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A model for the electronic energy of alloys with arbitrary composition and short-range order is
applied to 4d transition metals. The model is not ab initio, but only requires information about
pure elemental properties which is readily available. A model Hamiltonian for the alloy is derived
from these elemental properties. The electronic density of states and heat of formation are calculat-
ed from the Hamiltonian with the alloy cluster-Bethe-lattice method. Charge transfer is treated
self-consistently. Results for the twenty-eight 4d transition-metal alloys are compared to experi-
ment and other calculations. Predictions for the stable phase at zero temperature are in excellent
agreement with experiment. The model calculation allows us to examine the physical basis for ex-

perimental trends.

I. INTRODUCTION

Transition-metal alloys are of great technological value.
One goal of this paper is to develop a microscopic model
which predicts from ab initio elemental properties wheth-
er two transition metals mix to form an alloy and, if so,
what is the stable atomic arrangement. The second goal is
to understand the experimental trends in terms of a simple
qualitative picture. To achieve these goals a model
developed in a previous paper' (hereafter referred to as
RF) and applied successfully to monovalent metals is ex-
tended to consider transition metals. First-principle cal-
culations for atoms and elemental solids are used to con-
struct a Hamiltonian for the alloy. The heat of formation
(AH) is then calculated self-consistently as a function of
concentration and short-range order using the alloy
cluster-Bethe-lattice method.>® The stable phase at zero
temperature has the most negative heat of formation.
Finite temperature stability is not discussed here. It can
be studied by including the alloy entropy.*>

Most previous calculations for the heats of formation of
transition-metal alloys have been limited to specific types
of atomic arrangement. First-principle band-structure
calculations, such as those of Williams et al.,® could only
treat ordered periodic compounds. Model calcula-
tions” ~!? were limited to either compounds or completely
random alloys. The difference between the heats of for-
mation of random and ordered configurations was gen-
erally ignored. Recently, several methods for treating a
broader range of atomic arrangements have been
developed. One approach!'® involves linear extrapolation
from results for a completely random alloy as a function
of the correlations in occupation of pairs of sites. Anoth-
er approach!* involves interpolating calculated results for
ordered compounds in terms of correlations in the occupa-
tions of a few sites. The approach followed here and in
RF incorporates the changes in atomic configuration
directly. The effect of short-range order on AH is given
accurately—no assumptions about linearity are required.
The disadvantage of the method is that the topology of
the alloy lattice is treated approximately. This may lead
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to errors when specific alloys are considered, but not when
studying trends in alloy formation across a transition met-
al series.

Two different models for the mechanisms determining
the heats of formation of transition-metal alloys have
emerged. One is a phenomenological model developed by
Miedema and co-workers’ that builds on Pauling’s work.!®
The other model®~!? assumes that the change in the ener-
gy of the d bands determines AH and is based on simple
microscopic calculations.

In Miedema’s model,’ the alloy was constructed by cut-
ting out atoms from the pure crystals and rearranging
them into an alloy. The distribution of electrons in the
atoms was held fixed in this process and the energy
change was assumed to be zero. Two processes were con-
sidered necessary to bring the electrons in the alloy into
equilibrium. The first was charge transfer driven by an
electronegativity difference Ag, as in Pauling’s theory.!®
The second process involved “healing” the boundary re-
gion between the two different species. The two types of
atom had different electron densities nws at their
Wigner-Seitz (WS) boundaries. Miedema argued that ki-
netic energy was required to smooth out the discontinuity
in electron density by redistributing electrons. Thus he in-
cluded a positive contribution to AH related to the elec-
tron density mismatch. His final result was'®

AH = —P(Ap?+Q(Any3)?, (1.1)
where P and Q were adjusted to fit available experimental
values. This expression gave the correct sign for the heat
of formation of a large number of alloys,” and quantita-
tive agreement was reasonable when experimental values
for AH were available. In the absence of extensive experi-
mental data it has become a reference to which other cal-
culations are compared.

Two points about Miedema’s model are relevant to the
following discussion. The first is that in transition metals
the interstitial charge density nwg is determined by the
free-electron-like s and p bands and not by the d bands.®"
The d orbitals do not extend far from the nucleus. The
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second is that Miedema adjusted values of ¢ and nyg for
individual elements to improve agreement with experi-
ment. The adjusted values still exhibit regular chemical
trends. Chelikowsky and Phillips'® have shown that the
electronegativities agree well with an orbital-radius elec-
tronegativity scale with just three adjustable parameters.
Values for nyyg correlate with calculated interstitial charge
densities.>!” However, no clear theoretical explanation
for the healing contribution to AH has been developed. It
remains uncertain whether Miedema’s approach provides
an accurate picture of the physical processes that deter-
mine alloy heats of formation or is merely a precise
parametrization of experimental data.

Friedel’® has shown that the cohesive energies of pure
transition metals can be understood in terms of a simple
model for d-band bonding. Detailed calculations®® con-
firm that the free-electron-like bands contribute little to
the cohesive energy. This has motivated several model
calculations®—!? for AH based on the changes in the d
bands with alloying. Simple square band models®~!! for
the electronic density of states (DOS) based on the mo-
ments method,?! and coherent-potential approximation®?
(CPA) calculations'? with model DOS’s have been report-
ed. The success of these models suggests that nyg is not a
relevant parameter in determining the heats of formation.
The same conclusion was reached by Williams et al.®
based on their calculations for ordered compounds.

In this paper, the contribution of the free-electron bands
to AH is examined explicitly for the first time. Calcula-
tions performed with and without these bands show that
they do not affect the major trends in the heats of forma-
tion. This supports the view that nwg is not relevant to
the heat of formation of transition-metal alloys. However,
the contribution of the free-electron bands does change the
stable phase of several alloys and cannot be neglected in
accurate calculations. Our results also provide a test of
the various square band models.3~!! Despite their success
when compared to experiments, these models do not in
general predict reliably the magnitude or sign of AH for
the model alloys they are designed to describe. The
reasons for their successes and failures are examined in
Sec. IV A.

To understand the physical origin of different contribu-
tions to AH it is useful to develop simple pictures for the
changes in the DOS with alloying. In Fig. 1(a), densities
of states for two hypothetical pure metals are sketched.
The bands of available valence electron levels have dif-
ferent widths and centers. The separated pure metals also
have different Fermi levels. The simplest model for the
DOS of an alloy is a superposition of the elemental DOS’s
[Fig. 1(b)]. The available energy levels for valence elec-
trons on each species remain unchanged. However, charge
transfers from filled electron levels on one species to lower
unfilled levels on the other species to equalize the Fermi
levels. The Fermi-level difference acts like an electronega-
tivity difference:'> AH is negative. In a realistic model
the Coulomb potential produced by charge transfer must
be included self-consistently. It acts to shift the relative
positions of the centers of the elemental DOS’s and limits
charge transfer. However, the heat of formation in this
simple ionic bonding model always remains negative. To
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(a) (b) (c) (d)

FIG. 1. Schematic partial densities of states on A4 (left) and B

(right) atoms for separate elements (a) and the alloy (b)—(d): (b)

ionic picture, superposition of elemental DOS’s with charge

transfer driven by Fermi level difference, (c) ionic picture with

band narrowing from bandwidth disorder, (d) band deformation
from state mixing, band mixing.

understand the positive contributions to AH we must
understand how the alloy DOS is different from a simple
superposition of elemental DOS’s.

The results presented in RF and in Sec. IV indicate that
the main factor favoring segregation is the difference in
bandwidths of the elemental solids. This difference re-
sults in an effective narrowing of the alloy DOS that is in-
dicated schematically in Fig. 1(c). The two species in the
alloy do not bond as strongly to each other as the separate
elements do, on average. The bandwidth mismatch contri-
bution to AH is always positive.

The densities of states represented in Figs. 1(b) and 1(c)
have an unphysical aspect. The two species of atom are
next to each other in the alloy, and yet in certain energy
regions there are electron levels on one species and not on
the other. The actual alloy DOS looks like Fig. 1(d): En-
ergy levels on the two species mix. The band-mixing con-
tribution to AH can be either positive or negative depend-
ing on the position of the Fermi level. It is negative when
the Fermi level is near the center of the band and positive
when it lies near either edge of the band. The origins of
this contribution to AH and of the bandwidth mismatch
contribution are further discussed in Sec. IVA. Charge
transfer is also associated with band mixing, and may be
in the opposite direction from transfer driven by differ-
ences in elemental Fermi levels. A good electronegativity
scale should include both contributions.

