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Quantum decay in a dissipative system
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In view of recent interest in the problem of macroscopic quantum tunneling in systems involving

the Josephson effect, we present an accurate numerical calculation of the tunneling rate of a system

from a rnetastable well, at zero temperature, in the presence of dissipative coupling to the environ-

ment. Although we concentrate on a specific form of dissipation, as discussed by Caldeira and Leg-

gett, we believe that such a numerical method can be extended to other forms of dissipation as well.

Our method is based on the framework recently described by Caldeira and Leggett, and requires (a)

a novel treatment of a nonlinear integro-differential equation and (b) an extension of the usual

Fredholm scattering theory so as to be applicable to the present dissipative problem. We present ex-

plicit results for wide ranges of dissipation and estimate our error in the calculation of the exponent

to be no larger than 0.1% and of the prefactor to be no larger than 2%.

I. INTRODUCTION

Considering the recent interest in the subject of macro-
scopic quantum tunneling and related quantum phenome-
na in systems involving the Josephson effect, ' ' we
present a precise numerical calculation of the quantum de-

cay rate from a metastable well in a dissipative system.
Although the results presented here are for a specific
model for the dissipative mechanism, we believe that the
method discussed is of wider applicability, and may even
be applicable in the discussions of deep inelastic collisions
of heavy ions in nuclear physics. ' The technique we
develop requires (a) a novel analytical treatment of a non-
linear integro-differential equation and (b) an extension of
the Fredholm scattering theory so as to be applicable to
the present dissipative problem. In view of the recent ex-
perimental interest' ' in the subject of macroscopic
quantum tunneling it is important to know that the theor-
ist can calculate the decay rate with great precision.

The underlying basis of the calculation was laid out by
Langer' some times ago and we stick to that framework.
The extension of Langer's method to the dissipative case
presents, at least superficially, no specific difficulty and
has been expounded by Caldeira and Leggett at great
length. There are still some subtle points unresolved, but
it appears that they are of little practical consequence. At
zero temperature the decay rate from a metastable well
can be conveniently expressed as

Here a is a parameter which characterizes the dissipation
such that a =0 corresponds to the nondissipative case
whereas a—+ oo corresponds to strong damping of the sys-
tem undergoing tunneling. Caldeira and I.eggett have ob-
tained B(a) in the limit of both a~0 and a~ Oo . For in-
termediate a's they have given variational estimates. '

We present exact numerical estimate of B(a) throughout
the entire range and estimate our accuracy to be better

than 0.1%. 3 (a) for a=0 is of course readily obtained
from Langer's method; for a~Do, A (a) has been calcu-
lated by Caldeira and Leggett and follows a a ~ behavior.
Although the present calculation verifies this —, power in

this limit, the exact value of A (a) is off by a factor of 2.
The general prescription' of defining the prefactor as be-

ing proportional to a ratio of determinants is still correct
for the dissipative problem to be discussed in the present
paper. However, the method to calculate the ratio of the
determinants as given by Caldeira and Leggett is generally
incorrect as one can trivially verify by taking a~O in
their formalism. It turns out that their method does be-
come quite accurate in the limit of large a, a conclusion
that we reach from our present work. As discussed here
the correct treatment requires an extension of Fredholm
scattering theory to the present problem. A (a) shows a
sharp crossover behavior at a-1.

II. QUANTUM DECAY IN A DISSIPATIVE SYSTEM

Dissipation is taken into account by coupling the sys-
tem variable q to an environment consisting of infinite
number of degrees of freedom. This coupling can poten-
tially take many different forms, but of particular interest
is the case where the classical equation of motion of the
system variable q contains a dissipative term linear in the
time derivative of q. The applicability of this form of dis-
sipation rests on the semiquantitative success of the
phenomenological equation commonly known as the resis-
tively shunted junction' (RSJ) equation applicable to a
large class of weak links involving superconductors. For a
good oxide layer junction the assumption of linear dissipa-
tion may not be correct for very low temperatures and for
frequencies below the gap frequency. Nonetheless we
believe that the numerical method described in this paper
can, if required, be adapted to a large class of dissipative
couplings. Here we shall concentrate exclusively on the
case of linear dissipation. The system to keep in mind is a
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radio frequency superconducting quantum interference de-
vice (SQUID); the relevant macroscopic variable q is the
total magnetic flux through the superconducting ring.
The Lagrangian that we use to discuss macroscopic quan-
turn tunneling at zero temperature is that employed by
Caldeira and Leggett

W = —,Mq —V(q)+ g ( , m—~x~—, m—~x~co~)

2
&a

q g caxa
a Pl ~CO~

(2.1)

2

J(co)=—g 5(co —co ) .
2 pl CO

(2.2)

It can be shown that if J(co)—+geo as co~0, q in the classi-
cal limit obeys the equation of motion which is exactly the
RSJ equation mentioned earlier; this fixes our choice of
J(co). The counter term in the Lagrangian is necessary
for the definition of the damping coefficient ri to agree
with the phenomenological (observable) definition as
would be measured in the classical limit described by the
RSJ equation. The classical equation of motion of q can
be obtained from the above Lagrangian by eliminating the
variables x~ and using a J(co) which varies as 7ico in the
limit co~0 as mentioned before. The result is

dV(q)
Mq+qj =—

dq
(2.3)

We assume that the potential energy V(q) has a single
metastable minimum as shown in Fig. 1; the local

v(q)

FIG. 1. Typical metastable potential well.

