (2.10), which yields an implicit relationship for the
spatial wave number Fo, for loss of stabihty as

(k —1)Vc„m/I &{T )

=[ co *, +(k —1)V/ W ] (2', —V/& ) ~

The critical value of the temperature gradient 6:—6, is
computed by substituting co':—co,' into Eq. (2.10). We
show in the remainder of this paper that a family of two-
dimensional cellular interfaces evolves from the planar
forms at this value of 6, and we trace these shapes to
large values of interface deformation.

Bh 1 k —1

Bt k k
c+—+ [1—exp( Ph )] (k——1),

(3.1c}

c(x, ao )=0,
Bc Bh =0, X=O, A, .
Bx Bx

{3.1C)

» Eqs (3.1), P=—V&'/N is thc dimensionless growth
late of Pcclct IluIIlbci, I—:I /A, is tile capillary constant,6:—GA/T~ ls tl, lc dlmcnslonlcss tcInpcl'R'tul'c gradient&
and m =mc„ /T is the slope of the phase diagram. The
boundary conditions (3.1e) force the interface shape to
have wavelength A, .

The cellular interfaces are calculated by standard tech-
niques for analyzing bifurcations. 's The interface shape,
concentration field, and temperature gradient are expand-
ed in an amphtude parameter c which measures the differ-
ence between the planar and ceHular forms. We follow
the approach of domain perturbations and account for
the dependence of the concentration field c(x,y) on the
shape of the interface by introducing the change of coor-
dlIlatcs Y/—=y —h(x). Tllc cxpallsloIls Rl'c written Rs

The steadily growing cellular interfaces which evolve
from thc QcUtr811y stab1c v81Uc of thc tcIDpcratUrc gra-
dient are computed by asymptotic methods presented in
this section and by a finite-element analysis outlined in
Sec. IV. These calculations are carried out for interface
Inorphologies with discrete wavelengths A, . We concen-
trate on wavelengths near A, =A,,=2Ir/co„ the value at
which stability of the planar shape is first lost. Setting the
wavelength of the interface is an ideahzation which dis-
rupts the continuous spectrum for critical values of tem-
perature gradient into discrete points IG,"J, each corre-
spoIldlQg to d18tUrbRQccs with spat181 %"Rvc QUmbcrs that
are integer multiples of Fo, . These discrete values are de-

c(x,y;c)
h (x;e)
6(c)

c("l(x,Il )

h'"'(x)
G(n)

(3.2)

[j'g]( )
d c(xpe)&0)

k
C Xq'g

dE

d h(X;0) ik~ d 6(0)
h x = ', 6

dE dE

(3.3)

The planar interface is recovered as the trivial zeroth-
order solution of the equation set, i.e., c( 1=0, h( )=0
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with 6' ' unspecified. Each term in the expansion for the
concentration c{ )(x,il) is expressed using the chain rule
for differentiation as a sum of a contribution on the rec-
tangular domain (0(x & A, , 0 & il ~ a& ) and of terms that
account for the deformation of the interface at each order
of e. The first four relationships are written as follows:

c{ )(x,i))—=c' )(x,i))=0,

c{'~(x,~)=c"'(x,q)
(2) (&) 2 (1)

O'Q
+

BTj'

(3.4d)

(x,~;0)+r '"(x) (x,~;0)
Bc (i) Bc
BE' B'g

Bc(o)—=c("(x,~)+h("(x) '
Bfl

Bc(0)
c{')(x,~)—=c("(x,q)+2a")(x)- '

8'g

2 B&c(0) Bc(i)

8'g

(3.4c)

and is defined on the rectangular domain.
Substituting the expansions (3.4) into the governing

equations {3.1) yields a sequence of linear problems for the
set (c("),h("),6( ") formed by collecting terms of kth
OI'dCr 1Q E. ThC QOQ11QCM1tlCS 1Q thC OAglQR1 CqUat;1OQS

and the couplings between the expansion coefficients both
result entirely from the two boundary conditions (3.1b)
and (3.1c). We focus on these two conditions by defining
a linear operator for the interface shape and concentration
(h(x), c(x,o)) as

