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Thc exact IIlagnctlc susccptlb111tlcs of h1cIalchlcal Inodcls RI'c calculated ncal and Malay from cr1-

ticality, in both the ordered and disordered phases. The mechanism and phenomenology are dis-

cussed for models with susceptibilities that are physically sensible, e.g., nondivergent arvay from cri-

ticality. Such models are found based upon the Niemeijer —van Leeumen cluster renormalization.

A recursion-matrix method is presented for the renormalization-group evaluation of response func-
tions. Diagonalization of this matrix at fixed points provides simple criteria for well-behaved densi-

tlcs and rcsponsc functions.

I. INTRODUCTION

A hierarchical model' is constructed by repeatedly re-
placing each single bond between interacting degrees of
freedom with a multiply connected graph of many bonds
(Fig. 1). As is evident from their construction, hierarchi-
cal models are solved exactly by the position-space
renormalization-group method. Such models can exhibit
phase transitions and nonclassical criticality at finite tem-
pelatures. '

Hierarchical models were originally inspired by
position-space renormahzation-group approximations for
Bravais lattices. In fact, such approximations ' that had
been widely and successfully used are the exact solutions
of corresponding hierarchical models; this realizability
guarantees important physical requirements. ' Further-
more, an unlimited variety of hierarchical models can now
be constructed and used as a testing ground for new con-
cepts. For example, with the introduction of frustration,
chaotic renormalization-group trajectories were obtained
for the first time, leading to a microscopic picture of a
spin-glass phase. Another example is defect structures
embedded inside hierarchical models that exhibit novel or-
derIng behavior.

An immediate visual distinction between models on
Bravais lattices and hierarchical models is that the latter
are not translationally invariant. As described above, dif-
ferent classes of sites have different coordination numbers,
smaller and smaller numbers of sites having larger and
larger coordination numbers. For example, consider the
hierarchical model of Fig. 1 (where the recursion rdation
of the Migdal-Kadanoff renormalization-group approxi-

mation finds an exact application): The mth level of the
hielai'chy contains 2 si'tes of coordination number
2 +', where L~ao is the total number of levels. Ac-
cordingly, the average coordination number of the entire
system is q=3.

An important thermodynamic consequence of the high-
ly coordinated sites is that the magnetic susceptibihty of
the disordered phase is infinite. This was noted by Kauf-
man and Griffiths, who presented an analysis of the
infinite-temperature limit under an applied magnetic field,
and extended this anomalous susceptibility result to finite
temperatures by invoking the Griffiths-Kelly-Sherman
(GKS) inequalities. In the present paper, a
renormalization-group analysis of the finite-temperature
region is given, reachirg agreement with the previous
work. Then, a family of hierarchical models with more
regular coordination is introduced and a criterion for
physically reasonable susceptibilities is derived. These
new models are inspired by the finite-cluster
renormalization-group approximation of Niemeijer and
van Leeuwen. Our analysis formulates a compact
recursion-matrix method for the renormalization-group
evaluation of the response functions.

Our work can also be related to the previous work of
Mazenko, Hirsch, Nolan, and Valls, who studied the cu-
mulant approximation of Niemeijer and van Leeuwen
and found anomalous algebraic decay of the correlation
function in the high-temperature phase. Our criterion sat-
isfies (and is more restrictive than) the criterion given by
these workers for normal exponential decay of the corre-
lation function. Thus it appears that the correlation func-
tions of the new models will also be well-behaved. This is

FIG. 1. Construction of thc hierarchical model (Rcf. 1) that 1s solved exactly ~ith thc M1gdal —K.adanoff rccurs1on relation.
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important since, with the introduction of frustration, these
models will be used to explore the response and correla-
tion functions of the spin-glass phase resulting from
chaotic renormalization-group trajectories. '

The outline of this paper is as follows. In Sec. II the re-
cursion matrix is formulated and the mechanism behind
the anomalous response functions is exhibited. In Sec. III
the cluster-hierarchical models are introduced and the cri-
terion is established for well-behaved susceptibilities in the
disordered phase. The ordered phase is studied in Sec. IV.
Thus magnetic susceptibilities are exhibited along the en-
tire temperature range.

II. CALCULATION OF SUSCEPTIBILITIES
BY THE RECURSIQN-MATRIX METHOD

where X~ is the total number of a-type interactions in the
system. With the use of the two expressions for ihe parti-
tion function and the chain rule, the density recursion is
obtained, '

A'p BEpM~=8 'QMpTp, Tp =
BE

At a fixed point, M =M~ =M* and Fq. (2) becomes ' "
the condition for the left eigenvector of T with eigenvalue
8. Note that M is nonzero, since it contains the trivial
density (1) associated with the additive constant (G) in
the Hamiltonian, which is inevitably generated in a
renormalization-group transformation. The densities of
an ordinary point are computed by iterating Eq. (2) until a
fixed point is effectively reached. The matrix T is
evaluated at each successive tEj, so that a numerically'
different matrix has to be multiplied for each iteration un-
til the fixed point is reached.

