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High-temperature dynamics of the Ising model in a transverse field
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We derive the moments, at T= oo, of the longitudinal spin-spin correlation function of the Ising
model in a transverse field. The first 20 moments are obtained for the linear chain, the first 12 mo-
ments for the fcc lattice. We use a method of Nickel [J. Phys. C 7, 1719 (1914)] to construct the re-
laxation function and find excellent agreement with the exact results of Capel and Perk [Physica
(Utrecht) 87A, 211 (1977)] in one dimension and extremely good corivergence in three dimensions.
Our method of analysis provides much better convergence than methods based on truncation of the
continued-fraction representation.

I. INTRODUCTION

This paper reports some new results for the dynamical
properties of the Ising model in a transverse field, which
is described by the Hamiltonian

of the approximants as more and more moments are used.
There are a number of related quantities which describe

the dynamics of (1). The most fundamental is the longitu-
dinal spin-spin correlation function,

C(R, t) = (cr'-(0)cr' (t) ) T
———Tr[e ~ cr'-(0)tT'-(t)], (2)

where o.",cr' are Pauli spin operators and the exchange in-
teraction is restricted to nearest neighbors.

Our motivation for this study is twofold. Firstly, the
model is directly applicable to a variety of condensed-
matter systems, ' including, for example, order-disorder
ferroelectrics, singlet ground-state magnetic compounds,
and cooperative Jahn-Teller systems. In many of these
applications the o's are "pseudospins" which represent the
states of a two-level system, and the transverse field is re-
sponsible for transitions between the levels. The second
motivation is that Eq. (1) represents probably the simplest
nontrivial quantum many-body system and its dynamical
properties are therefore of considerable intrinsic interest.

There have been many studies of the dynamical proper-
ties of the transverse Ising model. The early work of
Chock and Dagonnier and Moore and Williams was
based on an approximate solution of the kinetic equations
for the spin-spin correlation functions. Later work has
been based on the Mori continued-fraction representation
of the longitudinal relaxation-shape function, which is de-
fined below, with some type of truncation approximation.
This approach makes use of the frequency moments of the
relaxation function, which are related in a simple way to
the coefficients in the short-time expansion of the spin-
spin correlation function. There are two difficulties with
this latter approach. It is not easy to calculate the fre-
quency moments beyond the first few, particularly at fin-
ite temperatures. The other problem is the rather ad hoc
nature of the approximations which are used to terminate
the continued fraction. There appears to be no way of as-
sessing the validity of these and it is often the case, as we
shall show later, that there is no systematic convergence

S(k,co) = g J dt e' " ~"C(R,t),
277

R

and it is easy to see that the frequency moments of
S(k,co),

(co ) ~—= I co S(k,co)dco,

are related to the p„by

(co")-„=ge'" Rp„(R) .

The response of a system to an external disturbance is
conveniently expressed in terms of the "relaxation func-
tion"

{cr' (0), cr'-„(t) I
F(k,co)= dte' '

{cr* (0), cr'-(0)I
(7)

where

where the operators are given in the Heisenberg picture.
This function can be expanded, for short times, as

00 &n

C(R, t)= g —p„(R)t",
n On

where the p„, which we refer to as "moments, " depend on
R and also on temperature. Since C(t) is an even function
of time, only the even moments are nonzero. The
dynamic-structure function S(k, co), which is directly
measurable by neutron scattering, is defined by
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In the infinite-temperature limit (P~O) the functions

F(k,co) and S(k,co) become identical, and thus the (co")-
k

are also the frequency moments of the relaxation function.
We have computed the moments p„, up to n =12, for

gcIlc1 81 lattlccs 111 flic Inflnttc-tcmpcratlll c lllnlt. T11c

method of calculation and 8 table of results are given in
Scc. II. To thc best of our knowledge, prcvlous calcula-
tions have not proceeded beyond p6. The other new con-
tribution of the present work is in the method of construc-

tion of the function F(k, co) fmm the moments. Some
years ago, Nickel developed a method for approximating
thc rcspoIlsc fllllctloll of 8 systclll fl'oII1 8 knowledge of tllc
first few frequency moments. Although he considered a
somewhat different problem, namely a dilute ferromagnet
at T=O, the method itself is much more general and we
have applied it successfully in the present study.