—(k —1)P~
(n) —pg ~——{k—1)P

where p„ is a vector calculated at each order from the nonhomogeneous terms in Eqs. (3.1a) and (3.1b). The first three
vectors ( p ),((i2,((ii) are needed for our analysis,

m(k- i)P9 ""ik-Z~())6(')-2m~(i)c(i)

-2a")c")+{k—1)P9«))'+2a")c'"—2(k —1)Pa("c"'
(3.6b)

m(k-1)P'(3~")~(2)-Pa(»') rk+91-g(i)k(')'+36(i p(»

~36(2)g(i) 3m(P ())c(2)+P (1)i ())+g(2) (i))

6P (()(P (i) (i) ~g(1) (1))+(k 1)(3P(i)g(2) P~())3)P3

—3(k —1)P(h")c"'+~""c("+~(».")
)

m {k —I )P(cgpg —P )

k(co„+(k —1)P)
(3.7)

where subscripts denote partial diffeientiation. Equations
(3 5)»d (3 6) are solved with the field equation (3.la) and
boundary conditio» (3.1d)»d (3.1e) expanded to the ap-
PI'OPnatC OI'ClCI Of 6'.

The homogeneous equation set at first order in e forms
an eigenvalue problem for determining the critical values

t Go"') = (6,'"') for bifurcation from the planar state. In
dimensionless form, these eigenvalues and their corre-
SPOHdlQg ClgCQVCCtOX'S al C

(a)u 1 = &(i)(x 0) kn cos(co„x),
Ce

(3.&)

C„=[( G"' oc+o„l )k —(k —1)Pm]lmk,

RQd k~ lS R SC313,1 SmplltUdC VVhlCh lS SCT tO 1.
The amplitude e is defined as the deviation of the cellu-

lar interfaces from a plane as

e= ( u(x;e), 4*„(x)),
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where (, ) denotes the surface inner product

=1(u»u z) =—— (cic2+hih2)dx, (3.10)

and 4* is the eigenvector for the problem adjoint to (3.5)
in the inner product (3.10). The adjoint problem is formu-
lated by standard methods and is available in Ref. 20.
The appropriate adjoint eigenvector for the eigenvalue
G,'"' is

. '1
@*„:—k„' cos(co„x),

with C„*=—m/[co*„+(k —1)P] and k„' as a scalar ampli-
tude. Applying the amplitude definition to O(e) gives the
standard biorthoganization of the eigenvectors as

(3.1 1)

(3.12)

which determines the constants k„'.
Because the operator (3.5) is singular at critical values

[Gp"'[, the nonhomogeneous problems which result at
second and higher orders in e are only solvable when the
vectors [ (p„ I satisfy the orthogonality conditions

( „,y' )=0, (3.13)

G~"' ——0, n =1,2, . . . (3.14a)

(n)
c' '(x, O) Czo C22

cos(2'�„x), (3.14b)

where the coefficients H2p, H22 C2p and C22 are listed in
the Appendix. Equation (3.14a) implies that each family
of cellular forms branches vertically from the planar
shapes. The direction of each family IG2"'] was deter-
mined after a long but straightforward calculation of the
solvability condition at 0(e ) to be

where n is the order of the problem and m is the eigenpair
on which the expansion is based. These conditions along
with the amplitude definition, differential equations, and
boundary conditions complete the set for calculating
h'"'(x), c'"'(x,O), and G'" "for n &2.

Solution of the order e problem gives the slopes of the
bifurcating families and corrections to the interface shape
and concentration field,

62"' ——— I3kco„I 2C„C—'„a)„co'„+mP [kC„+(k—1)P]J
8kI '

—(m+k PC„)+ [mco2„+kC„(kPco'+2' )]+ ImP[kC„+(k —1)P]—2k C„C'„co I .
2k2 4k I' 4kI'

(3.15)

Details of this calculation are available in Ref. 20. Equa-
tion (3.15) is proportional to the similar coefficient calcu-
lated by Wollkind and Segal when the later result is spe-
cialized to the case of equal thermal conductivities in both
melt and solid.