All three contributions to AH, ionic bonding, band-
width mismatch, and band mixing, depend strongly on the
degree of short-range order (SRO). Their relative impor-
tance varies with the constituents of the alloy. The heats
of formation of monovalent metals are largely determined
by the competition between ionic bonding and bandwidth
mismatch.! In contrast, the calculations presented here
show that the self-consistent contribution of ionic bonding
to the heat of formation of a 4d transition-metal alloy is
small. Band mixing and bandwidth mismatch of the d-
electron bands are dominant in determining AH.

In Sec. II the short-range-order parameters and the
prescriptions for determining the alloy Hamiltonian are
described. @ The alloy -cluster-Bethe-lattice method
(CBLM) is described in Sec. III and extended to the case
of multiorbital local bases in Appendix A. Results for all
twenty-eight 4d transition-metal alloys are presented in
Sec. IV and compared to experiment and previous calcula-
tions.
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II. ALLOY MODEL

A. Short-range order

Experimental alloy structure determinations? indicate
that transition-metal alloys are substitutional. Atoms are
located on the sites of a periodic lattice. Only the arrange-
ment of species on the sites is disordered. In the thermo-
dynamic limit, the energy per site of the alloy only de-
pends on a few macroscopic order parameters, not the
specific arrangement of atoms. The local chemical envi-
ronments of atoms play the dominant role in determining
the energy of an arrangement.?* The character of these
environments is described by short-range-order (SRO) pa-
rameters.

The simplest macroscopic averages which measure the
degree of SRO in a substitutional alloy are pair probabili-
ties. A nearest-neighbor bond in a binary alloy of 4 and B
atoms can have four configurations: 4—A4, A—B, B—A,
and B—B. The fraction of bonds of type (I—J) is denoted
by y;;(1). Only two independent order parameters are
needed to specify y;;(1) because of symmetry and normal-
ization constraints. It is most convenient to choose these
to be x =c4, the concentration of 4 atoms, and o, a vari-
able describing the degree of correlation in the occupation
of neighboring sites.?> In terms of x and o the concentra-
tions and pair probabilities are

y11(1)=c1c1+(28”—l)x(l—x)a . (2.1

The (x,0) parameter space is discussed in detail in RF.
Three limiting types of SRO are important in the discus-
sion that follows. For o=1 the alloy is segregated, there
are no A—B or B—A bonds. When o=0 the distribution
of atoms in the alloy is random, y;;(1)=crc;. A binary-
ordered arrangement is one in which either y,,(1) or
ypp(l) is zero. Atoms are surrounded by unlike atoms to
the maximum possible degree.

On the bee lattice, the six next-nearest neighbors are
less than 15% more distant than the nearest neighbors.
The distribution of next-nearest-neighbor pairs must also
be specified. In principle the next-nearest-neighbor pair
probabilities y;;(2) introduce a new order parameter
whose value should be determined by minimizing the free
energy.* We assume that the distribution of next-nearest
neighbors is the most likely one, i.e., that it maximizes the
entropy of the alloy for fixed x and 0. No exact technique
for calculating the most likely next-nearest-neighbor pair
probabilities on three-dimensional lattices is known.*>
Successive approximations based on Kikuchi’s method®
can be made, but are lattice dependent and increasingly
difficult. We make the lowest-order approximation,
neglecting the effect of rings of bonds as we do
throughout this paper.

The probability of finding three atoms I, J, and K on
sites 7, j, and k joined by nearest-neighbor bonds {I—J}
and {J—K} is approximately

qux =yu(Vy;x(1)/cy . (2.2)

Corrections are needed because of correlations between the
occupations of sites i and k through other paths connect-
ing these sites. Equation (2.2) becomes exact on a Bethe
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lattice?® and on the bec lattice in the limits o= +1,0, —1,
and x =0 or 1. Summing (2.2) over possible occupations
of j gives approximate next-nearest-neighbor pair proba-
bilities. The resulting equations for y;;(2) are identical to
t};e equations (2.1) for y;;(1) except that o is replaced by
o°.

B. Hamiltonian

The many-body alloy Hamiltonian is divided into three
components

H =H1e“He-e +Hion-ion ’ (2.3)

where H 1, is a one-electron Hamiltonian incorporating the
effective potential from the ions and other valence elec-
trons, H,, is a correction for double counting the
electron-electron interaction in Hy,, and Hjy,.ion is the
ion-ion interaction. The electron coordinates are expand-
ed in a minimal tight-binding basis of localized orthogo-
nal orbitals centered on each atom. In terms of such a
basis, the one-electron Hamiltonian is written

H, = 2 l i1 >Eiu<i:l" l + 2 I inu'>ti;4,jv<jyv| ’
ip i), v

(2.4)

where |i,u) is the ket for the orbital u at site i, and
(ip|Hy |i,v) =8quiy,~

The on-site and hopping energies, Eg, and ¢, j,, for or-
dered elements or compounds can be obtained from
Slater-Koster?’ fits to first-principle band-structure calcu-
lations. Prescriptions for calculating the corresponding
energies in disordered alloys where band-structure
methods break down are then required. A great variety of
experience’®?’ suggests that the energies are directly
transferable to the alloy, provided that the volume
remains constant and that there is no charge transfer.*
Volume ({2) controls the coupling between orbitals on dif-
ferent sites and hence the hopping energies. Hopping en-
ergies’! for free-electron-like bands vary roughly as Q273
and for d bands as Q~°/3. The on-site energies are ap-
proximately volume independent,’? but they are affected
by the Coulomb potential arising from charge transfer.

In our calculations we assume that the on-site and hop-
ping energies depend only on the species of atom at the
relevant sites and, in the case of hopping parameters, the
relative positions of the sites. We take

— —
tip, jv=tr (s W Tj—Ti) ,

o 2.5)
Eiy=Erip+Priy

where I(i) denotes the species at site i, ;, ;,(T) and E ?,‘
are intrinsic tight-binding parameters, and ®y(;, is the
mean effective Coulomb potential seen by the u orbital on
a type-I atom in a given alloy. In principle the on-site and
hopping energies may depend on the particular distribu-
tion of species around a given site or bond. However, the
heat of formation depends mainly on the mean values of
these energies rather than on their fluctuations which
should in any event be small. The calculation of 61”,
Hignoion> and H,_, from the charge transfers is described in
detail in the next section.

Volume dependence of the hopping energies is not in-
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TABLE 1. Intersite tight-binding parameters (eV) for Nb and Mo (calculated from the results of

Ref. 43).
Nb Mo Nb Mo

(ddo), —1.25 —1.30 (sso)y —1.02 —1.10
(ddm) + 0.63 +0.62 (sso), —0.64 —0.71
(dd8), —0.02 + 0.01 (sso)3 —0.04 —0.03
(ddo), —0.77 —0.78 (sdo), —1.41 —1.46
(dd ), —0.02 —0.06 (sdo), —0.67 —0.75
(dd6), + 0.05 + 0.06 (sdo)s —-0.07 —0.07
(ddo); + 0.09 +0.11

cluded. The justification for this is that as a group binary
alloys obey Végard’s law>® quite well:** Each atom main-
tains its intrinsic volume in the alloy. Any deviations
from Végard’s law tend to be correlated with the heat of
formation:*® Strongly bound alloys (AH <<0) contract
and alloys with segregating tendencies (AH >>0) expand.
The resulting changes in bandwidth act to reinforce the
ordering or segregating tendencies. Thus calculations that
assume hopping parameters are directly transferable to the
alloy should predict the correct sign for AH though not
necessarily the exact magnitude. Errors are smallest in a
family of alloys like the 4d transition-metal alloys where
the constituent elements have similar volumes. Results
for the monovalent metal alloys where size differences are
much larger were in good agreement with experiment.!

The intrinsic tight-binding parameters E ,0,, and 7, ;,(T)
are determined from first-principle atomic and band-
structure calculations as described in Sec. IID. Calcula-
tions for pure metals are plentiful and are used to deter-
mine #7, ;,(T). Ordered alloy calculations are less com-
mon and are harder to fit unambiguously. Therefore, to
obtain 4, p,(T), we use the convention

tap, BAT) = [t 4u(Digy p (D)2 (2.6)

This relation can be derived from Hiickel-type,*® free-
electron®’ or Korringa-Kohn-Rostoker arguments. Devia-
tions from this rule arise if the two species are very dif-
ferent in size. However, Eq. (2.6) remains an upper
bound. As discussed in RF this relation is physically im-
portant and is responsible for the bandwidth-mismatch

contribution to AH.

