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Static and dynamic magnetic response of spin-glass models with short-range interactions
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The static and dynamic magnetic response of the two-dimensional Edwards-Anderson model with

a nearest-neighbor Gaussian exchange distribution is investigated by Monte Carlo simulation. A
plateau in the equilibrium (slowly field cooled) susceptibility M,q /H is found, which diverges for
small fields with a power law M,q /H ~H', 6=3.5+0.5. The boundary of the plateau H,' (T)
tends to zero temperature as H, (T) ~ T~, consistent with a scaling description appropriate for a
static phase transition at T=O, and the associate scaling function is estimated. Surprisingly the
data also are consistent with a scaling representation with nonzero freezing temperatures Tf, in

striking similarity to experimental data, but Tf ——0 is shown to be the correct choice. The zero-
field-cooled susceptibility starts to differ from M~ /H below a certain critical field H, (t), t being
the time scale over which the field is applied. In the H-T plane H, (t) extrapolates to a time-

dependent freezing temperature Tf(t), and closely resembles the de Almeida —Thouless line. A ten-

tative interpretation of these findings is attempted by combining scaling considerations with the
reorientation of correlated clusters which have the size of the correlation length describing
Edwards-Anderson order. The reduction of the free-energy barriers due to the magnetic field is

treated in analogy with the interface free-energy reduction of ferromagnets in random fields.

I. INTRODUCTION

The nature of the freezing of magnetic moments in
spin-glasses still receives considerable attention. ' In par-
ticular, the question whether the spin-glass transition is a
dynamic nonequilibrium process or a true phase transition
with an infinite correlation length is controversial. There
is a growing number of experiments which are interpreted
as a clear evidence for a static phase transition. These in-
clude (i) a plateau in the field-cooled susceptibility as a
function of temperature, (ii) the singular phase dia-
gram in the field-temperature plane, ' (iii) scaling laws
of the nonlinear field-cooled susceptibility, ' ' and (iv) a
breakdown of the Vogel-Fulcher law at the freezing tem-
perature Tf.

The most successful model of spin-glasses has been in-
troduced by Edwards and Anderson (EA). ' In fact, its
infinite range versio-n has a static phase transition, ' and
many details of experiments (i)—(iv) have been predicted
by this mean-field theory, ' ' at least qualitatively. On
the other hand, the EA model with short-range interac-
tions in two dimensions has no static phase transi-
tion. ' ' Nevertheless, this model also reproduces m.any
experimental findings remarkably well. Thus it ap-
pears to be necessary to investigate static and dynamic
properties in much more detail to distinguish between
nonequilibrium and static behavior.

In this paper, we continue the investigations of the
two-dimensional EA model. Thus the Hamiltonian is
given by

nearest-neighbor couplings distributed randomly by the
Gaussian

JP(J) ~ exp—
2(AJ)

(2)

II. MONTE CARLO SIMULATIONS

A. Static magnetization

We now discuss the properties of the field-cooled mag-
netization. In thermal equilibrium the susceptibility is
just a simple Curie law (note that there is no phase tran-
sition in our model; thus the EA parameter q =[(S;)],„

is
always zero). Thus one has

and H is an external applied field. For the dynamics we
use usual Monte Carlo procedures of a 60' 60 lattice with
periodic boundary conditions (for details, see Refs. 21, 22,
and 25). In Sec. II we present results of numerical simula-
tions. Section IIA contains static properties of the non-
linear susceptibility such as the plateau and scaling fits.
In Sec. IIB dynamic properties in the field-temperature
plane are discussed. In Sec. IIC we discuss the energy of
metastable states. In Sec. III we present some tentative
phenomenological relations, demonstrating how a correla-
tion length which diverges at zero temperature is related
to the nonlinear susceptibility and the characteristic relax-
ation time. In Sec. IV we summarize our findings and
present our conclusions.

where 5;=+1 are Ising spins on a square lattice, J& are where M,q is the equilibrium magnetization and T is the
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FIG. 1. Susceptibility M/H plotted vs temperature for two

values of the field H. The solid circles show the field-cooled
magnetization. The other symbols show the magnetization ob-

tained from zero-field cooling and then applying the field H for
a given time as indicated. Arrows identify critical fields as dis-

cussed in the text and shown in Figs. 2 and 3.