Extending this approach to response functions

p
3 lnZ

BK~BKp

yields

The densities and response functions of two consecutive
points along a renormalization-group trajectory can be
linked by a recursion matrix, which is constructed from
first and second derivatives of the recursion relations. At
a fixed point of the transformation, corresponding to a
phase transition or a phase sink, " the densities and
response functions are the components of the left eigen-
vector of this matrix with eigenvalue equal to the volume
rescaling factor 8. Unphysical behavior can thus be easily
detected by diagonalizing the recursion matrix at a fixed
point.

We first give the general formalism. The partition
function of a system can be expressed either in terms of
the original interactions, Z(IE~ j ), or in terms of the re-
normalized (primed) interactions, Z( IE' j ). Conjugate to
each interaction E, there is a density M~ (e.g. , internal
energy, magnetization)

II 8 lnZ
CX

(4)

which, combined with Eq. (2), constitutes a recursion ma-
trix r operating to the left on a vector with components
M and X p. Densities and response functions at a fixed
point are the components of the left eigenvector of r with
eigenvalue 8, and those at an ordinary point are found by
iterative matrix multiplication. ' The above method can
easily be applied with a position-space renormalization-
group transformation that is either an approximation for a
Bravais lattice, or the exact solution of a hierarchical
model. Both situations are readily amenable to the
method because the number of interaction types remains
finite under renormalization.

In the hierarchical model of Fig. 1, the following Ham-
iltonian retains its form under renormalization:

—PA = g [Js;s~+Hs(s;+sj)+G]+Hs gs;,
&Ij) l

where s; =+1 is an Ising spin at site i and the sum (ij )
includes all nearest-neighbor pairs of sites. Magnetic
fields that are counted with bonds (Hs) and sites (Hs)
must be distinguished due to the nonuniform coordination
number. The renormalization-group transformation that
solves the model is effected by summing over the two
internal spins of the basic graph, thereby inducing direct
interactions between the two external spins in order to
preserve the free energy of the system. The recursion rela-
tions which embody this procedure are

J'= , ln(A++A /8+—),
Hr'i ———ln(R /R ), Hs —Hs,
O'=KG+6, G= —,'ln(R++R R~ ),

where

A++ ——xy z+2y+x z

=xy-'z-'+2y-'+x-'z,

R+ ——zy+z+y z, x =e, y =e, z=e4J 4H~ 2H~

Under rescaling, a finite site field Hs always induces a
finite bond field Hs, while itself remaining invariant,
H& ——H~. The site field is included in this study because it
is the proper generating field for a single-spin expectation
value. The up-down symmetric subspace, Hz ——Hz ——0, is
conserved under renormalization. Within this subspace,
derivatives even in H are in general nonzero, yielding a re-
cursion matrix as given in Table I.

A11 renormalization-group trajectories initiated in the
high-temperature (J ~J, ) phase flow to the infinite-
temperature fixed point (J =0), which is the sink of this
disordered phase. There, for the model of Fig. 1, the re-
cursion matrix reduces to
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TABLE I. Recursion matrix ~ used in the evaluation of densities and susceptibilities. This matrix
operates to the left on the vector ( 1; ( s;sj ), ( (s; +sj ) ), ( si ) y XBBiXBS iXss ).

aJ'
aJ

8 6'
aH,'

8 J
BHg

' 1/2 a'6'
2 BHgBHs

I /2
8 J

2 BHa~Hs

aH,'

BHg
~ BHg

Hs
BHs

BHs

BHg

BHg

BHB aHB

Ha BHs
BHg BHs

()Hg BHs

2
BHg

2 Bas

(2q)„,aH,' aH,'

aH, ~H,
aH,'

aHs

4000 8

00000
00200
000 10
00004
00000
00000

2v6 3

0 0
0 0
0 0
0 0
2 0
0 1

II wr

J'

0

operating to the left on (1;(s;sj), ((s;+sj)),(s;);XBB,
XBB,Xss ), where the three susceptibilities are second
derivatives of the free energy with respect to bond and/or
site fields, according to Eq. (3). (Our approach is equally

applicable to the second derivative with respect to J, yield-

ing the specific heat. ) From the appropriate left eigenvec-

tor, it is seen that XBB is infinite, whereas the other sus-

ceptibilities are finite: XBs——V 6 and Xss ——l. It could be

argued that X~~ is the important susceptibility, since it
corresponds to the physically interesting generating field.
However, for any temperature less than the trivial case of
infinity, the recursion matrix mixes the three susceptibili-

ties, so they all become infinite. The physical reason
behind this is that the highly coordinated sites feel a very

large applied field channeled through their many neigh-

bors. This result also holds true for the variant in which

the site field is applied only at the lowest level of the

hierarchy, so that Hs —0. The susceptibilities fo«»s
case are XBB 0D XBs ~2, and Xss = »t ~ =0.