C. Charge transfer

The concentration, SRO, and one-electron Hamiltonian
determine the average local DOS for each orbital of each
species and thence the mean charge transfers. The resuit-
ing Coulomb potential must be included self-consistently
in the one-electron Hamiltonian. The total Coulomb po-
tential ®;, is calculated in two parts: An intrasite contri-
bution ¥, and an intersite contribution W;, which is the
same for all orbitals.

In RF it was shown that the intersite contribution to
the Coulomb potential cannot be calculated in a local ap-
proximation®3® because of the long-range nature of the
Coulomb interaction. A scheme for summing the contri-
butions to ¥; from arbitrarily distant sites on the true al-

loy lattice was presented. Each I atom was assigned the
mean> electron transfer An;. An approximate pair corre-
lation function was derived which gave the probability of
finding either species at a given distance from an I atom.
This correlation function is exact in the random and
segregated limits for all concentrations and for the
binary-ordered stoichiometric 4B compound. It is con-
sistent with the next-nearest-neighbor pair probabilities
that were obtained in Sec. II A. The result for the intersite
contribution to the Coulomb potential was

¥V, =Valo)An; ,

where V is the nearest-neighbor Coulomb interaction be-
tween unit charge transfers, and a(o) is an effective
Madelung sum with no concentration dependence For
the bee lattice a(o) is given approximately by’

alo)=8.2450/(1—0)*—0.2450 +0.05502 .

The intrasite contribution to the Coulomb potential has
been widely discussed in the context of elemental sys-
tems,* and included in some CPA calculations.!? In the
Hartree-Fock approximation with no spin ordering, the
intrasite Coulomb potential is'?

2 U]yvAnIv+ 2 2 (Ulyv JIuv)AnIv ’
v (#p)
where UIW and Jy,, are the direct and exchange interac-
tions, 5 +Any, is the change relative to the pure material in
the number of electrons per spin in orbital v, and the first
and second terms come from opposite and like spin elec-
trons, respectively. In the most general case considered
here p and v represent s or d orbitals.

Several calculations of direct and exchange interactions
have been reported.”’ The exchange integrals between all
d orbitals on an I atom are found to be approximately
equal: Jy,,=Jjg. The direct integral of an orbital with
itself, Ujyy, is larger than the direct integrals between dif-
ferent orbitals, which are all approximately equal to Upgy.
If +Uygg=Ujaa—3J1aa the on-site shifts of all d orbitals
will be equal regardless of the distribution of charge
transfer among them.*! Calculated values satisfy this rela-
tion.** Thus Eq. (2.9) can be written as

2.7

(2.8)

(2.9)

¢IS =Uss Anls + uIsdAnId ’
(2.10)

Y1a=uraAny +uggaAngg

where Anj, is the total charge transfer to the manifold of
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TABLE II. Bandwidths of d and s bands.

'Z W,
Qexpr? calc.® scaled W,
. Q 5/3
Element (A */atom) V) 5‘— ] ev) V)
expt.
Y 33.11 7.0 0.88 6.2 8.9
Zr 23.31 8.6 0.89 7.7 11.2
Nb 17.99 9.1 0.99 9.0 13.8
Mo 15.58 9.0 1.03 9.3 15.2
Tc 14.20 8.4 1.08 9.1 15.3
Ru 13.59 7.4 1.11 8.2 16.0
Rh 13.77 6.3 1.10 6.9 15.6
Pd 14.71 49 1.08 5.3 14.9

*C. Kittel, Introduction to Solid State Physics, 5th ed. (Wiley, New York, 1976), pp. 31—32.

YReference 46.

d states and

Uy =Ulss /2, tra=(Upg—Jrsa/2), (2.11)
Uraa =Utag—J1aa/2) .

If correlation is properly included the u; have different
values. They are treated here as phenomenological param-
eters incorporating the effect of the exact electron-electron
interaction for small charge transfers.

The electron-electron and ion-ion interactions, normal-
ized to the number of atoms, are given by

2 n:n;
H.=7 3¢ 3 upnipyy+o 3 =,
e-e 2 1 By 4 Y N ij 2€rij
o Z.Z, (2.12)
Hion-ionz_ ’
N ij 2€r,-j

where — |e | n; and |e | Z; are the total valence and ionic
charges, B and y stand for s or d orbitals, and r;; is the
distance between sites i and j. The net contribution of
these terms to the total energy largely cancels because
n; = Z, i -+ An it

1 ezAnj
Hionion—He.e = —(I/N)E(Zi+7Ani)2 "
i 7 €
(2.13)

1
-7 2 Crurgynighry -
I
By

Recognizing the sum over j in the first term as the inter-
atomic Coulomb potential at site i and replacing it by its
mean for each species gives

Hipion—H,.e. = —Valo) E C[(HI—%AHI)AWII
I

—5 D crugynghyy - (2.14)
I

By

D. Elemental tight-binding parameters

The band structures of elemental 4d transition metals in
the bce structure were modeled with a free-electron-like

s band and five d bands. The d band structures of transi-
tion metals are very similar.!”?$42 Andersen*? has shown
that they are well described by “canonical bands.” For
elements in a given crystal structure, only the overall
bandwidth and the on-site energy depend on the atomic
species.

Pickett and Allen** have made detailed Slater-Koster?’
tight-binding fits to augmented plane-wave band-structure
calculations**** for bcc Nb and Mo. Their results are
summarized in Table I. Slater and Koster’s notation is
followed. Matrix elements are denoted by the type of or-
bital on each site, s or d, and the magnitude of the orbi-
tals’ angular momenta m about the axis connecting the
sites: o, m, and & correspond to |m | =0, 1, and 2,
respectively. Matrix elements between nth nearest neigh-
bors have subscript 7.

Table I shows clearly that second-nearest-neighbor hop-
ping on the bec lattice is important, and that third-
nearest-neighbor hopping is negligible. The matrix ele-
ments (dd8);, (dd),, and (dd8), are also very small and
may be set to zero. The ratios among the remaining pa-
rameters are nearly equal in Nb and Mo:

(ddm); 0.4940.01 (ddo),
(ddo), 7 (ddo),

=0.61+0.01. (2.15)

Following the ideas of Andersen*> and Harrison?® these
ratios were assumed to be constant for all 4d transition
metals. Values for (ddo), for each element were calculat-
ed by scaling the value for niobium by the ratio of elemen-
tal d-band widths.

Moruzzi et al.* have calculated first-principle band
structures for all 4d transition metals in the bec structure.
Table II lists their results for d-band widths at the calcu-
lated equilibrium volume. As discussed in Sec. II B, the
d-band width is highly volume dependent. Errors in the
calculated volume produce larger errors in d-band width.
These errors would affect AH by changing the amount of
bandwidth mismatch. To prevent this, the calculated
bandwidths were scaled (Table II) to the experimental
volume using the relation W; < Q~>/3 mentioned in Sec.
IIB. The scaled bandwidths agree well with the results of
less sophisticated methods that were calculated at the ex-
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perimental volume.*>*"*® The scaled bcc bandwidths

were used in the calculations reported in Sec. IV.
The s and p bands of transition metals are essentially
free-electron-like. In the calculations presented here, they
were modeled by a single s band with a free-electron band-

width*
3w

2 ’

(2.16)

W 2ma
where a is the nearest-neighbor separation and m is the
free-electron mass. Values for W, are given in the last
column of Table II. Equation (2.16) is obtained by finding
the energy difference between free-electron levels at the
zone center I' and corner H of the bee Brillouin zone.

For each element, (sso); was scaled so that the cluster-
Bethe-lattice method (CBLM) gave the correct bandwidth
W,. The ratio (sso’),/(sso); was held fixed at its value in
Nb and Mo where (Table I)

(sso), 2.17)

=0.64+0.01 .
(sso);

These prescriptions reproduce the values for (sso); in Nb
and Mo within 10% and the ratio between values in the
two materials to 2%.

The s-d hybridization terms in Nb and Mo are propor-
tional to the geometric mean of (sso), and (ddo); as sug-
gested by Harrison’s equations.”® The proportionality
constants were calculated from Table I

(sdo);
[(sso)(ddo)]'?