In Sec. III, we discuss the continued-fraction methods
for approximating F(co) as well as giving an outline of the
Nickel method. In Sec. IV we consider the linear chain,
for which the autocorrelation function and its Fourier
transform are known exactly ' at T= oo. This provides
a test of the methods. The Nickel method gives impres-
s1vely good agreement with the exact results, while the
continued-fraction methods perform poorly. In Sec. V we
consider the face-centered-cubic (fcc) lattice, and present
an extensive set of results for both F(ttl) and C(t). The
conclusions of the paper are sumlnarized in Sec. VI.

The moments p„(g) are obtained flolll thc s11ort tlInc

expansion of the spin-spin correlation function, Eq. (2),

wh1ch at, T= (x) ls g1ven by

( I) 2
—HTr(a& eiHt z iHt)—

R 0 R

p„(R)=2-"Tr(a' [H, [H,a' ~~),

where the expression involves n nested commutators. The

occurrence of these repeated commutators makes the pro-
cess of calculating the p„very lengthy for n ~ 4. We have

developed a computer program to perform the algebra and
to keep track of the large number of terms, and in this

way have been able to compute all of the moments up to
and including ttt, I2. Such an approach was first used by
Morita" in a study of the dynamics of the Heisenberg
model.

The calculation is based on considering a set of clusters
of sites, "graphs. " For each graph the procedure is, brief-

ly, as follows.
(i) Choose an initial configuration consisting of an

operator IT at a particular site R and unit operators at all
other sites.

(ii) Carry out a commutation, using all terms in H and
storing all resulting configurations.

(iii) Repeat the procedure successively, checking wheth-

er at the conclusion of each stage any configurations have

a cr' operator at site O and unit operators elsewhere. Such
terms have a nonzero trace and, provided that all bonds of
the graph have been used, give a contribution to the mo-
ment. The whole procedure 1s then repeated for all non-
cqlllvalcllt 11lltlal sites of tllc gI'apll.

Thc graphs wh1ch contribute to thc moments, th1ough
order 12, together with their contributions, are given in

Appclldlx A. Thcsc Icslllts 81'c Independent of tllc partic-
ular lattice structure. To obtain the moments for 8 partic-
ular lattice it is only necessary to multiply each contribu-
tion by 8 factor which gives the number of ways of plac-
ing the graph on the lattice. We give explicit results in
TaMC I for the wave-vector-dependent moments (co")

k

for the fcc lattice. It is of course difficult, in calculations
of this type, to completely exclude the possibility of small
errors. However, for the case of the linear chain, the
known exact results do prov1dc a check. Fo1 th1s case
we have, in fact, computed the moments through pzo, us-

ing our program, and they agree exactly with those ob-
tained by expanding the exact expression. %C turn now to
the problem of constructing the functions C(t) and F(co)
from the moments.

TABLE I. Relaxation-function moments (co") for the transverse Ising model at T= ao on the fcc
k

lattice. The parameter a denotes the ratio I /J.

(co ) „=(2J)la
(c0 )-„=(2J)(12a2+a")
(co ) „=(2J)6(408a +36a"+a )

(co ) „=(2J)[21792a2+(3360+672ft)a~+72a +as]
(co' ) „={21)'[1532928a + (434 112+76032ft )a + (21 168+950ft )a + 120a'+a'o]
(to' ) „=(2J)' [130179072al+(66949560+22726656ft)a4
+(6203952+1864896ft+9504fl+6336f3)a +(152352+96096ft)a +180a' +a' ]
with

k„a kya k~a k,a kya k,aft(k)= —cos
" cos +cos "

cos
' +cos ~ cos

3 2 2 2 2 2 2
If1(k )=—(cosk„tt +cosk„a +cosk, a )3,

kya k,a k„a k,a k„a kya
fI(k) =—cosk„a cos cos

' +cos " cosk„acos * +cos " cos " cosk, tt
3

" 2 2 2 " 2 2 2
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III. METHODS FOR CONSTRUCTING E(~)

F(s)= J e "F(t)dt,

as a continued fraction

(10)

The Mori continued-fraction formalism expresses the
Laplace transform of the time-dependent relaxation func-
tion,

and carrying out the integral over t we have

oo F(co')
iF—(iz) =F(z)= dco'-,

cm 6) —Z

where F(z) is an analytic function of z in the lower half-
plane. If we now let z =co—i e, then as e~0 we obtain

F(co)= g „, in—F(co.) .

F(s)=

2S+
$ + o ~ o

(11) Thus F(co)= —1/nImF{co) and

oo { n)
, =ReF(co) .

n=o ~

E„(s)=['s+5„+1K„+1(s)]

and where the 5 coefficients are directly expressible in
terms of the moments {co").7' The relaxation function
F(co) is then given by

F(co)=—ReF(s =i co) .