Monte Carlo steps per spin) in an external field H. We
have obtained the same results when our cooling rate was
4 times slower. This indicates that one has MFC ——M,q for
H&0.05bJ and A, &6.25X10 bJ/MCS. However, for
larger cooling rates we observe nonequilibrium values of
MFC. For instance, for H =0.055J and A, =2.5

X 10 "hJ/MCS we have still obtained a plateau but with
a smaller magnetization. Figure 2 shows the plateau
values MFc(T~O, H, A, )/H as a function of Geld in a
double-logarithmic plot. For fast cooling these values
seem to saturate when H +0. —However, if A, is small
enough, i.e., MFc —Mzqp we observe a power-law diver-
gence

M„(T=O,H)/H H

with 1/6=0. 28+0.05. Of course, Eq. (4) is consistent
with the Curie law, Eq. (3).

It is interesting, that for fast cooling as well, one sees a
plateau; we have no explanation for this fact, but for-

temperature ( kz ——1). The field-cooled magnetization
MFC(T, H) is believed to be equal to M,q. But, as shown
in Fig. 1, MFC deviates strongly from the Curie law, in
particular, one observes a plateau for low temperatures
similar to experimental findings.

There may be two reasons for this behavior: (i) One has
MFC ——M,q, but the field H is too large to see the limiting
behavior of Eq. (3), or (ii) the system freezes into a non-
ergodic state and one has MFc(M q It turns out that
both reasons are true.

In Fig. 1, Mp c( T, HA, ) is shown for cooling from
T0 1.5b,J to T lin——early with time r at a rate of
A, =

i
dT/dt

i
=6.25 X 10 b,J/MCS (MCS denotes

p
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FIG. 2. Log-log plot of the susceptibility M(T~O)!H vs
field. Solid circles denote the field-cooled magnetization for
cooling rate A, =

~

dT/dt
~

=-2.5X10 b J/MCS; crosses show it
for A, =6.25 and 1.5&(10 b J/MCS. Open squares show experi-
mental data of Monod and Bouchiat for Ag-Mn(10 at. '%) on
arbitrary scales. Triangles show the zero-field-cooled magneti-
zation at T=O.

O e5 T(T, 1 (»
FIG. 3. (a} Static critical field H~(T), open circles, and

dynamic critical fields H, (t) for t=600 MCS (crosses} and
t =6000 (triangles) plotted vs temperature. (b) Normalized
dynamical critical fields where Ty(t) is obtained from extrapo-
lating H, (t) to H=O. Our results are compared with the AT
phase boundary of the mean-field theory. '
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tunately this helps us to determine M,&(T=0,H). As
soon as the system is on the equilibrium plateau, the mag-
netization does not change. Thus we obtain
M,q(T~O, H), although for very low temperatures the
system is not in equilibrium.

From Fig. 1 we have defined a critical field H,' (T)
where the plateau begins. These fields are shown in Fig.
3(a) by open circles. From Eq. (3) one obtains H,'~(T)~0
for T~O; in fact, from a scaling relation discussed in Sec.
III, we expect

(7)

Figure 5(a) shows the results for a scaling plot where

Tf =6J was fixed, and y and P have been determined by a
least-squares fit. For comparison we have added the data
of Ref. 11. Surprisingly, for our model, which has no
static phase transition, this fit works rather well. But the
fit is very insensitive to the values of Tf, y, and P. This is
shown in Fig. 6 where the least-squares routine stopped at
a point Tf =0.44bJ, y=5.5, and P=0.4. In fact, better
fits are obtained for even lower Tf, higher y, and unphysi-
cally negative P values. This proves that such scaling
plots are no evidence for a phase transition.

If we expand 6 for small fields H, we obtain

2
2a5

+ o ~ ~

15 T
a3 H

b, (H, T) =
3 T

where a3(T) is related to the usual nonlinear susceptibili-
ty X„~(T)by a3 3T X„~.——a3(T) should diverge at a stat-
ic phase transition temperature Tf if it exists. In fact, for
our model it was already shown that a3 increases strong-
ly with decreasing temperature. In the considered tem-
perature range, a3(T) could equally well be fitted to power
laws with either Tf ——0 or Tf ——AJ. Since the data of Ref.
22 were not obtained by slow field cooling, we repeat this
analysis with the data of Fig. 4. Figure 7 shows 6 as a
function of (H/T); thus the slope at H=O gives a3. We
see that a3(T) increases strongly with T~b,J. Owing to
large fluctuations at small fields, it is difficult to deter
mine a3, thus we have calculated a lower bound a 3 by

We want to stress that in the absence of a phase transi-
tion, the plateau value M,~/H has to diverge as H +0 an—d
related to it HP(T) has to go to zero for T~O. In fact,
recent experiments ' are consistent with Eqs. (4) and (5).
Figure 2 shows data from Monod and Bouchiat which
give 1/b, =0.03. Barbara and Malozemoff report
1/b, =0.013 from fitting their data by Eq. (5). Both
values of 1/b, are 1 order of magnitude smaller than our
(two-dimensional) result. But note that (i) our simulations
give much smaller 1/b, values if the cooling rate is too
large, and (ii) the experimental data are also consistent
with a nonzero static transition temperature Tf. Thus
clearly more detailed experiments on this question are
necessary.