(sdo),
(sdo);

The choice of on-site energies has been the focus of de-
bate. Pettifor’ argued that the eigenvalue for the ap-
propriate atomic configuration should be used for the d-
band center. Harrison has successfully used atomic eigen-
values in calculations for compounds of transition metals
and non-transition-metals.”® However, Varma'® has ar-
gued that the d-band centers should reflect the change
from atomic boundary conditions when the solid is
formed. Thus he used eigenvalues calculated with the re-
normalized atom method® in his treatment of transition-
metal alloys. The correct choice of elemental on-site ener-
gies depends on one’s model for the charge distribution in
the alloy before charge transfer occurs. The arguments
below explain why free-atom eigenvalues are more ap-
propriate for tight-binding calculations such as those re-
ported here. In Sec. IV we note that AH is relatively in-
sensitive to the on-site energies. However, calculations us-
ing renormalized atom eigenvalues®! do not agree as well
with experiment and band-structure calculations®*6 as the
calculations using free-atom eigenvalues reported in Sec.
Iv.

The renormalized atom method>® was designed to cal-
culate properties of solids from an atomic picture. The
atomic charge was confined to a Wigner-Seitz sphere with
volume equal to that occupied by each atom in the solid.
Wave functions were obtained by truncating free-atom

=1.2410.02,

(2.18)
=0.49+0.02 .
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wave functions at the sphere boundary and scaling them
to maintain normalization. The Hartree potential in-
creased as the volume decreased. For 4d transition metals,
the d eigenvalues of renormalized atoms were about 7 eV
higher than free-atom eigenvalues. The magnitude of the
eigenvalue shift varied with equilibrium volume across the
4d series. The separation between renormalized atom d
eigenvalues on different species changed in sign and mag-
nitude (~2 eV) from the separation between free-atom
eigenvalues. The renormalized atom method has success-
fully reproduced cohesive energies*’ and bandwidths of
elemental transition metals. However, neither of these
quantities depends on the absolute value of the on-site en-
ergy.

In a renormalized atom picture the alloy is constructed
by combining neutral Wigner-Seitz spheres of the constit-
uent species. This is also the initial charge density in the
self-consistent  calculations of Williams and co-
workers.>* Their calculations give on-site energy differ-
ences before charge transfer which are close to the differ-
ences in renormalized atom eigenvalues. However, this in-
itial charge density is discontinuous at the Wigner-Seitz
boundaries.® It is not compatible with the tight-binding
picture on which our calculations are based.

The non-self-consistent charge density in a tight-
binding alloy calculation should correspond to a superpo-
sition of atomiclike charge densities obtained by occupy-
ing the tight-binding orbitals on each species to the same
extent as in the pure elements. The tight-binding orbitals
are not truncated at the Wigner-Seitz sphere as the renor-
malized atom wave functions are. Thus the resulting
charge density is continuous. The difference between re-
normalized atom and tight-binding charge densities con-
sists of a dipole layer at the Wigner-Seitz boundary. The
associated potential step produces a shift in the on-site en-
ergy differences given by the two models.

To justify the choice of atomic on-site energies for our
calculations we begin from the observation that the charge
density in elemental transition metals is close to a super-
position of atomic charge densities.?>?>>? The non-self-
consistent Hartree potential for an alloy is thus close to a
superposition of atomic Hartree potentials. The attractive
potential from neighboring sites lowers the on-site energy
relative to the atomic eigenvalue and orthogonalization to
orbitals on neighboring sites raises the on-site energy. The
shifts tend to cancel. In addition, in a random alloy the
shifts on both species are approximately equal because
they see the same environment. The difference in on-site
energies in the alloy is thus close to the difference in atom-
ic eigenvalues. The difference in the on-site energies of
separate pure elements is ambiguous because of surface
contributions and does not affect the heat of formation. It
may be related to the difference in renormalized atom
eigenvalues.

Calculated atomic potentials were superposed in an ef-
fort to understand the origin of the eigenvalue shifts given
by the renormalized atom method. The Hartree potential
in the region near the Wigner-Seitz boundary was negative
and strongly volume and species dependent. In the renor-
malized atom method the Hartree potential in this region
was always set to zero. The difference between renormal-
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TABLE IIlI. Calculated free-atom eigenvalues (eV).

Element s d
Y —3.60 —1.88
Zr —3.80 —2.65
Nb —3.94 —341
Mo —4.03 —4.17
Tc —4.11 —4.94
Ru —4.17 —5.72
Rh —4.22 —6.51
Pd —4.26 —7.31

ized atom and free-atom eigenvalues correlated well with
our calculated potential at the Wigner-Seitz boundary.

For the reasons detailed above, atomic eigenvalues were
used for the elemental on-site energies in the calculations
reported here. The eigenvalues, listed in Table III, were
calculated for an atom with one s electron and all d orbi-
tals equally occupied. Exchange and correlation were in-
cluded using the local-density functional calculated by
Ceperley and Alder.® Relativistic effects were small and
were not included.”® Crystal-field splitting was also not
included. The metals are not magnetic and thus the atom-
ic eigenvalues listed do not include spin polarization.

CBLM results for the pure elements with these on-site
energies and the hopping parameters described above pro-
vide a reasonable description of the elemental DOS’s. The
separations between the d-band centers and the bottoms of
the s bands are in good agreement with band-structure re-
sults. The calculated s occupancies are about one electron
in keeping with the assumptions made in calculating the
on-site energies.>’

The only remaining elemental parameters are the
Coulomb energies. In their CPA calculations, Gautier
et al.'? have estimated®® that uz~1.6 eV. Williams
et al.® have calculated s and d charge transfers and the
changes in d-band on-site energies with self-consistency in
ordered 4d transition-metal compounds with the CsCl
structure. Their results are consistent with

ug+Va(—1)=0.4,
Uugg+Va(—1)=1.4,

(2.19)

measured in eV. A reasonable value of ¥ =0.3 eV does
not lead to charge-density wave instabilities' if ug >0.5
eV. The values used in most calculations were (in eV)

U =0.7, uy=09, ugu=19, V=03. (220

The above Coulomb energies are substantially smaller
than the unscreened values for free atoms. Calculations®’
for Mo atoms gave (in eV)

Uy =53, uy=6.1, ug=79, V=30, (221

where V was calculated using the equilibrium lattice con-
stant and vacuum dielectric constant. As discussed in RF,
screened values of u; are appropriate in minimal basis
tight-binding calculations because screening by core orbi-
tals and high-energy valence electrons changes the effec-
tive dielectric constant € from the vacuum value €, In
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the self-consistent ab initio band-structure calculations®
from which (2.19) was obtained, the decrease in the u; is
related to changes in the nature of the s and d orbitals.
Higher valence levels are mixed in when the local environ-
ment changes through alloying.

III. ALLOY CLUSTER-BETHE-LATTICE METHOD

The alloy CBLM is an approximate technique®? for cal-
culating the configuration averaged local density of states
(LDOS) of an alloy at arbitrary x and o. A self-consistent
mean-field approximation is made which is very much in
the spirit of Bethe’s original approximation for magnetic
systems.® A small cluster of atoms is treated exactly and
the remainder of the alloy is replaced by an effective field,
in this case a self-energy. Two approximations are made.
(1) The form of the effective field (site-diagonal) is only
exact on a lattice with the same coordination number as
the real lattice, but with no rings of bonds. Such lattices
have been named Bethe lattices after the approximation.’®
(2) The value of the effective field is calculated self-
consistently in a mean-field approximation, incorporating
the mean distribution of neighbors as given by the pair
probabilities.

The alloy CBLM models the mean local environment of
all atoms in the alloy very well. The coordination number
and mean distribution of nearest neighbors are reproduced
exactly. The effect of the first approximation is to simpli-
fy the topology of the alloy outside the cluster. It is re-
placed by Bethe lattices with the same coordination num-
ber, Hamiltonian matrix elements, and SRO. On this ap-
proximate topology, the mean-field approximation pro-
vides accurate values for the total energy as a function of
SRO and disorder in the Hamiltonian (diagonal, off-
diagonal, and environmental).’! Fluctuations in local en-
vironment affect some alloy properties,”® but not the total
energy.'?

In this paper we present results for a simple single-atom
cluster. Neglect of topological effects is justified by the
following considerations.

(1) Only changes in integral quantities, total energy, and
charge, are considered. Absolute errors cancel and exact
theorems®® place limits on errors in integrated quantities.
The largest errors will occur when the Fermi level lies
near a strong structure in the alloy DOS which is not
reproduced by the alloy CBLM.

(2) Calculations for the heats of formation of random
alloys with the CPA based on either fcc- or bec-like bands
and calculations with the alloy CBLM all give similar re-
sults as long as the elemental bandwidths are the
same. 1251

(3) Previous calculations for monovalent metals were in
good agreement with experimental data.!