III. CLUSTER-HIERARCHICAL MODEL

The anomalous susceptibility behavior described in the
preceding section need not be characteristic of all
hierarchical models. It is eliminated by constructing a
model that avoids high coordinations. An example is
shown in Fig. 2 and described below. This hierarchical
model is related to Niemeijer and van Leeuwen's cluster
approximation applied to a square lattice, just as the
preceding model is related to the Migdal-Kadanoff bond-
moving approximation. In considering this new model,
we have also moved from position-space renormalization-
group transformations closely related to a decimation to
nonlinear transformation, in which a cell spin is intro-
duced as a distinct entity from the site spins, via a projec-
tion operator.

The closed circles in Fig. 2 are site spins s; =+1,which
are replaced by cell spins (s =+1, represented by open
circles) under rescaling. The cell spin is initially connect-
ed to its four site spins by a projection operator, which has
the following most general form preserving the sym-
metries of the system:

&(s',s) 4) = —,
'

I l+s'[u, (s) +s, )+ui($3+s4)

+Ui($4$)$2+S(S2S3 }

+ 2( Z 3 4+ 3 4 ))]I .

The operator I'(s', s) 4) is represented by dashed lines in
Fig. 2. The interactions Js;sj between the site spins are
represented by full lines, with an average coordination
number q = —,. The full Hamiltonian of the hierarchical
model is

FIG. 2. Construction of the cluster-hierarchical model. In

the graph to the right, the dashed lines represent the projection-

operator part of the Hamiltonian. The full lines are the interac-

tions Js;sj.

13~ y )g (0) (0)+II ($(0)+s(0))+6)
(ij)

+H, y s,"'+ g im(s, ( ' s™I l
)

m, i
(10)
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TABLE II. Recursion polynomials of the cluster-hierarchical model for the case u& ——u2 ——0 and
v ~

——v2 ——1/4. The polynomial R is obtained by changing the signs of n» and n~ in R++.
Polynomials

g (g (p) /g)(& xp)1/2(y yp )1/2& zp

p

g (g(p) /g)(& xp)1/2(~ yp)1/2& zp

(8,0;5,10,4)
(8,12;3,8,3)
(8,4;3,6,2)
(0,'83,'0,'0)

(0,4;3,-6,-2)
(0,12;3,—8,—3)

'(8, 12;2,7,3)
(16,8;2,5,2)
(24,4;2,3,1)

(0,4;2,—3,—1)

(0,8;2,—5,—2)
(0,12;2,—7,—3)

(2,6;1,6,2)
(9,7;1,4,2)
(4,8;1,4, 1)

(p) (p){~++ ~~ + —~llxp~7lyp~nzp )

(28,12;1,2, 1)
(2,2;1,2,0)

(10,14;1,0,0)
(2,2;1,—2,0)

(12,12;1,—2, —1)

(12,8;1,—4, —1)

(9,7;1,—4, —2)
(18,6;1,—6,—2)

(20,20;0,5,2)
(12,24;0,3,1)

(4,8;0,1,1)
(20,28;0, 1,0)

(20,28;0,—1,0)
{12,8;0,—1,—1)

(36,24;0,—3,—1)

(36,20;0,—5,—2)
(1,3;—1,4,2)

(12,24; —1,2, 1)
(34,46;—1,0,0)

(36,24; —1,—2,—1)
(9,3;—1,—4, —2)

(8,16;—2,3,1)
(8,8;—2, 1,0)

(8,8;—2, —1,0)
(24, 16;—2, —3,—1)

(4,8;—3,2, 1}
(12,12;—3,0,0)

{12,8;—3,—2, —1)

(4,4; —5,0,0)

where (m) indicates the level of the hierarchy.
The recursion relations are again derived by summing

over internal (site) spins within a basic unit to obtain ef-
fective interactions involving only the two external (cell)
spins. Equations (6) are applicable here with Hs ——0 as the
only modification, since the site fields are applied at the
lowest level of the hierarchy (which in itself does not
guarantee well-behaved susceptibilities, as seen in the pre-
vious example). The polynomials R are longer than their
previous counterparts, but present no essential difficulty.
An example is given in Table II. Again the zero-field sub-

space, closed under the recursion relations, is studied and
the recursion matrix is as given in Table I, with the added
simplification of BHs /()Hs ——0. . Eigenvector analysis at

In/J-J, f

the disorderd sink J =0 yields the susceptibilities

26 32u
+88 +

I —10u

8(u)+Q2)
&ss =1+

5(1—10u )

16u(u) +u2)
~Bs ~5 +

5(1—10Q )

u =(2u)+ 3u 2) /5 .