Equation (4) gave the singular behavior of M,~ at zero
temperature. Now we consider M,q at higher tempera-
tures, T ~ 6J. Figure 4 shows the difference
6(T,H)=1 —TM,~/H of the equilibrium magnetization
M,~ and the Curie law, Eq. (3), i.e., for H +0 one has-
h, ( T,H ~0)~0. In analogy to recent experiments, ' ' "we
have tried to fit the data of Fig. 4 by scaling laws which
predict

T' 1

5(E,h)=e~f
&

——h '~sg
~r+P ~r+P

a3 =0.05TO/H (9)

where e and h are independent scaling fields, P, y, and 5
are critical exponents, and f(x) and g(x) are universal
scaling functions in complete analogy to standard critical
phenomena. Following Gmari et a/. "we choose

a3 ~(T —Tf) (10)

whef e TQ is the temperature where 6=0.05 in Fig. 4.
Figure 8 shows that in the temperature range shown, a 3

can be fitted by a power law

1-T—

O 3 ~sg g~s 0.7 e, 1.0 ~a ~

T/h J
FIG. 4. Nonlinear susceptibility h(T H) 1 TMcq/H vs

temperature for different fields.

where both Tf ——AJ, y=1.95 and Tf ——O, y =1.7 give good
fits. However, for our model we know' ' ' that Tf ——0
and y=4.

Experimentally, a3 and a5 have recently been deter-
mined by Omari et al. " They fit a3(T) by Eq. (10) and
obtain y=3.2+0.1, where Tf was taken as the tempera-
ture of the ac susceptibility cusp. They rule out the possi-
bility of a power law, Eq. (10), with Tf =0. But as shown
in Fig. 8, our data also seem to increase stronger than
T ~ if we include the high-temperature expansion
a3 ——1+12(bJ/T) + and the asymptotic low-
temperature behavior a3 ——Col(T/hJ) with Co =33, as
obtained from a scaling assumption discussed below.
Thus again, we observe the same qualitative behavior as in
experiments although quantitatively, due to the large y
value, the experimental a3 data increase much stronger
than in our model.
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tion M (T,H, t) obtained from cooling in zero field to tem-
perature T, applying a field H at time t=O, and recording
M at time t. Since our model has no phase transition, we
know that

B. Time-dependent magnetization

So far we have discussed the magnetization M,q in
thermal equilibrium. Now we will present results for the
metastable, time-dependent magnetic response. Figure 1

shows M,q obtained from slow cooling in an applied field
H. In addition, we show the time-dependent magnetiza-

lim M(T,H, t) =M,q(T, H) .
f—+ao

FIG. 5. (a) Data of Fig. 4 are scaled with an arbitrarily chosen temperature Tf =hJ, y and P are obtained by a least-squares fit.
(b) For comparison we show the same fit of Omari et al. for Cu-Mn(1 at. %).
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FIG. 6. Same as Fig. 5(a) but in addition Tf was obtained
from the least-squares routine. Better fits are obtained for even
smaller Tf, larger y, and (unphysically) negative P values.

Figure 9 shows MFC(O, H) [which for the fields and cool-
ing rate shown is equal to M,q(O, H)] and MzFC(H) as a
function of field. Only close to saturation M=1, that is
for fields H &36,J both magnetizations come together.
For smaller fields one has a S-shaped Mzpc(H), while ac-
cording to the result, Eq. (4), M~c has an infinite slope at
H=O. MzFc is also shown in Fig. 2 which indicates that
MzFC ~H'+~, with y =0.43 for intermediate fields where
our data are most reliable. However, we do expect
MzFc ~H for H~O as will be discussed below. For the
zero-field-cooled case, the susceptibility dMzFc/dH
shown in Fig. 9 may be considered as a measure for the