The variables x represent the environment degrees of
freedom and c denotes the coupling between the system
variable q and the environment. The justification of being
able to treat the environment as a collection of harmonic
oscillators for the purpose of calculating the zero tempera-
ture tunneling rate has been discussed in great detail by
Caldeira and Leggett and we refrain from duplicating
their arguments. All information concerning the effect of
the environment on the dynamics of the system variable,

q, is contained in the spectral density of the environment
J(co) given by

minimum is taken to be situated at q=O. More specifical-
ly, the potential relevant for tunneling in a SQUID can be
well represented by a cubic '

V(q) = , M—coo(q q —/qo ), (2.4)

where qo is the distance under the barrier, and coo is the
small oscillation frequency at the local minimum. This
completes our definition of the problem and we now turn
to the problem of calculation of the decay rate. We first
write down the Feynman path integral describing the am-
plitude that the system begins at the local minimum and
returns to the local minimum after a time T regardless of
the final state of the environment. The environment de-
grees of freedom can be integrated out; the resulting am-
plitude contains only the system degree of freedom, i.e., q.
The decay rate can be calculated quite conveniently if we
rotate the amplitude to imaginary times T =i P Th.e rota-
tion to the imaginary time maps the amplitude to an ex-
pression which is formally identical to the expression for
the partition function given by

—s g[q]/fi
(2.5)

where Sgff[q] is given by

S, [q]= I dr[ ,'Mq —+V(q)]

+ d7
+" p", [q (r) —q(r')]'

477 —~ o (r r')2
(2.6)

One must, however, remember that q(0) =q (PA'); the
desired decay rate at zero temperature is given by
—limp „Im(lnZ/PA'), a prescription due to Langer. A
systematic accurate evaluation of the decay rate follows
from the application of the method of steepest descent,
also originally due to Langer. The approach needs im-
provement because V(q) does not have a lower bound and
strictly speaking the "partition function" Z is undefined.
However, one can argue that the ground-state energy
Eo —limp „(1n——Z/Pfi) will acquire an imaginary part
if we begin with a bounded potential and then analytically
continue in a variable which turns the potential into an
unbounded one. This sounds reasonable except that the
calculation does not quite proceed along these lines; one
begins with a potential that is unbounded to begin with
and then judiciously interprets the results when one gets
into any trouble. In the nondissipative mse it can be veri-
fied that this gives results in agreement with those ob-
tained from WKB method. From an analysis of a
Fokker-Planck equation it was also verified by Langer
that the classical nucleation rate from a metastable phase
obtained from the imaginary part of the partition function
is the correct one if some mre is taken in defining the pre-
factor. It therefore seems that the imaginary part of the
partition function gives the correct decay rate whether we
are calculating a classical nucleation rate or the quantum
decay form a metastable well at zero temperature. (In this
case the connection to the nucleation problem can be a bit
misleading since the partition function Z is actually a re-
sult of the rotation to the imaginary time of a zero tern-

perature transition amplitude. However, an imprecise
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analogy can 1ndeed be constructed 81nce one can always
map a zero-dimensional quantum problem to a one-
dimensional classical statistical mechanical problem. The
difficulty, however, is in defining the dynamics which
causes the nucleation and which also determines the pre-
factor. ) Along with Caldeira and Leggett we shall as-
sume that this prescription remains unchanged even for
the dissipative case as formulated above.

III. CALCULATION OF THE EXPONENT

The steepest-descent method to calculate the imaginary
part of lnZ requires that we solve the following Euler-
Lagrange equation of motion (we let Piii~ oo ):

c) V ~ y+",q(r) q(r')—
c)q m —~ (r—r') 2 (3.1)

It is to be understood that the boundary condition is
q, (ao)=q, ( —oo)=0. The solution q, (r) when substituted
in the expression for S,rf gives the exponent 8. For the
sake of convenience we introduce the following dimen-
sionless variables:

+" +", z(u) —z(u')+— du du'
7T —00 Q —Q

(3.2)

where z is the solution of the following nonlinear integro-
differential equation:

Q =6007

Z (u) =q (u) /qo,

a =g/2Mcoo,

~[zJ=~.fr[q(r) J/2 M~oqo

b [aJ =B/ 2 Mcooq o .

We therefore have to evaluate the following expression to
obtain the exponent 8:

I' f

W[zJ= J'"du ' +z' z'—

we can convert the nonlinear integro-differential equation
into a nonlinear integral equation given by

z(co) = 3
1+2a

(
co

t
+co 2v 21T

+ oo

N Z CO —QP Z CO

A direct iteration technique to solve this equation would
fail for reasons to be discussed below. The algorithm that
we have devised relies on the following interesting features
of the equation.