Note that in the above equations, and in the remainder of
this section, we suppress the k dependence of various
quantities.

Several methods of terminating the continued fraction
have been proposed and are widely used in the literature.
The "n-pole approximations" neglect the s dependence of
E„(s)and write

K„ 1(s)=(s+r„ 1)

where T rcprcscnts a rclaxatioQ time, which ls then cx-
pl'essed 111 terms of tile lower-olclel' Bloniellts. Tllel'e ls llo
unambiguous way to do this and several expressions have
been used. The three-pole approximation of Lovesey and
Meserve, ' used in much of the literature, mainly in con-
nection with Heisenberg systems, consists of taking

—,'n52. I——n an earlier study of the transverse Ising
model, Tommet and Huber use

&1 = in[(5z"+ 25151 '")/(5i+51)l'

More recently, Dc Raedt and De Raedt' have proposed
the ansatz r„=5, 1+5„,and this latter form has been
used in a study of the one-dimensional transverse Ising
model by Plascak et al. '

An alternative truncation approach, known as "Gauss-
ian termination, " has been used in studies of Heisenberg
systeIDs, ' ' and was used by Pak in his work on the
transverse Ising model. IQ this approach the nth-order
memory function K, (t) is assumed to be a Gaussian, the
width of which is determined by the (n+1)th moment.
This leads to automatic termination of the continued frac-
tion and an explicit expression for the function F„(co).'

The Nickel method is quite different from the scheme
described above. Letting s =iz with Imz &0 in (10), using
thc relation

F(t)= J dco'e™F(co'),

A direct approximation of the moment series by Padh ap-
proximants is doomed to failure as one obtains only a set
of poles (usually on the real z axis) which represents the
branch cut along this axis. The imaginary piece of F(co)
is simply a set of 5 functions rather than the continuous
function which we wish to obtain.

In order to circumvent this difficulty, Nickel' first car-
ried out a nonlinear transformation

(17)

where 2A, is the length of the branch cut on the Rez axis
which is here assumed to bc centered at ~=0. In the
complex g plane the branch cut is mapped onto the circle
of radius A, . The interior of the circle contains the un-

physical sheet of F{co)to which any spurious singularities

are confined. The exterior of the circle is the physical
sheet. The transformation (17), when substituted in the
moment series, increases the radius of convergence of the
series. Moreover, Pade approximants to the series in 1/g
do not have poles on the branch cut and one obtains con-
tinuous real and imaginary parts of the function F(co) in
the range —2A, ~ co (2A..

At first sight it might seem that this method is limited
to systems in which the branch cut is of finite extent.
However„since F(co) decreases rapidly as a function of co,
we expect that a finite series of moments will primarily
produce poles in the region in which F(co) is large. We
have found this to be the case. In our analysis we first
construct [E/X] or [Jii/%+1] Pade approximants to the
series, Eq. (16). The location of all poles is determined
and an initial choice of A, is taken to be the location of the
pole farthest from the origin. The nonlinear transforma-
tion is then carried out for a number of values of A, in the
vicinity of the initial choice and the value which produces
the best internal convergence of a series of approximants
using more and IQOI'c moments is t4cn adopted as thc final
choice.

One slight disadvantage to the Nickel method is that
F(co)~0 at

~
co

~

=2& and, indeed, approaches zero with
the functional dependence (2~—

I
co

I

)' . Since F(co) is
already quite small at this value of co, this is not a serious
problem.

IV. THE LINEAR CHAIN

For the linear chain at T= ao only the correlation func-
tion with R=O is nonvanishing. Consequently the struc-



0.6

FIG. I. Relaxation function 2I F(rip) as function of m/2I" for the linear chain for (a) I /J =0.5, (b) I /J =1.0, and (c) I /&=2. 0.
IB each case thc solid cufvc 1s thc exact result of Capel Rnd Pclk (Rcf. Io). Dashed cuxvcs Rrc obtMncd &on thc Nlckc~ method w&th

(a) A, =2.5, (h) A.=2.0, and (c) A, =1.0, [4,4j Pade approximant, intermediate jength dash; [4,5j Pade approximant, short dash; [5,5j
Padc Rpproximant, long dash.
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0.5—