Wollkind and Segal recognized that both sub- and su-
percritical evolution of cellular forms are predicted by the
result (3.15). We concentrate on the thermophysical prop-
erties similar to the lead-antimony (Pb-Sb) system
described by Morris and Winegard ' with the exception
that identical thermal properties in melt and solid and
zero latent heat were assumed. These properties are listed

in Table I along with the dimensionless variables. The
sign of the coefficient G2" for this system is shown on
Fig. 3 for Peclet numbers 0.8, 8, and 80. The dimension-
less wavelength in these figures are scaled with A,*=0.01
cm, as are all calculations presented in Sec. V. At the
lowest growth rate (P=O. S) the cellular forms with the
highest critical temperature gradient Go" evolved subcriti-
cally (G' '&0) and were initially unstable. Increasing P
decreased A,, and transformed the branch shape to super-
critical (G' '&0); these cellular forms are stable for at
least small amplitudes.

TABLE I. Thermophysical properties and dimensionless groups representative of Pb-Sb.

Property

Segregation coefficient
Bulk concentration of Sb
Slope of liquidus
Diffusivity
Reference melting temperature
Capillary length
Reference length scale
Growth rates
Dimensionless slope of liquidus
Capillary constant
Peclet number

Symbol

k

m

yO

I

V

Value

0.4
0.02 wt. %

—5 K wt. %
2X10 5 cm /sec

600 K
8.2X10 9 cm
1X10 2 cm

1.6X10 ', 1.6X10, 1.6X10 ' cm/sec
—1.67X 10

8.2X 10-'
0.8, 8.0, 80
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transformed to a fixed domain (0(/&A„0& 1) & 1) using
the mapping

(x,y)=(g, h(g)+1)[1—h(g)]) . (4.2)
The asymptotic results for the evolution of cellular in-

terfaces are extended to highly deformed shapes by com-
bining numerical solution of Eqs. (3.1) with computer-
implemented perturbation methods for tracking multiple
steady-state solutions and dctcrIDining their stability. Thc
calculations presented here are based on the finite-
element —Newton technique developed in Ref. 10 for
simultaneously calculating the field variables and interface
location in a free-boundary problem. To implement this
technique the solidification problem is first transformed
to a domain with fixed and finite boundaries. We replace
the far-field boundary condition (3.1d) with

Introducing Eq. (4.2) into the solidification problem great-
ly complicates the equation set, but removes the interface
shape from setting the domain shape and so reduces
h(g) =h(x) to a conventional, albeit nonlinear, dependent
variable.

The interface shape and concentration field are approxi-
mated on the transformed domain by expansions in La-
grangian quadratic I4"(x)I and biquadratic I4'{x)I basis
functions constructed on a quadratically discretized
domain (0&/&A, , 0&lan &1). The finite-element expan-
sions Slc written as

=P(c —c„) at y=I. , e{g,tl)= y a;4'(g, rJ), h(g)= y p;e'{g), (4.3)

which sets the amount of incoming mass irrespective of
back diffusion. Boundary conditions (4.1) and (3.1d) will

yield identical results as long as the length I. is much
greater than the length of the diffusion layer, which scales
roughly as I' '. The length L is set to 2.53, in most of the
calculations reported here. Equations (3.1) and (4.1) are

where the coefficients Iu; I and I p; I are to be determined
and N and M are the numbers of coefficients in each ex-
pansion. Following the development in Ref. 10„ the field
cquatlons and boundary conditions arc rcduccd to a non-
linear algebraic set by Galerkin's method. The equations
for steady-state concentration and interface shape are

I — 4g+ q —1 hg@~ cg+hg -c~ + — " --+PC'c~

+ g

(4.5)

where the equations used are similar to the dlmensionless
forms in Eqs. {3.1) but with the exponential concentration
field for the plane remaining in the solution. In deriving
(4.5), we have made use of the condition Bh/8/=0 at
/=0 and A,. The full set of residual equations (4.4) and
(4.5) is conveniently represented as

g(x;G)=0, (4.6)

where x"=(ai,al, . . . , a&,Pi,Pz, . . . , PM) is the vector
of all unknown coefficients.