(4) No technique developed to date can include SRO
nonperturbatively'>!* on any lattice other than a Bethe
lattice. This is related to the fact that higher-order cluster
probabilities are needed to define the configuration proba-
bilities on other lattices.5!

Previous derivations and applications®*3 of the alloy
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CBLM have been limited to the case of a single s-like or-
bital per site. For the calculation presented here the
method was extended to include five d orbitals and one s
orbital on each site. Both nearest- and next-nearest-
neighbor hopping are important on the bcc lattice (Sec.
IID) and were included. The six next-nearest neighbors
were incorporated in the Bethe lattices as nearest neigh-
bors of a different type. Numerical evaluation of the DOS
and total energy is greatly facilitated through the use of
group theory and by deforming the contour of integration
into the complex plane. These techniques are described in
Appendix A.

IV. RESULTS FOR 4d TRANSITION METALS

A. Comparison to previous microscopic models

A variety of different approximations were made in
previous microscopic model calculations®~!? for AH that
are not made in our calculations. None of these models
included the effect of s electrons or SRO. Self-consistency
was only considered explicitly in CPA calculations.'?
These three factors are discussed below in separate sec-
tions. The simple square band models for the alloy DOS
suggested by Cyrot and Cyrot-Lackmann® and RF, and by
Pettifor’ and Varma,!® are examined briefly here. These
models provide approximate solutions for the DOS and
heat of formation of well-defined model alloys. No
dependence on lattice type is included. Results from the
alloy CBLM and CPA for the same model alloys in the
random configuration on a Bethe lattice have been calcu-
lated to test the square band models.”! The alloy CBLM
and CPA heats of formation agree to about 10~ *W where
W is the bandwidth of the alloy. The various square band
models give a wide spread of values for AH which do not
in general agree in magnitude or sign with the CPA and
CBLM results. However, each of the square band models
is reasonably accurate for specific alloy systems. The
reasons for this are discussed below. The discussion helps
to clarify the origin of the contributions to AH that are il-
lustrated in Fig. 1.

All of the simple square band models are based on the
moments method.?! The first few moments

p'= [ E"D(E)E ,

of the DOS, D(E), in a random alloy are easily calculated.
The centers and widths of square bands are fitted to these
moments to model the alloy DOS. The models mentioned
above all fit the first three moments of the DOS (u°, !,
and p?) and, in the case of RF, u’. However, the DOS’s
that are generated are very different. The models pro-
posed by Cyrot and Cyrot-Lackmann® and RF are ionic
models. Separate square bands for the local DOS on each
species are constructed. The effects of ionic bonding and
bandwidth mismatch [Figs. 1(b) and 1(c)] are incorporated
accurately, but band mixing [Fig. 1(d)] is not. The model
proposed by Pettifor’ and Varmal!® is a band-mixing
model. A single square band is constructed for the total
DOS. The band-mixing contribution to AH is reproduced
quite well. Bandwidth mismatch is included also, but not
as accurately.

These two types of model lead to different heats of for-
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mation. For monovalent metals, the ionic model gives
values for AH that are in good qualitative agreement with
alloy CBLM results for the random configuration.">!
The band-mixing model gives unphysical results—the ran-
dom alloy is always stable. Pettifor initially applied his
band-mixing model to the case of equal Fermi levels and
bandwidths.” For such alloys band mixing provides the
only contribution to AH. The ionic model gives AH =0,
while the band-mixing model gives values for AH that are
in good agreement with the alloy CBLM and CPA.

The conclusion to be drawn from these results is that
the square band models only give reliable results for the
heats of formation of the model alloys they attempt to
describe when at least one of the contributions to AH il-
lustrated in Fig. 1 is small. Conversely when one of the
square band models works it implies which contributions
to AH are important. The reason that the models are not
successful for general alloys is that the first three mo-
ments of the DOS do not provide sufficient information
about the changes in the DOS with alloying. In fact,
neglecting changes in on-site energy difference due to
self-consistency, these moments are exactly the same in
the segregated and random configurations in the case of
zero bandwidth mismatch. The lowest-order moment
which is not the same in the two configurations is u*. The
difference is lattice independent and is reproduced exactly
by the alloy CBLM with single atom cluster.’!

The behavior of the band-mixing contribution to AH,
which is important in transition-metal alloys, can be un-
derstood from the above statements. For the case of zero
bandwidth disorder, the segregated and random configura-
tion DOS’s have the same center, ,u’, and second moment,
u?, but their band edges are different.? As illustrated in
Fig. 1 the segregated DOS extends over a greater energy
range than the random DOS. To maintain the same
second moment, the random DOS must have more spec-
tral weight near its band edges. If the bands are nearly
empty or full the segregated phase has a lower energy be-
cause of the states at extremely low energies. If the bands
are half-full the random phase has a lower energy because
of the shift in spectral weight towards the band edges.
These changes in sign of AH with band filling follow
from exact theorems based on the number of identical mo-
ments.2" When bandwidth disorder is introduced, the
second moment of the DOS of the random alloy becomes
lower than that of the segregated configuration. The ran-
dom DOS is spread over a smaller energy range and AH
increases. The physical picture for this contribution is
that the coupling between unlike species is weaker than
the average coupling between like species [Eq. (2.6)].

The most interesting result suggested by the various
square band models is Pettifor’s’ simple expression for
AH in terms of the mean, N, and difference, AN, in the
number of valence d electrons in the constituent elements.
Based on the band-mixing square band model, the linear
variation of atomic eigenvalues across the 4d series and a
quadratic variation in elemental solid volumes, Pettifor
found

AH =(AN)AH(N ) .

for x =+. There are several difficulties with Pettifor’s

(4.2)



29 ELECTRONIC THEORY OF ORDERING AND SEGREGATION IN . ..

evaluation of AH. However, for 4d transition-metal alloys
this relation is roughly obeyed by Miedema’s’ results and
the results of Williams et al.® Williams et al. point out
that it can be thought of as a Taylor series expansion in
small AN, however it holds fairly well for AN =7. Non-
self-consistent results with the alloy CBLM do not neces-
sarily obey this relation. However, our self-consistent re-
sults do follow this behavior. All our results show a
strong dependence on SRO as discussed below, i.e.,

AH =(AN)*AH(N,0) . (4.3)

for x =+. The reasons for these findings are discussed in
subsequent sections. Relation (4.3) is useful because it al-
lows us to illustrate the behavior of the heats of formation
of all twenty-eight 4d transition-metal alloys while plot-
ting only results for alloys with AN =1.

B. The role of s electrons

The s electrons affect AH in several different ways.
There are direct contributions to AH from ionic bonding,
bandwidth mismatch, and band mixing of s bands. The s
electrons also contribute to AH through the d bands by
changing the number of d electrons, screening ¢ charge
transfer, and altering the d-band shape via s-d hybridiza-
tion. Each of these contributions can be examined in-
dependently with the alloy CBLM.

Calculations were performed for d bands only, and for s
and d bands with and without s-d hybridization. For cal-
culations including d bands only, the number of d elec-
trons in the pure elements was set equal to the value cal-
culated for s and d bands with hybridization. Self-
consistent results for the heat of formation of the random
configuration of alloys with AN =1 and x =5 are plotted
in Fig. 2. Screened Coulomb integrals and the bandwidths
and centers described in Sec. II D were used. Results cal-
culated non-self-consistently, results for the binary-
ordered configuration, and results for other elemental
tight-binding energies show the same features. The ener-
gies calculated for d bands only and for s and d bands
without hybridization are almost identical. Including s-d
hybridization does not change the parabolic trend of AH
across the 4d series. However, it does change the sign of
the random and/or binary-ordered energies of several of
the twenty-eight 4d alloys. This has important conse-
quences for their phase diagrams. The free-electron bands
cannot be ignored in accurate calculations.

The results shown in Fig. 2 are easily understood. The
independent contribution of s electrons to AH is small be-
cause the s bands of all elements have similar centers,
widths, and band fillings, and because there are many
more d electrons. Charge transfer of s electrons, which
changes the total d-electron occupation or screens d-
electron charge transfer, is small because the s-band DOS
is much smaller than the d-band DOS (1:7). Also, the d-d
Coulomb repulsion is strongest, so that d electrons screen
d charge transfer most effectively. Hybridization of s and
d bands is important because it changes the d-band DOS
over the entire bandwidth. The d band is effectively
broadened by hybridization with the wider s band. In-
creasing the d-band width lowers the magnitude of bond-
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FIG. 2. Heats of formation for random equiconcentration al-
loys of neighboring elements in the Periodic Table calculated
with free atomic on-site energies and screened Coulomb interac-
tions for d bands only (down pointing triangles); s and d bands
without s-d hybridization (up pointing triangles) and with s-d
hybridization (solid squares).

ing (negative) contributions to AH which depend on the
ratio of the on-site energy difference to the bandwidth.
The positive contribution to AH from bandwidth
mismatch increases at the same time. The result is an in-
crease in AH for all alloys. Only heats of formation for
alloys with AN =1 are shown in Fig. 2. The positive con-
tribution to AH from s-d hybridization increases as (AN )?
[see (4.3)] and thus remains significant for all alloys.