FIG. 2. Autocorrelation function C(~) as function of v=21 t for the linear chain for (a) I /J=0. 5, (b) I /J=I. 0, and (c)
1 /7=2. 0. Solid curve is the exact result of Capel and Perk. Dashed curves correspond to numerical integrals [Eqs. (13)] of the
function F(co) shown in Fig. 1. [4,4] Pade approximant, intermediate length dash; [4,5] Pade approximant, short dash; [5,5] Pade ap-

proxlmantq long dash.



iI1Cdb thC Ni«CI m«h«. (» I ~J=I 0, A, =3.0; (b)

, d d curve. The [2,2], [2,3], and [3,3] Pade appr
=0 fQr thC fCC 18ttlCC 88 dCtCI'GllllC P C

C 8 I'OX1m8IltS 8I'CI /J=3. 0, A, =2.35; (c) I /J=6. 0, A, =1.8. [1 2] Pade approximant, dotte curve.
8IIOSt 1Ild1St1flgU1S 8 C.

'
h 11 The solid curve is the [3,3] Pade approximant.
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FIG. 4. RRClRXStlOQ fUQCtIOQ 2I E(k, 6) ) St k =0R,Q) St k=0 fOI thC fCC 18tt1CC ObtMQCd b GSt k =0 MQC P GSU8818Q trUQC8tiOQ Of thC COMQC G C COQt1QUCd fI'RCt1OQ I'Cp-

. F - TDR 1OQ, OttCd CUI'VC' 8CTD, CCOQd-OI'dCI RPPI'OX1mSt

th-OIdCr 3,PPI'OX1mRtlOQ, 80114 11QC.
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G.5

G.G

~ ~
~

~
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FIG. 5. Relaxation function 2I F(k m) at k=O f h fFIQr. a = y the de Raedt approximation scheme of the contin-a = or t e cc lattice obtained b
= . , and (c) I /J =6.0. First-order truncation

es; third-order truncation, chain dot' f rth- d
, dotted curve; second-order truncation short

fifth-order curves in 2(a) are not distinguishable
ou -ol er truncation, ion dashesg es; fifth-order truncation, solid line. The fourth- and

4
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(b)
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FIG. 6. Autocorrelation function C( k, ~) at k =0 for the fcc lattice where ~=2I t. C( k, ~) is obtained by Fourier transform of the
functions Ii(k, co) plotted in Fig. 3. Again only the transform of the [1,2] Pade approximant deviates significantly from the con-
verged result. (a) I /J =1.0, (b) I /J =3.0, and (c) I /J =6.0.
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ture function and relaxation function are independent of
wave number. Capel and Perk' have calculated C(t) and
F(co) exactly for general values of the parameters I",J.
Both functions consist of a Gaussian multiplied by a Jaco-
bi 0 function. For the special case I =J the functions are
pure Gaussian. We have generated the moments through

pro for this case and have used these to test the accuracy
of the Nickel method. In Fig. 1 we show results for the
relaxation function F(m), for three values I /J=0. 5, 1.0,
and 2.0, obtained from the higher-order Pade approxi-
mants. Agreement with the exact results is remarkably
good. Also gratifying is the fact that higher-order Fade
approximants, which make use of more moments, give
more accurate results. We have also computed F(co) from
the continued-fraction representation using both De Raedt
n-pole and Gaussian termination. In both cases low-order
approximants tend to give an F(co) with the correct quali-
tative shape, but with quite incorrect numerical values.
Higher-order approximants contain totally spurious struc-
ture and show no indication of convergence. This type of
behavior, in the case of the isotropic Heisenberg ferromag-
net, has already been noted by Tucker. '

From the approximants for F(co) we have computed
C(t) by simple numerical integration. These results are
shown in Fig. 2, as are the exact results. The agreement is
again excellent.

V. THE FCC LATTICE

We have also analyzed the moment series for the trans-
verse Ising model on the fcc lattice using the three
aforementioned methods. We have calculated the relaxa-
tion function F(k, co) at the zone center (k = 0) and at the
zone boundary point k=(a/a)(1, 1,1). As there is very
little difference between the results for these two values of
k we report only the results for k =0. In Figs. 3(a)—3(c)
we display the relaxation function for I /J =1, 3, and 6
determined from the [1,2], [2,2], [2,3], and [3,3] Pade ap-
proximants to the moment series after it has been
transformed according to Eq. (17). Except for I /J=3,
the internal convergence of the approximants is remark-
ably good and at I /J=3 it is only the lowest-order [1,2]
approximant which shows any significant deviation from
the others. In the vicinity of this value of I /J the relaxa-
tion function changes from one with only a central peak
to one with a peak at a nonzero value of co and it may be
that this crossover is only properly reflected in the higher
moments. In Figs. 4(a)—4(c) and 5(a)—5(c) we display the