8. Computer-aided analysis and solution stability

The (%+M )-dimensional set (4.6) is solved by
Nc%ton s method, implemented as dcscrlt)cd ln Ref. lO.
In addltlon to giving Inolc rapid convcI'gcncc than other
iterative schemes for solving nonlinear equations,
Newton's method forms the basis for numerically imple-
mented perturbation methods for calculating solution
families as a parameter is varied, for detecting solution bi-
furcation, for jumping between solutions, and for deter-
Inining stability. These methods arc analogous to the
analytical expansions described in the pI'eceding section,

but are performed with base solutions known only in
finite-element representation and so are more generally
applicable. Specific perturbation schemes have been
developed for tracking a simple critical point, either a bi-
furcation or limit point, in one parameter as a second is
varied. This is accomplished by augmenting Eqs. (4.4)
Rlld (4.5) witll Rll Rdditlollal cqua'tlon fol dctcrmlnlng R

critical point and by considering a parameter {e.g., 6) as a
dependent variable. Abbott's chord method is employed
for solution of the augmented-equation set; see Ref. 12 for
details.

The stability of the steadily growing interfaces
described by Eq. (4.6) is determined by linear analysis of
the evolution of small-amplitude disturbances of the inter-
face shape and concentration field. The full time-
dependent versions of (3.1) can be reduced to a set of ordi-
nary dlffcrciltial cquatioils by Rllowiilg tllc cocfficlcll'ts
Ia;,p; I in (4.3) to be time dependent; these are represented
by the form

(4.7)

where M(x ) is a finite-element mass matrix which is
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TABLE H. Comparison of liest critical value 6,"' computed by finite-clement analysis to exact re-
sult (G,"'=1.71533&19 ); A, =2.0 and P=0.8.

Elements in Mesh

g direction rI direction

0.050
0.0076
0,(j076
0.0023

dependent on the coefficients [p;(r) J because of transfor-
mation (4.2). The linear stability of a steady-state solution
xa of (4.7) with respect to disturbances written in the
same finite-element expansion is examined by considering
perturbations of the form

where the magnitude of x is assumed to be small. Substi-
tuting (4.8) into (4.7) yields the generalized eigenvalue
PI'oblcHl

direction. Experience has shown that the finer meshes
were necessary for accurate calculations of highly de-
formed solidification fronts. Most results reported here
were performed with a mesh of 10&(8 elements graded in
both the g and tl coordinates.

A. Interfaces with wavelength X and A, /2.

The families of cellular interfaces which evolved from
the lowest two critical values of 6 for P=0.8 and A, =2.0
are represented on Fig. 4 by the maximum interface de-
flection 6 computed as

for the eigenvalues [rT;J and eigenvectors [x;J„where
J(xa) is the Jacobian matrix of the nonlinear equation
(4.6) evaluated at the known solution x a.

The stability of x a(G) can only change at values of 6
where either a real eigenvalue or the real part of a com-
plex conjugate pair of eigenvalues switches sign. By com-
paring the linear stability problem with bifurcation equa-
tions (see Refs. 13 and 18) it is easy to establish that the
first case corresponds to either a simple bifurcation or
limit point and the second to a Hopf bifurcation point
where a family of time-periodic states branches from the
family of steady ones. Changes of stability at bifurcation
RQd llImt POiIltS dCtCCtCd 1Il thlS Stodg MC RI181$ZCd bg Cm-

ploying asymptotic results for the derivative of the eigen-
value near the critical point do/dG. These results are
presented in Ref. 13 and are not repeated here.

For this dimensionless growth rate, A, =2 was approxi-
mately 15% above 'tlM critical value A, q

—=A, q /A, and was

p= 0.8
QH

X=2.O

2D ~ o
V. LARGE-AMPLITUDE CELLULAR INTERFACES

Famihes of cellular interface shapes were calculated as
a function of the dimensionless temperature gradient 6
with fixed Peclet number P and wavelength A, =A, /A, ".
The accuracy of these calculations was assessed by exam-
ining the effect of mesh refinement on both the computed
SPPrOXimStiOIlS tO thC CritiCSI tCIPCrStU1C gf'adiCIltS G~
and the cellular interface shapes computed at large-
amplitude deformations. The first critical values 6,' '

computed for P=0.8, A, =2.0, and four meshes are com-
pared to the exact value in Table II. The meshes differed
by the number of rectangular elements used to discretize
tlM domain in the g and 'g directions. In each case, the
elements were partitioned equally along the interface and
WCIC gISdCd IlCSI' thC iIltCffSCC iI1 thC g COOL'dillRtC tO hClP
resolve the diffusion layer there. As is seen in Table II,
cvcQ cosI'sc Qlcskl. cs scrvcd foI' dUPlicRtiQg thc IincsI
analysis and the accuracy of the finite-element results im-
PI'OVCd Vnth ICSh I'CfiIlCICIlt, CSPCCimljy iIl the gmmth

l. 75 l.70 l.65 l.60 l.55

Dimensianless Temperature Gradient G(IO )