However, at T=O the slow relaxation is completely frozen
out; the zero-field-cooled magnetization MzFC(H)
=M(O, H, t) is time independent and smaller than M,q.
Thus M ( T,H, t) has a rather singular behavior for T +0-
and t~ ao, in particular, one has

Meq(O, H)=lim limM(TH, t)) lim limM(T H, t)
T~O t~ co t~ce T~O

=MzFC(H)

I ) i I

2 5 10
Tlb, J

I I

30

FIG. 8. Expansion coefficient a3 determined from Fig. 4
with A(T, H) =0.05 as a function of temperature. The solid line
shows the first term of a high-temperature expansion of a3(T),
and the dotted line shows the low-temperature behavior
a3 ~ T expected from scaling laws.

internal field distribution which has been calculated by
Binder. By increasing the field H to H +5H, only those
spins are flipped which have an internal field H; between

(H+5H—) &H; & H. Of cou—rse this is strictly true
only if the distribution of internal fields does not change
when H is applied. This distribution is nonzero for H —+0
and hence we also expect dMzFcldH&0 for H=O. Ex-
perimentally, a S-shaped curve of MzFc(H) is typical for
spin-glasses. However, the behavior at H=O has not yet
been worked out in detail. In particular, it might be in-
teresting to compare Ising with Heisenberg spin-glasses, '

since both should change their magnetization in a dif-
ferent way (spin flip versus spin canting).

As shown in Fig. l, for large times t, high temperatures
T, and/or large applied fields H, the magnetization
M ( T,H, t) will eventually be equal to the equilibrium one
M,q(T, H). Thus we have defined dynamical critical fields
H, (T,t) from the points where M,q and M(T,H, t) differ
by 3%. The results are shown in Fig. 3(a). For each ob-
servation time t, we obtain a curve H, (T, t); for taboo
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FIG. 7. Nonlinear susceptibility 5(T,H)=1 —TM~/H as a
function of field H for different temperatures T. The slope at
H=O gives the expansion coefficient a3(T) of Eq. (8).

X

0.5—
/ X

zfc
e /C,X

„x~

0.2
X

X

o.o i

0
o o~xx

1 2 3 0 1 2 3
H/6J H/hJ

FIG. 9. Magnetization and its derivative at zero temperature
for the field-cooled (circles) and zero-field-cooled (crosses) case.
The same data are shown in Fig. 2.
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these curves approach the origin H =0,T=O, as seen
from Eq. (11).

In the infinite-range model, below the static transition
temperature TI, Eq. (11) does not hold since the system is
truly nonergodic. ' ' In fact, the difference b, (oo) with
b (t) =M,q

M—( T,H, t) has been discussed as an order pa-
rameter for the spin-glass phase. ' de Almeida and Thou-
less' (AT) have found the phase boundary H, (T) below
which b ( oo )&0; close to the zero field T/, one has

C. Metastable energy

We now compare the energy of the spin-glass with the
one of the usual Ising ferromagnet on the same square lat-
tice. In both cases the system was cooled slowly in zero
field to a temperature T, then suddenly quenched to T=O.
Figure 10 shows the energy scaled by Eo
=(1/N) g(,"& ~ JJ ~

which should be the ground-state en-

ergy without frustration. Thus trivially one has
E(T=0)/Eo ——1 in the ferromagnet while in the spin-
glass this ratio is reduced by 18%.' The ferromagnet-
even above the critical temperature T,—is always
quenched to the ground state; we have never observed that
domains are frozen in by our method of quenching to
T=O. The spin-glass, however, behaves very differently.
Even at low temperatures the quenched system was
metastable and its energy increases with increasing tem-
perature. Contrary to the ferromagnet one does not gain
much energy by quenching the spin-glass to T=O. This
demonstrates that the spin-glass changes its state continu-
ously over a broad temperature range. This may be ei-
ther described by a cluster picture with smoothly increas-
ing cluster size, or by continuously bifurcating meta-
stable valleys in a high-dimensional phase space.

III. PHENOMENOLOGICAL RELATIONS

A. Scaling at T=O

In this section we want to make a few steps towards a
phenomenological theory of spin-glasses. Firstly, we re-
call some facts which have emerged from Monte Carlo
simulations and transfer-matrix calculation of the spin-
glass model, Eqs. (1) and (2).