results obtained using Gaussian and De Raedt termination
of the continued fraction. As in the case of the linear
chain, the first three approximants in each of the schemes
seem to converge to a function similar to that obtained
from the Nickel method. The higher-order approximants
are quite different and there is no indication that these
procedures will converge at all. In Figs. 6(a)—6(c) we plot
the autocorrelation function for the same values of I /J at
k=0 obtained by evaluating the integral, Eq. (13), be-
tween —2A, and 2A, with F(co) determined by the Nickel
method. Because of the cutoff at 2A, , which is inherent in
the Nickel method, there are some spurious truncation os-
cillations. These are, however, too small to show up on
the scale of the graphs. The convergence of C(t) is seen to
be extremely good.

VI. CONCLUSIONS

We have derived the frequency moments at T=ao
through order 12 of the relaxation function of the trans-
verse Ising model in three dimensions and through order
20 for the linear chain. We have shown that the relaxa-
tion function can be reconstructed very accurately using a
method of Nickel. The agreement with the exact one-
dimensional results of Capel and Perk' is extremely good
and in three dimensions the internal convergence of the re-
sults is quite impressive. Since even low-order approxi-
mants in three dimensions display the correct behavior, we
believe that there is reason to be optimistic that the
dynamics of other quantum many-body systems can be
determined in the same way.

The relaxation function of the transverse Ising model
seems to be a smooth nonsingular function of m for all
values of I /J. It will be of considerable interest to study
the relaxation function of systems such as the spin- —,

Heisenberg antiferromagnetic chain which is believed to
diverge at co=0. Preliminary results for this problem are
encouraging and are planned to be reported in a separate
paper.
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APPENDIX

The graphs which contribute to the moments, through order 12, are shown below. The contribution of a particular
graph and a particular choice of initial and final sites (IF) is expressed as a sum of terms of the form C(m, n). This
denotes a contribution to p +„ofthe form CJ I'".

Graph (IF) Contribution

1(0,2)+ 1(0,4)~ 1(0,6)+ 1(0,8)+ 1(0,10)+ 1(0,12)+

1(2,2) + 1(4,2) +3(2,4) +1(6,2) +5(4,4)+6(2,6)
+ 1(8,2)+7(6,4)+ 15(4,6)+ 10(2,8)+ 1(10,2)
+9(8,4)+28(6,6)+35(4,8)+15(2,10)+
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(1,1)
(2,2)

1(4,4)+3(6,4)+5(4,6)+6(8,4)+21(6,6)+15(4,8)+
6(4,2)+30(6,2)+48(4,4)~ 126(8,2)+372(6,4)+308(4,6)

+510(10,2)+2160(8,4)+3384{6,6)+2272(4, 8)+ ~ . .

(1,1}
(1,2)

56(6,4)+690(8,4)+ 866(6,6)+
14(4,4)+ 144(6,4)+198(4,6)+ 1056(8,4)+2882(6,6)+2002(4,8)+ ~ ~ .

(1,1)
(2,2)

1(6 6)+. . .
28(6,4)+ 345( 8,4)+ 558(6,6)+

(2,2}

90(6,2)+ 1260(8,2)+ 1620(6,4) +13230(10,2)
+32 760(8,4)+21 762(6,6)+ .

6(6,4)+42(8,4)+60(6,6)+ ~

(1,1)
(2,2)
(1,2)
(2,3)

2520(8,4)+
352(6,6)+ .
144(6,4)+3102(8,4)+3432(6,6)+ ~ ~ .
270(8,4) +

(1,1)
(2,2)

2520(8,2)+75 600(10,2}+88200(8,4)+ - ~ ~

90(8,4)+

(1,1)
(2,2)

1260(8,4)+ . .
270(8,4)+

(1,1)
{2,2)

{1,3)

112(6,4)+4440(8, 4}+2412(6,6)+
28(6,6)+ ~ ~

418(6,6)+ ~ ~ ~

4356(8,4)+ ~ ~

(2,3) 2178(8,4)+

(1,2) 3300(8,4)+ ~ ~ ~
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113400( 10,2)+

(1,1)
(3,3)
(1,3)

5040( 8,4)+
1080(8 4)+
5040(8,4)+ .
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