F1G. 4. Families of cellular interfaces for 8=0.8 and X=2.0
as represented by thc intcrfacc deflection A. Lcttcrs IcfcI to
sample mtcrfacc shapes IFIgs. 5 and 7.
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FIG. 6. Concentration fields for representative interface
shapes from Fig. 4; (a) corresponds to point D and (b) corre-
sponds to point I.

creased in depth with increasing G. The shapes C and D
werc prcdlctcd to bc stable and wclc slIIlllar to thc molar
shapes" observed experimentally in Ga-Ge alloys. The
grooves in the interface were solute rich as depicted by the
isoconcentration curves plotted as Fig. 6. These concen-
tration fields were almost one dimensional, except very
near the melt-solid interface.

The two families of cellular forms which bifurcated
from the second critical value 6—=6,' '=1.577X10 are
also shown in Fig. 4. These families were denoted by 2U
and 2D because each had interfaces with wavelengths of
A, /2 and two complete cells were computed in the spacing
0(g«1. The 2U family was composed of cells protrud-
ing into the melt at x =0 and the 2D family contained
forms with grooves at this location. Shapes in the two
families were identical except for a lateral shift of
x =+0.5. Even so, the 2U and 2D families had different
nonlinear structure and so are plotted separately on Fig. 4
by reflecting the 2U family about the 4=0 axis. This

5.0

very close to the transition between supercritical and sub-
critical bifurcation (6' ' «0); see Fig. 3(a). The two cellu-
lar families branching from the first critical point
6—:6,' '=1.715X10 had wavelengths A, =2.0 and
evolved almost vertically, but quickly turned to higher
values of 6, as shown in Fig. 4. Within the accuracy of
tllc f1nltc-clement calculations, lt was Impossible to )udge
whether this cellular family was supercritical for small
values of b, . These two shape families were identical up to
a reflection about the line x =0. We have classified them
as the 1U and 1D families where the 1 signifies that the
fundamental wavelength of the cells was A, and the U and
D denote whether the solid extended into (U) or away
from (D) the melt at x=0.

The 1U and 1D families reversed direction at a limit
point 6=—GI "-1.745 & 10 and proceeded to lower
values of G. At the limit point the cellular forms regained
stability and remained stable up to a second limit point
6—:GI' '-1.681 X 10 where both families again reversed
direction in G. Therefore, stable 1U and 1D families ex-
isted only within the bounds GI"&6 & GI

' on tempera-
ture gradient. Sample interface shapes in the 1U family
are displayed in Fig. 5 for half the wavelength and corre-
spond to the points marked along the first family on Fig.
4. The shapes evolved from nearly sinusoidal forms at
low deflections b, to interfaces with a deep and narrow
groove separating a large, almost planar plateau at 6 near
0.5. T11c IIlost highly deformed IIltcIfaccs (marked C E—
in Fig. 5) developed a depression in the plateau which in-

CP
CL

cA
I O

OP

0.5 0.5—

I

0.5

FIG. 5. Sample interface shapes in first families of cellular
forms. Letters refer to points shown on Fig. 4.

FIG. 7. Sample interface shapes in second family of cellular
forms. Letters refer to points shown on Fig. 4.
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FIG. 8. Families of cellular interfaces for P =8.0 and
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difference in structure arises when the 2U and 2D inter-
face shapes are subjected to perturbations which rupture
the plane of symmetry about the middle of the cell. Such
a disturbance leads to distinct interface shapes for the 2U
and 2D forms.