(1) At zero magnetic field H=O, the EA correlation
length defined by [(S;SJ) ],„-exp( r/(EA) and the s—us-
ceptibility XE&——(1/N)~g, (S;SJ) vary with tempera-
tureas' ' '

H, (T)=A (1—T/Tg )~, (13)

with A =(—,
' )' and g= —,'. In our short-range model we

have h(ce)=0. Nevertheless, we define T/(t) by extrapo-
lating H, ( T) in Fig. 3(a) to zero field, and then we scale H
and T with TI(t). Figure 3(b) shows the result. Thus,
surprisingly, the scaled dynamical critical fields behave
similar to the AT result of the mean-field theory; in par-
ticular, we observe the singular behavior, Eq. (13), with
g= —,', although we know that for very small fields due to
the symmetry H —+ —8 we must get the analytic behavior,
Eq (13),.with /= —,'.

Young' has recently obtained similar results, but in a
different way. While we have defined H, (T, t) from the
relaxation into the equilibrium state, Young considers the
autocorrelation function in the equilibrium state and de-
fines H, (T, t) as a line of constant relaxation time t In.
both cases, one observes the AT behavior.

Our results of Figs. 3(a) and 3(b) are qualitatively simi-
lar to recent experiments. ' In particular, H, (T, t) is
time dependent and the scaled diagram follows the AT
behavior. Only the amplitude A in Eq. (13), which in our
model is close to the AT value, seems to depend strongly
on the definition of H, (T, t) and the time scale t of the ex-
periment. For short times, recent experiments are con-
sistent with a crossover from the AT behavior (g= —', ) for
large fields, H )Ho, to the analytic behavior (g= —,

'
) for

small fields, H & Ho. One observes Ho cc lnt.

I
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FN
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T/h, J, T/T,

FIG. 10. Energy vs temperature for the ferromagnet and the
spin-glass, respectively. Ep = g ~

JJ ~

would be the ground-
state energy in the absence of frustration. The lower curves
show the equilibrium energy at temperature T, while the upper
curves denote the energy after quenching the system to T=O.
T, is the Onsager value of the critical temperature of the fer-
romagnet.

$E~ cc (hJ/T) ' Xi p, cc gA cc (bJ/T), bJ))T . (14)

Of course, the results of Refs. 17, 18, and 22 do not
unambiguously yield the exponents v and y describing the
divergence of gE& and XE&, where gE~cc(b,J/T)" and
XE~cc(bJ/T)r as T +0, since the e—stimates v=2 and
y=4 are derived from an extrapolation from the regime
hJ/T= 1—where reliable numerical data are available—
rather than from the asymptotic regime AJ/T~&1. In
addition, one might expect that the correlation function
might involve an exponent q as in standard critical phe-
nomena, [(S;SJ) ],„cx:r ' +"' for r «gE~, which
would in turn imply XEz cc g~" rather than Eq. (14). This
latter case seems to be realized in the +J model, where a
power-law decay of the correlation function was suggested
at T=0."

(2) If a "ground state" (equal to a low-lying metastable
state) IS; I of a spin-glass simulation in a system with N
lattice sites is projected on any other ground sate IS; I,
the typical projection I' =(1/N) g,. S S; is of order
I'cc 1/~¹ By special preparation (heating to T &b,J),
states with large projection (of order unity) onto each oth-
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er can also be found: For any chosen value of I', one can
find a ground state in the vicinity which differs at most
by AP = + I /v N. This implies that the ordering
described by gE~ is very degenerate.

(3) The "susceptibility" M/H (T =0) at zero tempera-
ture diverges for small fields according to Eq. (4).

(4) At zero magnetic field H=O, the relaxation time r
varies with temperature as'

In~~ (b J/T) (15)

(5) For H ~ 0 contours of constant relaxation time in the
H Tplan-e can be interpreted as critical fields H, (T)
described by Eq. (13), where g= —,

' and Tf depends on ~
according to Eq. (15) (Ref. 18 and 12),

H, (T,r) ~ [1 T/Tf(v—)] ~ (16)

In the following, we try to correlate these facts with each
othcl. HowcvcI; wc want to stress that oui Rpploach ls
very tentative; it is more meant to stiIDulate the reader to
think in this direction than to present well-founded re-
SultS.