The results just described indicate that s electrons do
not play the strong role in screening d charge transfer that
was assumed in Varma’s model.' Varma argued that
conduction electrons transferred so as to minimize the en-
ergy of the d bands. Rather than considering charge
transfer explicitly, he treated the d-band centers as varia-
tional parameters. It is evident from Fig. 2 that this
model is not appropriate. The presence of s electrons does
not allow optimization of the d electron binding. This is
not an artifact associated with the use of screened u’s.
Heats of formation calculated with unscreened u’s show
the same behavior. Values for AH in all three cases illus-
trated in Fig. 2 are shifted in a positive direction. The
magnitude of the shift is relatively uniform and small—
about the size of the plotting symbols in Fig. 2.

The similarity in the values for AH with screened and
unscreened u’s is surprising. The two sets of Coulomb en-
ergies differ by a factor of 5. In an ionic bonding model,
AH would change substantially. The effect of self-
consistency is discussed in the next section.

C. Self-consistency

Non-self-consistent results for the heats of formation of
transition-metal alloys depend strongly on the difference
in elemental on-site energies. In contrast, all self-
consistent results show the same qualitative behavior:
heats of formation vary parabolically across the
transition-metal series and obey relation (4.3) approxi-
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FIG. 3. Alloy CBLM results for AH/(AN)? at x =5 in the
random (solid triangles) and binary-ordered (solid squares) con-
figurations of 4d alloys with AN <2. Also shown are band-
structure results from Ref. 46 for the heats of formation of com-
pounds in the CsCl structure (open circles), and measured ran-
dom heats of formation (crosses).

mately. As noted above, the heats of formation are fairly
insensitive to the magnitude of the Coulomb interaction
energies. These results indicate that the self-consistent
contribution from ionic bonding to the heats of formation
of transition metals is small. The band-mixing contribu-
tion to AH remains large after self-consistency is reached
because the difference in d-band filling leads to differences
in the d-band centers. This did not happen in monovalent
metals! where the band filling was constant. The band-
width mismatch contribution is also unaffected by self-
consistency. The band mixing and bandwidth mismatch
contributions both obey relation (4.3). (In the case of
bandwidth mismatch this follows from the parabolic trend
in bandwidths across the 4d series.)

The success of Pettifor’s’ model is understood from
these results. His choice of input parameters eliminates
the ionic bondirg contribution to AH. This is precisely
the effect that self-consistency has in more detailed calcu-
lations. The band-mixing energy remains important and
is given fairly accurately by his square band model. The
difficulty with Pettifor’s model is in his picture for the
positive contribution to AH. He attributes it explicitly to
differences in elemental volume rather than differences in
elemental bandwidths. This shifts the minimum of AH
away from N =5 (see Fig. 1 of Ref. 9) and increases AH
in magnitude relative to the correct value. The physical
picture Pettifor proposes of atoms reaching equal volumes
in the alloy does not explain why Végard’s law®* holds and
is contradicted by first-principle calculations*® which
show that each species tends to maintain its intrinsic
volume. The bandwidth mismatch model used here is
more physical and yields more accurate values for AH as
shown below.

D. Dependence of AH on SRO

In earlier work®”-°~1! the difference between the heats
of formation of random and binary-ordered configura-
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tions has not been appreciated. Calculated energies for
the random configuration®=!! and for ordered com-
pounts®’ have been compared directly to each other and
to experimental values for different configurations. This
is the first microscopic calculation to consider explicitly
the variation of the heat of formation with SRO in the 4d
transition-metal alloys. As shown in Fig. 3, the depen-
dence of AH on SRO is strong.

Figure 3 compares self-consistent alloy CBLM results
for AH /(AN)? in the random and binary-ordered configu-
rations at x =+. Screened Coulomb interactions were
used. Results for alloys with AN =1 and 2 are plotted to
show that relation (4.3) is approximately obeyed. Values
of AH /(AN)? calculated for alloys with larger AN fall
close to these results but are slightly smaller in magnitude.
The random and binary-ordered heats of formation both
vary parabolically across the series. However, the magni-
tude of the binary-ordered energy is larger. The band-
mixing and bandwidth mismatch contributions to AH are
largest in magnitude for the binary-ordered configuration
where no like-atom nearest-neighbor bonds remain.

A simple trend in the stable phase is found. The segre-
gated configuration is stable for large and small values of
N. For these alloys, bandwidth mismatch is large (Table
II) and the band-mixing energy is more positive. The
binary-ordered phase is stable for N near 5. In these al-
loys bandwidth mismatch is small and the band-mixing
energy is large in magnitude and negative. The energy of
the random configuration is only lowest in the crossover
region where all heats of formation are small. Note that
Fig. 3 only gives values for AH at x =~. In most cases
when all other concentrations are considered the random
configuration does not have the lowest heat of formation.

Williams and co-workers®*® have performed ab initio
calculations for the heats of formation of all 4d
transition-metal alloys in the CsCl structure relative to
elements in the bec structure. Their results for alloys with
AN =1 and 2 are also plotted in Fig. 3. Agreement with
our binary-ordered results for AN =1 and 2 is fair.
Values from the two methods for alloys where AN > 2 are
in much better agreement. For AN =5, 6, and 7 the plot-
ted points overlap. The discrepancy for AN =1 and 2 is
understood as a band-shape effect. There is a strong
pseudogap in the d-band DOS of transition metals in the
bee structure. The Fermi level lies in this gap for band
fillings between those of Nb and Mo, and it is believed to
be important in stabilizing the bcc phase of these ele-
ments. This gap is not reproduced by the alloy CBLM
with single-atom cluster. Experiment and theory*® sug-
gest that the pseudogap remains in Nb-Mo alloys. It
should give a strong rigid band®® contribution to AH. As
AN increases the on-site energy difference becomes in-
creasingly larger than the width of the pseudogap and its
importance to AH decreases. This contribution to AH
does not obey relation (4.3).

The band-shape effect described above clearly depends
on the specific crystal structures of the elements and alloy.
Williams e al.*6 have also calculated the heats of forma-
tion of compounds in the CuAu structure from elements
in the fcc structure. Their results show the same trends
with N that are evident in Fig. 3. However, values of AH
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FIG. 4. Stable phase of 4d transition-metal alloys at T=0
determined from experimental phase diagrams (top) and calcu-
lated with the alloy CBLM at x =% (bottom in parentheses).
The letter S indicates that the alloy segregates, R indicates that
the random phase is stable, and B indicates that the binary-
ordered compound is stable. A superscript indicates the source
for each experimental phase diagram and any ambiguity in in-
terpretation: a, Ref. 68; b, Ref. 23; c, Ref. 69; d, Ref. 23,
binary-ordered or segregated phase may be stable at T =0; e,
Ref. 23, may be binary-ordered—see Ref. 69.

for specific alloys differ in magnitude and even sign from
the CsCl results. Our alloy CBLM heats of formation
tend to be intermediate between the CsCl and CuAu
values. Of particular interest is the Nb-Mo alloy where
AH for the CuAu structure is positive. These observa-
tions support the view that the alloy CBLM provides an
accurate picture of the structure independent contribution
to AH.

Also plotted in Fig. 3 are two experimental values
for AH. Both are for the random configuration, but have
been compared to calculated values for the ordered com-
pounds.® The measured AH for Rh-Pd is very close to the
alloy CBLM result for the random configuration. Agree-
ment between the measured and calculated heats of for-
mation of Nb-Mo is not as good. This is attributed to the
band-shape effect described above.