The 2U and 2D families bifurcated subcritically for
small values of 16—6,' '1 and contained shapes which
were unstable to disturbances with wavelengths of A, and
A, /2. Both families reversed direction at a limit point
6=GI' '-1.71X10 for highly deformed shapes and
evolved to higher values of G. Representative interface
shapes in the 2D family are shown in Fig. 7. With in-
creasing b, the interfaces formed the deep grooves noted in
shapes belonging to the 1U and 1D families, but at half
the wavelength.

Just before the limit point in the 2D family (at
6=6,"'=1.694X10 ), the 1U and 1D families merged
with the 2D forms at a simple bifurcation point. At this
value of 6 the depression in the "molar-shaped" interfaces
became identical with the groove in the 2D forms, thus ef-
fectively halving the interfacial wavelength. For the 2D
forms, stability with respect to a single mode was regained
at both the secondary bifurcation and limit points. Inter-
faces along the supercritical portion of the 2D family then
were stable to all disturbances that preserved the funda-
mental wavelength A, .

The 2U family evolved identically to the 2D forms. Al-
though no connection between the 2U and either the l U or
1D forms was found, a secondary bifurcation was located
on the 2U family before the limit point Gi' ', as shown in
Fig. 4. The interfaces in the two new families looked like

a mixture of 2U with 1U and 1D forms and were denoted
as MU and MD where (M) signified the mixed symmetry
of the family. These forms were predicted to be unstable.
Bcyolld thc 111111't poiIlt tllc 2 U forms wcI'c stable to Rll dis-
tances with wavelength A, . Overall, the nonlinear evolu-
tion and stability results for the first four families predict-
ed an abrupt transition between interfaces with wave-
length A, and A, /2 occurring at a temperature gradient near
G(2)

Changing the dimensionless growth velocity I' shifted
the bifurcation structure shown on Fig. 4 with respect to
6, but did not alter the connectivity between the families.
This point is demonstrated in Fig. 8 for the first two
shape f'amilies and P=S.O. Several changes occurred at
this high growth rate A.s shown on Fig. 3(b), the wave-
length for the most dangerous disturbance dex:reased to

0.40. Tllc fllllltc-clcIIlcIlt calcula'tloIls werc carried out
for A, =0.45, where the 1U and 1D families bifurcated su-
percritically (to lower 6). Therefore, a slight decrease in
the temperature gradient from 6(1~=1.375 X 10-3 led to a
smooth transition from the planar solidification front to
stable, small-amplitude sinusoidal shapes. These stable
forms existed only in the ran e 1.375 X 10 & 6
&1.371X10;at the lower limit Gi"-1.371X10 the
family reversed direction in 6 and lost stability. Exce t
for this small region of stable interface shapes near 6,' ',
the evolution of all four shape families was qualitatively
similar to the results for 8=0.8.

B. Evolution of nonlinear structure with varying

wavelength

Although it is most meaningful to perform the non-
linear analysis near the most dangerous wavelength A,„the
details of the nonlinear structure shown in Figs. 4 and 8
are best understood through calculations for varying
A, =X/jL'. The reason for this is clearly seen by examining
Figs. 3(a)—3(c). By strictly geometrical arguments it is
readily proved that for some wavelength A, —:A~ greater
than A,„the critical points 6, and 6, corresponding to
the development of famiHes with wavelength A~ and Ad /2
coincide, and for higher values of A, the first critical point
results in bifurcation to forms with wavelength A, /2. This
particular wavelength A, —:Aq marks a multiple critical
point in the terminology of bifurcation theory' and sig-
nals the possibility of secondary bifurcations in the vicini-
ty of the critical value 6=6,'"=6,' '. The connection be-
tween the 1U, 1D, and 2D families is such a bifurcation
point.

The shape families ori inating from the highest two
critical values (6,"' and 6, ') are represented in Fig. 9 for
8=0.8 and wavelengths of 2.60, 2.70, and our estimated
value of A, =A,~ 2.64. At A, =2.60 the ordering of the
single- and double-wavelength families was the same as
for A, =2.0; however, the secondary bifurcation between
the 1U, 1D, and 2D families and between the mixed modes
MU and MD had moved below the limit point G~'" to
small values of the deflection. The 1U and ID families
evolved subcriiically between temperature gradients 6,
and 6",".