FlI'stIy» we discuss scaling at zero tcIDpcratUrc. Note
'tllat according to Eq. (14) thc static colYclatloll lcllgth gp~
dlvcI'gcs Rt T~O. Thus ln analogy to Usual crltlcaI phe-
nomena one IDight try to express any quantity 3 in terms
of /zan with "critical" exponents x~. Therefore, following
Binder» wc assUIDc 8 scaling of thc static Qonllncar
response Z(T,H) [see Eq. (6)],

b, (T,H): c— (17)

&3(T)=1+3 g [{S;S/) ],„=3Xp~(T,H =0)—2.
j (+I)

(19)

With Eq. (18a) we have al(T) ~ T 2; thus from Eqs.
(14) and (19) we obtain 5=3, which is consistent with the
value quoted in Eq. (4) from the divergency of M/H at
T=O. Another consequence of scaling is the behavior of
XE~ Rs 8 functloIl of ficId. NRIDcly, thc scaling assump-
tloll glvcs fol' XEA

'2 25

)
T f- H/hJ

(T/&J)
(20)

Changing the scaling variables we obtain
(2/5) —2

( H)
H T/hJ

(21)

have p=O and Fq. (18b) (Ref. 22) with 6=3.5+0.5. In
Fig. 11, we have plotted b,(T,H) as a function of scaled
fields and temperatures. In fact, for H ~0.5' and
T ~ b,J the scaling behavior, Eq. (17), is observed reason-
ably well over several orders of magnitude of the scaling
variable x. Note that most of the data at high tempera-
tures included in the scaling plots, Figs. 5 and 6, fall out-
side this true scaling regime, of course, and hence are not
consistent with Eqs. (17) and (18).

A first consequence of scaling is a relation between the
exponents appearing in Eqs. (4) and (14). Namely, ex-
panding the magnetization of our symmetric spin-glass
model for small fields H gives with Eq. (8),

VOX» X SID811
c{x)=~

1 —8~x» x large ~ (18b) /pe, (T =O,H) ~ H
AJ

(22)

where f and g are scaling functions. This gives, together
with Eq. (14) and 6=3,

2/3

Equation (18a) reveals that c{x) is analytic, and b,(T,H)
obeys the symmetry H~ —H. In ordeI' to sce the plateau
in M(T)/H, which diverges according to Eq. {4),we must

To test our assumption, Eq. (17), it would be very useful
to check Eq. (22) numericaBy. This still has to be done.
Another consequence of Eqs. (17) and (18) is that a5 ~a&
as T~O. Experimental data of Omari et al. " seem to
imply a5 ~ a 3', while mean-field theory yields a5 cc as.

0.5—

+f

~X

I l

X+ 0

x

+ 0.3
0.5

10 10 'I 10 10 10 10

H/h J
(T/h 3}

FIG. 11. Nonlinear susceptibility A(T,H) =1—TM,„/Has a
function of field H scaled by temperature T~ with 6=3.5. The
data are from the range 0.1 &H/AJ &0.5 and 0.1 & T/hJ & 1.

B. Relaxation time lI1 zero field

We suppose that the relaxation time ~ in Eq. {16)is due
to a reorientation process of a cluster containing (g'Ez)
spins. This reorientation involves a crossing of an ener-

gy barrier. %C assume that this occurs by moving a waII
through the cluster. In a ferromagnet or in a Mattis
spin-glass IDodcI» 8 walI bctwccn thc only two possible
ground states would cost a free energy ~ccbJg~~'.
However, in our frustrated spin-glass model, Eqs. (1) and
(2), one has to flip gz& spins only to go from one ground
state to a typical other one. This assumption we infer
from the property (2) noted above, that is, at T=O, where
(zan ——X, two ground states differ by overturning at least
VN spins. Thus a wall would cost a free energy of the
ordcl of

(23)
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Assuming now that the relaxation time is given by an Ar-
rhenius formula, we obtain for d =2 and with Eq. (14),

and hence the probability distribution for w at nonzero H
ls

inc=~/T ~L3,J/THEA ~(&J/T) (24)

in agreement with the numerical findings, Eq. (16).
Our treatment thus uses the fact that a correlated clus-

ter can exist in more and more local free-energy minima
as the temperature is lowered and the size of this cluster
increases, and hence the free-energy barriers between these
minima increase with a smaller power of cluster size than
in an Ising ferromagnet. This behavior may be considered
as a remnant of what happens in the mean-field limit of
spin-glasses below Tf, where also more and more "val-
leys" in phase space representing different ordered states
become available as the temperature is lowered, with the
free-energy barriers between them being infinite.