Experimental information is also available for three al-
loys with AN >2 which are not included in Fig. 3. The
measured®® heat of formation of the ordered alloy PdZr is
—0.64 eV/atom, and our calculated value is —0.41
eV/atom. For comparison, Moruzzi et al.* find
AH =—-0.50 eV/atom for the CsCl structure and
AH = —0.65 eV/atom for the CuAu structure. Diffrac-
tion studies indicate that the actual structure is complicat-
ed.”? The measured®’ Gibbs energy of formation of the
compound RuZr in the CsCl structure is AG =—0.92
eV/atom at 1600 K. This differs from the heat of forma-
tion by the temperature multiplied by the entropy of for-
mation, and the pressure multiplied by the change in
valime. We estimate that either term mav be of order

64,65
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0.05 eV/atom in magnitude. The alloy CBLM gives
AH =-0.67 eV/atom. Moruzzi etal. find*
AH = —0.92 eV/atom for the CsCl structure and —0.30
eV/atom for the CuAu structure. Finally, a bound has
been placed®”” on the Gibbs energy of formation of the
compound ZrRh in the CsCl structure, AG < —0.30
eV/atom. Our calculated heat of formation is —0.87
eV/atom in agreement with this bound. Moruzzi et al.
find AH = —0.86 eV/atom for the CsCl structure and
AH = —0.69 eV/atom for the CuAu structure.

E. Comparison with experimental phase diagrams

Experimental phase diagrams?»®%% for the twenty-
eight 4d alloys were examined to determine which of the
three limiting types of SRO, segregated, random, and
binary-ordered, is stable at 7 =0. The results are summa-
rized in Fig. 4. Uncertainties in the assignments exist be-
cause of experimental variance and because experimental
temperatures were often very high (> 1000°C). Alloy sys-
tems where assignments were uncertain are indicated.

Alloy systems with miscibility gaps and no compounds
at low temperatures are listed as stable in the segregated
phase. For alloy systems exhibiting complete solid solu-
bility, the random phase is indicated as stable. These al-
loys may order or segregate below the temperatures where
experimental data were taken. Alloy systems with com-
pounds are listed as being stable in the binary-ordered
phase. If the two constituents of the alloy have different
elemental structures, a continuous series of solid solutions
is impossible. In such cases the presence of a single com-
pound with a large range of stable compositions at low
temperatures may indicate that the random configuration
is favored. The only 4d transition-metal alloy system
whose phase diagram exhibits such a compound is
Mo-Rh.

Figure 4 shows the same trends in stable phase that
were seen in Fig. 3. Alloys with small or large values of N
segregate and alloys for which N is near 5 form ordered
compounds. Continuous solid solutions (random phase)
are only found for alloys in the crossover region between
segregation and binary ordering.

The stable configuration calculated from the alloy
CBLM at x = is also indicated in Fig. 4. Unscreened
Coulomb interactions were used. Agreement between
theory and experiment is good. The only discrepancies are
in the crossover region. This is the region where experi-
mental interpretation was most uncertain and where the
calculation is most sensitive to the specific choice of input
parameters.”® The three systems which do not show clear
agreement are discussed below.

The alloy CBLM predicts Nb-Mo should form an or-
dered compound at zero temperature. However, at tem-
peratures above about 500 K the random phase is calculat-
ed to have a lower free energy. The lowest experimental
temperatures were about 1400 K so the ordered phase
would not have been observed. The measured® random
heat of formation and calculated® heat of formation of the
CsCl structure also indicate that the ordered phase should
be stable at zero temperature, and predict an order-
disorder transition near 750 K.
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The broad alloy phase seen in the Mo-Rh system was
mentioned above. The alloy CBLM predicts that the ran-
dom phase should be stable which is consistent with such
a phase diagram.

The remaining discrepancy is in the Nb-Pd system.
Compounds are observed at Nb concentrations of 4 and
—;—. The alloy CBLM results presented in Fig. 4 are only
for x =3. Calculations at other concentrations show a
strong asymmetry in AH favoring small concentrations of
Nb. For the parameters given in Sec. I D the random and
binary-ordered heats of formation remain positive for all
concentrations. However, small changes in these parame-
ters lead to negative random and binary-ordered heats of
formation for cn, <5 with a minimum for the binary-
ordered phase near ¢y, =0.25. Predictions for other alloy
systems are not affected by similar changes in input pa-
rameters. Moruzzi et al. also found that the equiconcen-
tration CsCl compound has a positive heat of formation.*

Connolly and Williams'* have recently presented simi-
lar predictions for the 4d transition-metal alloys. They in-
terpolated heats of formation calculated for several or-
dered compounds*® based on the fcc structure to obtain
AH as a function of SRO. Their predictions for the stable
phase at zero temperature differ from ours for six alloy
systems, Nb-Mo, Mo-Zr, Zr-Tc, Y-Tc, Tc-Ru, and
Mo-Pd. In every case but the last two their results clearly
disagree with available experimental data.?>%%¢° For
Nb-Mo this may result from using fcc-based ordered com-
pounds. The experimental information for Tc-Ru sug-
gests that the random phase is stable, but does not rule out
segregation at low temperatures as predicted by Connolly
and Williams. Conflicting results?*® have been presented
for Mo-Pd.

One possible explanation for the discrepancies between
Connolly and William’s results and experiment is that
atoms are not allowed to relax about the ideal lattice
sites.*® The spacing between two “small” atoms and two
“large” atoms is forced to have the same value. The ener-
gy gained by relaxing atomic positions has been con-
sidered by Froyen and Herring’! and can be a substantial
fraction of AH. Relaxation is included implicitly in our
model because the hopping matrix elements have their ele-
mental values—each atom retains its intrinsic volume.

V. SUMMARY AND CONCLUSIONS

The model tight-binding Hamiltonian described in Sec.
IT and the alloy CBLM discussed and extended in Sec. ITI
and Appendix A provide a method for calculating the
heats of formation of alloys self-consistently as a function
of concentration and SRO. The only necessary input are
well-defined elemental properties. The results, presented
in Sec. IV and RF, are in good agreement with experiment
and first-principle calculations for ordered compounds.
The calculated heats of formation are consistent with the
phase diagrams of twenty-seven of the twenty-eight 4d
transition-metal alloys.

The method also provides a tool for studying the physi-
cal properties that determine the experimental trends.
The contributions to the heat of formation can be under-
stood simply in terms of the changes in valence electron

MARK O. ROBBINS AND L. M. FALICOV 29

DOS that are illustrated in Fig. 1. Ionic bonding, driven
by Fermi-level differences, produces a negative contribu-
tion to AH. The magnitude of this contribution is strong-
ly affected by self-consistency. Bandwidth mismatch de-
creases the strength of interspecies bonds and produces a
positive contribution to AH. The alloys studied here con-
tained elements with similar band structures. In other al-
loys the notion of bandwidth mismatch is ill-defined. The
relevant factor is the relative bonding strength associated
with intraspecies versus interspecies hopping. The sign of
the contribution to AH from band mixing, hybridization
between electronic states on different species, depends on
the position of the Fermi level. It is positive when the
bands are nearly full or empty, and negative when the
bands are half-full. All three contributions to AH are in-
cluded in self-consistent alloy CBLM calculations.
Simpler models®~!° were tested and found to describe at
most two of these contributions accurately.

The relative magnitude of the ionic bonding, bandwidth
mismatch, and band-mixing contributions to AH depends
on the constituents of the alloy and the degree of SRO. In
RF, ionic bonding and bandwidth mismatch were shown
to be dominant in determining AH in alloys of mono-
valent metals. In calculations for 4d transition metals
(Sec. IV), self-consistency reduced the contribution of ion-
ic bonding to AH. The main trends in AH were deter-
mined by d-band mixing and bandwidth mismatch. These
contributions increased in magnitude with changes in
SRO as the number of like-neighbor bonds decreased.
The free-electron bands were important in determining the
stable phase of some alloys, but did not play the dominant
role expected from Miedema’s’ theory.

The trends in AH with band filling found in the 4d
transition-metal alloys are also seen in the phase diagrams
of other alloys of transition metals (3d, 4d, and 5d). Ex-
ceptions are only found when the alloy contains magnetic
elements and the magnetic ordering energy is large com-
pared to AH. Preliminary calculations for alloys of 5d
transition metals are in good agreement with experiment.
As a general rule band mixing should be most important
in alloys between elements from different columns of the
Periodic Table and ionic bonding should be most impor-
tant in alloys of elements from the same column.