As the wavelength was increased toward A,z, the four bi-
furcation points (6,"', 6,' ', 6,' ', and 6,' ') all coalesced
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and the extent of the 1U and 1D families was shortened.
At the double point A, =A,~=2.64 the 1U and 1D families
disappeared and left only the 2U, 2D, MU, and MD fami-
lies evolving from 6=6,"'=G,' '. The critical values for
the 2D and 2U, and 1D and 1U families, changed order
for wavelengths greater than A,d. The MU and MD fami-
lies, which had been mixed mode at their bifurcation

points, became pure 1U and 1D when they bifurcated
from the planar interface shapes; however, they had a
component of the half-wavelength form for even small de-
flections. The 2D and 2U families evolved subcritically
with respect to G and the 1D and 1U famihes developed
supercritically, as shown on Fig. 9(c) for A, =2.70.

The transition through a double critical point with
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dary bifurcation and recombination to occur for famihes
with longer wavelengths. Kerszberg, and Mather and
Dee, have both used asymptotic expansions to determine
the change in fundamental wavelength with amplitude.
Both predict that the wavdength increases wi.th decreas-
ing G. Our results suggest that these analyses have detect-
ed the secondary bifurcation between the primary wave-
length I,, and longer waveforms, but are not valid at large
enough amplitude to dctcct thc recombination prcd1ctcd
herc.

The existence of the large-amplitude cellular shapes was
independent of whether these families branched sub- or
supercritically with respect to 6, as seen by comparing the
results for Peclet numbers of 0.8 and 8.0. Not surprising-
ly, the amplitude expansion (Sec. III) accurately predicted
only the evolution of slightly deformed interfaces and did
not give any indication of the commonalities between the
nonlinear structures for the sub- and supercritical cases.
Wollkind and Segal conjectured that this difference was
linked to the cellular to dendritic transition in interface
morphology. %C have seen no evidence in our calcula-
tions for the development of bumps or arms along the
cells which seem to mark predendritic growth. Moreover,
preliminary eigenvalue calculations for the stability of
these interfaces have shown no bifurcations to time-
periodic growth where predendritic growth would be ex-
pected to occur.

More likely, the transition to dendritic growth involves
three-dimensional cellular forms which have been disal-
lowed 1Q oui calculat1OIls. Thc plcturcs sketched by
Morris and Winegard point to a sequence of interface
shapes progressing from steady two-dimensional, to steady

three-dimensional, and finally to time-periodic, three-
dimensiona1 morphologies. Fimte-element calculations
for three-dimensional interfaces, although expensive, may
uncover these transitions.

The existence of the second-order critical point at
I,—:A,d gave a mechanism for reducing the nonlinear con-
nectivity of the first (1U and 1D) and second (2U and 2D)
bifurcating families to small amplitude where the results
of an amplitude expansion are meaningful. Asymptotic
analyses for double critical points have been carried out
for other transport problems, ' '6 but have not been pur-
sued here. Instead, we used only the concept of the double
point to identify the parametric region (A.=A,~) for reduc-
ing the secondary bifurcations to small amplitude, where
the finite-element analysis was extremely accurate. Else-
where, 9 these amplitude expansions have been used to ex-
plain the role of a grain boundary along an interface as a
primary imperfection to the connectivity of the cellular
interface families presented here. Third-order critical
points which exist when three-dimensional interfaces are
considered may offer a mechanism for reducing the non-
linear interactions responsible for dendritic growth to a re-
gion amcnablc to asymptotic RQRlys1s.
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APPENDIX

The coefficients appearing in Eq. (3.14) are

II,O
=—O,

C2o =k(k —1)(1—2kco"„ /g )/2,

H22 =—I (kco'„P+ 2'„)(k/g )+[toz„+P(k —1)](1 2kto*„ /g )—/2 kP/2J /PD2i-,

Cz2 ——
I [1/2 —(gc~*„+to„)/gP][kP/g —3kto„l /(k —1)mP]+kto*„ /g —1/2Ik (k —1)/Dzz,

D22 = (to2„ /P+ k —1)[kP/g 2kto„ I'/(k —1)—mP] —k,
g—:co„+P(k—1) .
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