A more general "dynamic scaling" formulation is ob-
tained by requiring that the typical free-energy barriers in
the system scale as @A' ", where z is a "dynamic ex-

ponent, "which would yield

lnr=m/T ~(~J/THEA" ~ T

N
PT II(w) cc exp —const

KEA

hU~
exp T

2
=exp —const +const —

(GAEA w)
N (d —1)/2 1/2

T

and hence
1/3

f-(d +3)/4 ~ 1/2 ~ &(d +3)/12

The maximum occurs at

2—const +const —
(GAEA w ) =0,N (d —1)/4 1/2

GAEA

~ p(d —1)/4 —1/2

(27}

(29)

instead of Eq. (24) (where z= 1). This result, in turn, im-
plies, for the frequency dependence of the freezing tem-
perature, setting r ~ 1/co, that Tf (co) &x

I
Into

I

'/ .

C. Dynamic properties in nonzero magnetic field

When a magnetic field is applied, the free-energy bar-
rier which is due to the wall between two neighboring
states in phase space is lowered by displacing the interface
locally: With respect to the spin glass ali-gnment, a uni
form magnetic fieLd acts as a random field would act on a
ferromagnet. '

We now estimate how much free energy can be won by
displacing the wall a distance w in the presence of a field.
In the absence of a field, there will already be fluctuations
described by the probability law

then we find, for the energy change EUIt with this max-
imum,

H4/3 T—i /3gd/3 (30)

T—1/3~ 4/3~ —dv/3h (31)

If we assume that we can apply the usual hyperscaling re-
lation (p=O, rL=2 —d) dv=y =26,—2, we obtain
2d v/b, =4 4/b„and hence—

Of course, Eq. (30) holds only for large enough fields
such that w as given by Eq. (29) is much larger than a lat-
tice spacing. In this regime, we find, with

gEA=T "g(H/AJ/(T/bJ) }~H

that

PT(w) ~ exp( —const w /GAEA), (25) g U T—1/3~2(1+6, ~)/30 cc (32)

where we assume that the distribution of domain-wall
widths m is a Gaussian, and that the typical width is pro-
portional to the linear dimension (GAEA)' itself or smaller
[if we allow for a temperature dependence of the constant
in Eq. (25}]. Namely, as mentioned before, two neighbor-
ing valleys in phase space are assumed to differ by over-
turning a cluster of only ((~A)'/ spins. Hence, the energy
barrier is associated with moving a wall of linear dimen-
sion GAEA through such a cluster. (All lengths are mea-
sured in units of the lattice spacing. )

In the absence of a field, the maximum of PT(w) occurs
for m=o. In this case, the energy barrier is given by Eq.
(23) [for d=2, dd'

I Jt 0
——GAEA(H =0)EJ). In the pres-

ence of a field, the maximum occurs for finite w, and the
free energy is reduced.

Since neighboring states taking a volume V differ by
overturning v V spins, the displacement of the interface a
distance w over an area GAEA

" is affected by overturning
(GAEA

" w)'/ spins. The typical field energy then will be

b Utt = —const'HgiEA " w'/ (26)

Then a contour lnr(T, H) =const in this regime is given by

+b, UIt =const .H=0 (33}

Since the extrapolation of this contour to H=O defines
Tf(t), we obtain

H'/~~ 1 —T/Tf(t), (34)

with 1/g= —', (1+6, '). Instead of the A-T behavior,
g= —,', we rather obtain /=1.48 for the experimental value
b,=75 and (=1.17 for 6=3.5 obtianed from our comput-
er simulations, Eq. (4). In this context we note that it re-
cently has been suggested that the exponent g of the A-T
line for finite-range spin-glasses is g= —,

' for d &8 only,
while for 6 & d & 8, g changes with d and becomes /= 1 for
d =6, while in this regime the exponents p and y still have
their mean-field value. Thus there is no reason to expect
that g is still —, at the lower critical dimension. Similarly,
if one defines a critical field from the susceptibility max-
imum~ one finds that near Tf it varies according to Eq.
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(34) with g=(y+P)/2, in the non-mean-field case. We
emphasize that our treatment does not imply that the con-
tours of constant relaxation time in the H-T plane can be
scaled in a universal form by writing H/Tf (t)
cc[1—T/Tf(t)]~, since the proportionality constant in
Eq. (34) is temperature dependent. In fact, Fig. 3(b) re-
veals systematic deviations between the data for t=600
and 6000 MCS rescaled in this way. A detailed analysis
of dynamic scaling of the relaxation time r(T,H) will be
given in Ref. 45.

tnt

FIG. 12. Schematic view of the characteristic relaxation time
t as a function of field and temperature.