More experimental data for heats of formation are im-
portant to test theoretical results and establish their
predictive value. The strong dependence of AH on SRO
seen in Fig. 3 points out the importance of making simul-
taneous measurements®® of the degree of SRO in the alloy.
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APPENDIX A: EXTENSION OF THE ALLOY CBLM
TO THE CASE OF MULTIORBITAL BASES

The alloy CBLM was derived by Kittler and Falicov?
based on an analogy to the CBLM for amorphous semi-
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conductors.”? Equivalent relations for a cluster of one
were derived independently by Jacobs in an earlier paper.’
Similar approximations have been considered by several
authors.”»” For the cluster of one, a hierarchy of im-
proved approximations can be generated. However, the
alloy CBLM is exact in the limit of large coordination
number,”® and corrections are not important to the total
energy or charge transfer in the systems considered here
(Z =14).>! They should in any event be smaller than
errors associated with the approximate Bethe lattice topol-
ogy.

In this appendix, the derivation of the alloy CBLM is
extended to the case where there is more than one local
basis orbital on each site, and there is arbitrary range hop-
ping. In general little is gained by going beyond the first
few shells of nearest neighbors. Errors associated with
neglected rings of bonds become increasingly significant.

The matrix elements of the one-electron Hamiltonian
can be grouped into sets associated with single sites or
pairs of sites. These sets define on-site and hopping ma-
trices whose matrix elements are

[%I(i)]yvz(iﬁ-" |H1e | i,V) ’ (A1)

[Er T =T =it | Hi | jov) (A2)
The Hermiticity of the Hamiltonian implies

E=E], (A3)

T, &) =[ty(p,— 51", (A4)

where the notation p, § is used in place of T to distinguish
shells of neighbors related by symmetry. Each shell is la-
beled by the index p and contains Z (p) neighbors at rela-
tive positions given by §.

The on-site and hopping matrices are assumed to de-
pend only on the occupation of the relevant sites. Pertur-
bations associated with specific local environments have
little effect on the total energy and are ignored. The on-
site matrices, ﬁ,, must then be invariant under the full
point group slmmetry % of each lattice site. Each hop-
ping matrix tg;(p,d) _is invariant under the subgroup
S5 €Y which maps § into itself. Other elements of ¥

take t”(p, §) into t”(p, §). In general different shells
have inequivalent symmetry subgroups.

For any choice of basis orbitals, representations of &
can be constructed such that

Ui(glty (0,800 J(9) =ty (p, K, 5) , (A5)

where g€ 9, the U ,(g) are unitary matrices which act on
the basis orbltals, and R rotates and/or reflects the orlen-
tation vector 5. leferent unitary representations, U 1(8),

are associated with each species because their basis orbi-

tals may differ in number, orientation, etc.
]

Y (P )er

§1(P’ S))= 2

J

t(p,8) |ET— EJ——EZ(p 300 +35(p,—8)
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Consider an I atom on site i in the cluster which has
one pth neighbor bond to a site j outside the cluster in
direction §. In the alloy CBLM the effect of this bond is
replaced by a site-diagonal self-energy p> I(p,8) The value
of this self-energy is calculated in the following manner.

(1) The bond connecting site i to site j is included in the
cluster and all other bonds from site j are simulated with
self-energles p> 7(p',8"). The assumption that these self-
energies are site diagonal and independent of site position
relative to the cluster i is only exact on a Bethe lattice.

(2) The self-energy s 1(p, §) is calculated in a mean-field
approximation so that it reproduces the mean effect of site
J on the matrix elements of the Green’s function within
the cluster. The average over possible occupations of site j
includes the effect of SRO through the pair probabilities
which determine the probability for finding a J atom as a
pth neighbor of an I atom.

The relevant equations for the Green’s function are

[ET—F,1-Gy=8,1+ > tixo(p’>8 VO (A6)
P8
EI-E,— 3 20,8 |Gi=tulp,—8)Gy,
3'(£—158),p'

(A7)

where k is the site at position T; + 8, K (k) is the species
at site k and I is the identity. Solving for G;; gives

[ET—E,—&,(p,8)]-Cy

=81+ > ti (P’ 8 G 5 (A8)
5'(£8), p'
where
€(p,8)=1y(p,8) | ET -3 S,0p,8
.8’
> — —1<-> —
+ 2;(p,—8) ‘tyr(p,—8). (A9)

The self-energy for the alloy CBLM is obtained by averag-
ing &;; over J

EI(P, g): 2

J
Equations (A9) and (A10) specify 23,Z(p) coupled
quadratic matrix equations for p> 1(p, §). Solution of these
equations can be greatly simplified through the use of
group theory.
The first simplification is achieved by making the phys-
ically resonable ansatz

yu(p)zu 5) (A10)

2,08 8)=U,(2)%,(p,5) T (g , (A11)
for all g. Then Egs. (A9) and (A 10) reduce to
1 -
e (A12)
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for any single & in each shell, where

2=k 3 U,0)3,(p,8)U J(g) (A13)
g
and 4 is the order of &. The quantities s ;(p) are clearly
invariant under the full group ¥. The remainder of Eq.
(A12) is invariant under S 5 because § and — § lie on the
same symmetry axis. The basis can be chosen to
transform according to irreducible representations of S5
and thereby block-diagonalize Eq. (A12). On the bcc lat-
tice with a basis of one s and five d orbitals, the equation
for p =1 is reduced from a 66 matrix equation to two
2X?2 equations. The p =2 equation becomes one 2X2
and three scalar equations. This represents a substantial
simplification.

Evaluation of 3;(p) appears to require explicit represen-
tations for U;(g) and summation over all g. However, as
shown below, they can be calculated trivially from partial
traces of z,(p,a) All that is needed [see (A12)] is the

representation Uy(—1) of the element of & that takes &

into —&. If the local orbitals are eigenvectors of the in-
version operator, U 7(—1) is a diagonal matrix with diago-
nal elements + 1 and — 1 for even and odd orbitals.

The basis orbitals which transform according to irredu-
cible representations of S5 € % also transform according

to irreducible representations of &. They can be ordered
so that U,(g) is block diagonal

ﬁJ(g)mn =8mn‘ﬁm(g) ’ (A14)
where the indices m and n specify blocks of U containing
matrix elements between orbitals that transform according
to the mth and nth representations of &, the 4,,(g) are
elements of the mth representation and the index J has
been dropped. The matrix 3 J(p,B) can be divided into
rectangular blocks in the same manner

[gl(p:g)]mn E<_a,mn . (A15)
Equation (A13) is then

Sl =h "1 z Uy (8)Er i (g) - (A16)
A corollary of the great orthogonality theorem’® states

that Eq. (A16) vanishes unless m and n are equivalent ir-
reducible representations and that if m and n are
equivalent that

Zl(p)m,. (A16)
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The coefficients C for the few nonvanishing blocks are
calculated by noting that the trace of a matrix is invariant
under unitary transformations. Thus

C=1"tr(3,,) (A17)

where /,,, is the dimension of the mth irreducible represen-

tation.
With the above simplifications, numerical solution of

Eq. (A12) is straightforward. Guessed values of s J(p,S)
for each p and J are used to calculate 3 S00,—8),
Eq. (All), and ZJ(p Egs. (A13) and (A17). Equation
(A12) then gives new values for s J(p,ﬁ) This iterative
procedure converges to the physically correct solutions of
(A12) for any complex energy—provided that the initial
guesses for s (D, §) are zero. This initial condition corre-
sponds to terminating the Bethe lattice. Convergence is
slowest for energies near the van Hove singularities.
These singularities are properties of the infinite system
and the iteration scheme attempts to approximate them
with spectral properties of a finite cluster. Convergence
can be accelerated by extrapolating trends in the iterates.

For a cluster of one J atom, the diagonal element of the
Green’s function given by the alloy CBLM is

-1

Gl(E)= [ET-E,— 3 Z(p)3,(p) (A18)
y4

The configuration averaged local DOS on J atoms is equal
to the imaginary part of this quantity divided by 7. As
described in the preceding paragraph, G, (E) is most easi-
ly calculated at complex energies. However, the desired
outputs of the calculation are integrals over real energies
of the LDOS. These integrals are hard to calculate be-
cause of the van Hove singularities. An elegant way out
of this dilemma is found by noting that G§,(E) is analytic
away from the real axis. The contour of integration can
be deformed into the upper half—plane without changing
the integral.”’ The value of G{,(E) is easily found on this
contour and the integrand is guaranteed to be smooth’® so

that numerical integration works well. In typical calcula-
tions, the convergence to solutions of (A12) on the com-
plex contour takes < as many iterations, and < -5 as
many mesh points are needed for the numerical integra-
tion. The only trouble spots are at the points where the
contour returns to the real axis. One point can be chosen
below the bottom of the valence band where the LDOS is
zero. The second point is the Fermi level. Numerical ac-
curacy is reduced if this is very near a van Hove singulari-

ty.
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