In order to simulate well a Bravais lattice, we choose
u1 ——u2 ——0, giving the susceptibilities of a decoupled spin.
Furthermore, to force complete alignment throughout the
hierarchy at J'=0(2 (i.e., to preserve the ground state
under the renormalization-group transformation), we
choose u~+u2+v~+v2 ———,. Within these restrictions,
one free parameter is still available, which we set by
v&

——v2 in the present study. Now the model is fully speci-
fied, and its exact renormalization-group solution yields
satisfactory response functions.

400—
20

X 300-

~ 200—
G)

100—

0-
0 0.4

JC'1

O.S ~1.2 1.6
Temperature J-'

2.0 2.4

FIG. 3. Calculated susceptibility Pqz of the cluster-
hierarchical model.

10 8

0 2

0 0
0 0
0 0
0 0
0 0

0 0 B)
0 0 —Bi
10' 0
0 0 0
0 0 100
0 0 0
0 0 0

—B2 —B3

0 0
0 0

20~5 20
0 0
0 0

(12)

IV. LOW-TEMPERATURE ORDERED PHASE

The same eigenvector analysis is done with the matrix ~
at the sink of the ordered phase, which occurs at zero tem-
perature, J =oo. It shows that the susceptibilities are
well-behaved at low temperatures (J &J, ) in either of the
two models discussed. At the sink of the cluster-
hierarchical model,
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with

Bi ——16(25—50u2+14vi)/(5 —8uz),

B2——24W5(3 —6u2+2ui )/(5 —8u2),

B3——5(13—26u2+10ui )/(5 —8uz),

where only the restriction that the ground state be
preserved under the transformation (u i +u z+ U i +uz
=1/2) was implemented. The recursion matrix in Eq.
(12) gives the expected zero-temperature densities and sus-
ceptibilities in its eigenvectors

(1;&; J&, &(;+ J)&,&;&;X,X,X )

=(1;1,2Ms«MsiXss/2~Xss/2v 5,Xss),
where Ms is arbitrary and Xss is zero or infinity. A single
ordered phase corresponds to Mq ——1, Xq~ ——0, whereas
two-phase coexistence corresponds to —1 ~ Mz & + 1,
Xss ——oo. Physically sensible behavior of these quantities
is obtained throughout the low-temperature phase, using
the procedure described in Sec. II.

The susceptibility Xzz is displayed in Fig. 3 along the
entire temperature range. In the critical region, the
power-law divergence is

Xss-
~

J—Jc
~

i' y=3 05.
Identical values of the critical exponent y are determined
from either of the log-log plots (inset, Fig. 3) obtained nu-

merically by the recursion-matrix method along the flows
to either phase-sink fixed point J"=0, ao, and from

BHs
y= 21n

8

reflecting standard eigenvalue analysis' at the unstable
critical' fixed point J =J,=0.882. The derivatives in
Eq. (15) correspond to the leading magnetic and thermal
eigenvalues of the recursion matrix, and B=10, in the
present model.

At nonzero fields, the odd derivatives do not vanish,
and the recursion matrix becomes quite cumbersome. It is
therefore more convenient to use the alternate method of

directly calculating' the free energy per bond,

n=1
B nG—[J(n —1) H(n —1) H(n —i)~ (16)

and

Q2=0

1Q1++2+V1+V2

(17)

which are consistent with our choices. Thus, it appears
that the correlation function will be physically sensible
within both the ordered and disordered phases. Such a
study will be presented separately.
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where a given term is the contribution of the nth renor-
malization, and then taking two field derivatives numeri-
cally. Conversely, the latter method cannot be used
directly at zero fields in the ordered phase, since the nu-
merical derivative picks up for susceptibility of the infin-
ite slope corresponding to the magnetization discontinuity.
What is desired, of course, is the slope of the M(H) curve
just before the discontinuity, which is obtained by doing
the calculation at infinitesimal H. Identical values are ob-
tained more readily by the recursion-matrix method at
zero fields. Thus the two methods are truly consistent
and complementary.

Finally, Mazenko, Hirsch, Nolan, and Valls have given
criteria for exponentially decaying correlation functions
away from criticality. When applied to our cluster-
hierarchical model, these translate into
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