We have investigated the static and dynamic magnetic
response of the two-dimensional EA model. Computer
simulations showed a plateau in the equihbrium (slowly-
flcld-cooled) sllsccptlblllty M«/H wlllcli dIvcrgcs Rt zclo
temperature and small fields with the power law

M«/H ~H, 6=3.5+0.5. Accofdlllgly, R stRtlc criti-
cal" field H,'q(T), defined by the boundary of the plateau,
decreases with temperatuI'e; we expect H,'q~T . Al-
though our model has no static phase transition with a
nonzero critical temperature Tf, we find that
Meq(T, H)/H call bc fitted by scR1111g fullctloIls with R

nonzero Tf and reasonable critical exponents y and P in a
broad temperature and field regime.

From the points where the difference in the static and
dynamic magnetic response vaniShe, we obtain time-
dependent critical fields H, (T, t) and, by extrapolation to
H=O, a time-dependent freezing temperature Tf(t) with
Tf(ao)=0. Surprisingly, our results for the scaled non-
equilibrium fields H, ( T, t)/Tf (t) follow the singular
behavior of the mean-field theory which has an equilibri-
um phase boundary H, ( T) found by AT.

At zero temperature, the zero-field-cooled magnetiza-
tion Mzpc(H) llas R S-shaped bcllavlol' whlcll ls typical
for spin-glasses. For H ~36J, it approaches M«(T=0,
H) while for small fields we find Mzpc(H) ~HI 4. If we
quench our system from temperature T = T; to T=O, we
find that the energy still varies with T~. This shows that
the spin-glass changes its state continuously down to zero
temperature.

In the second part we try a few steps towards a
phenomenological description of spin-glasses. Thus the
behavior of the equilibrium susceptibility may be
described in terms of scaling at zero temperature and zero
field. This relates the divergence of the nonlinear suscep-
tibility for T~O to the exponent h. Furthermore, this
predicts that the static correlation length GAEA( T,H)
diverges as gzA(T =0) ~H "~ =H ~ for two dimen-
SiOIls.

A characteristic relaxation time is related to gEA. By
making use of the fact that the spin-glass ground state is
highly degenerate, we find for the dynamic freezing tem-
perature Tf(t) ~ (lnt)'~ with vz=2. The dynamics in an
applied field is discussed in context with the random-field
problem. This approach yields that the relaxation time
varies as H whcfc z ls fclatcd to 6.

Thus the picture we now have for the two-dimensional
Ising spin-glass is illustIatcd in Fig. 12, which shows a

cllalactcrlstlc lclaxatloll tllllc t Rs R fllllcflo11 of flcld H
and temperature T. For a given observation time t and
sufficiently large fields, one observes a behavior similar to
the A Tbehav-ior H, ~ [T Tf(t))—~ . At H=O the freez-
ing temperature Tf(t) depends on the observation time t as
Tf(t) ~(lnt)'~, i.e., it is zero for taco, since the model
has no static phase transition at a nonzero Tf. For
nonzem H values the correlation length /RA is finite [Eq.
(22)], and by using Eq. (24) one obtains Tf(H&0,
t) o: (lnt) '. Thus the surface of Fig. 12 is very singular at
the point T =O,H =0 and t = 00. At this point we expect
scaling in terms of a (diverging) static correlation length

4A.
Experimentally this surface defines a dynamic freezing

transition of spin-glasses; e.g., compare with Fig. 3.
singular behavior at the T=O and t= oo axis is reflected
in Fig. 9; a.pproaching this axis below and above the sur-
face gives MzFC and MFC ——M,q, respectively, which
behave completely different as a function of field especial-
ly with respect to the singular behavior as H —+0.

As in our previous computer simulations the results of
the present work are in remarkable qualitative agreement
with experiments. So some of the experimental data can
be fitted by power laws with Tf Oand, reversely, s——ome
of our equilibrium results can be fitted with a nonzero Tf.
This demonstrates that the recent interpretations of exper-
imental data in terms of mean-field theory and critical
phenomena have to be considered with greater care.
Quantitatively, the corresponding exponents of a Tf 0fit-—
seem to differ by more than 1 order of magnitude between
experiments and our two-dimensional results.

At present it is not clear whether this is due to (i) time
effects in experiments, (ii) quantitative differences between
the two- and three-dimensional models, or (iii) a true stat-
ic phase transition in real spin-glasses. Clearly, more de-
tailed experiments and computer simulations in three di-
mcns1ons ax'c ncccssary.
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