(1) The scaling property. By introducing a parameter A,

one can rewrite the equation as

I +co
z(co)=

2
iL J dco'z(co co'—)z(co') . (3.8)1+2a

(
co

~

+co2

It is thus apparent that if (A,ogo(co)) satisfies the equation
then so would (k&,z&(co)) provided the A, 's and q*s are
scaled in the following way:

A, i
——A,o/g,

z i (co)=zo(co)g. '

This means that if we can find one solution (A,„zi(co)) for
an arbitrary parameter A. &, we can obtain the solution for a
particular Ao by simply rescaling zi(co) by a factor
/ =A,o/A, i.

(2) A relevant dangerous direction at the fixed point.
Suppose that (Ao,zo(co)) satisfies the equation. Now let
fo(co) =bozo(co). For g not equal to 1, fo is a vector in the
right direction but wrong amplitude. For a fixed A,o suc-
cessive iterations lead to the following:

fi(co) =f0(co4'
fz(~) =fo(~C"

f„(co)=f0(co)g

d z 3 2 2a J+" z(u) —z(u')=Z —2Z +du' ' ~ —" (u —u')' (3.3)

%hen +=0 th1s equation can be solved exactly and the re-
sult is

z(u)=sech (u/2) .

An analytical solution can also be obtained in the limit
a~ao and the result is

'u
z(u) =—', 1+

20".
(3.5)

For intermediate values of a, so far it has not been possi-
ble to obtain an analytical solution of this equation; we
now describe a numerical method valid for all values of a.
Introducing the Fourier transform

+ ac
z(co) = z(u)e' "du,2' (3.6)

FIG. 2. F10' dlhgrRm Of thc jtCfatlOQ P10ccss.
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FIG. 3. z(co) as a function of ~ for two different values of a. FIG. 5. Exponent b(a) as a function of a. The inset is a
blowup of the small a region.

It is obvious that f„ tends to infinity or 0 depending on
whether g is greater than 1 or less than 1; we have found
at least one relevant dangerous direction at the fixed point.

We now explain how we can make use of the properties
mentioned above to generate an efficient algorithm to
solve Eq. (3.8). Suppose that (l,fo) is one solution of Eq.
(3.8) then it is clear from the scaling properties that any
point on the curve A,/=1 (see Fig. 2) represents a valid
solution given by the pair (A, ,/f0). The dangerous direc-
tions correspond to the directions flowing to infinity or
zero. However, we can eliminate these dangerous direc-
tions by adjusting I, to bring the point I'& on to the curve
as shown by the dashed lines. This means that when g in-
creases A, should be decreased and vice versa. We there-
fore design an iteration procedure which is as follows:

(1) Start with an initial zo(co).
(2) Calculate z~(co) =0(Ao, zo(co)), where 0 is the opera-

tion defined by the right-hand side of the Eq. (3.8).
(3) Calculate A, ) ——Bog', where g=z, (co=0)/zo(co=0).

(4) Find z2(co) =0(A~,z~(co)).
(5) Repeat steps (2)—(4) until the successive difference

satisfies a preset convergence criterion.

When step (5) is completed we will have a pair (A,„,z„(co))
which satisfies Eq. (3.8). From the scaling property we
simply need to scale z„(co) to get the solution for
A, = —,(2m) '~ . Such a procedure seems to converge usu-

ally within tens of iterations. At this point we do not
know if there are other dangerous directions or not, but
the stability of the iteration procedure with respect to the
initial choice of zo(co) seems to indicate that there are not.

Some representative z(co)'s are shown in Fig. 3. As a
increases from 0, z(co) changes from V8/m(mo/sinhmo)
to a dependence -e ". In Fig. 4 we show z(u=O) as a
function of a. The curve approaches —', in the limit
u —+ Do,

' this is in agreement with the limiting value calcu-
lated by Caldeira and Leggett. In Fig. 5 we show b (a) as
a function of a. The straight line is the large a asymptote

TABLE I. Data for the exponent and the prefactor of the de-
cay rate as a function of a.

z (a) —————————=
max

b(a) [b (a)k (a) ] '~2

I.2

FIG. 4. z(u =0) as a function of a.

IO

0.0
0.01
0.05
0.10
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00

10.0

1.067
1.085
1.161
1.258
2.110
3.302
4.576
5.893
7.234
8.591
9.957

11.330
27.972

8.094
8.395
9.695

11.562
41.175
15.233 && 10'
45.947 X 10'
11.516~ 10'
25.102)& 10
49.218 && 102

88.915 && 10
15.054 && 10'
70.981& 10
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calculated by the above authors. The limiting values as
A'~0 oI' Rs A —+ ao arc also 1Q agrccmcnt %'1th thc Icsults
calculated by these authors. They have shown that

b(a)=b(0)+1.86a+O(a ), a~O

the present problem.
We start by considering a. simple one-dimensional po-

tential scattering problem (nondissipative case). We there-
fore have

b(a)= + —+0, a~m .San 2m 1 1

9 9 a

Table I contains some sample numerical results. By Using
various different integration grids and cutoffs we estimate
that the numerical error in b (a) is not larger than O. l%%uo.

U(u)=0, ju f)T. (4.10)

I.et us further assume that U(u) =U( —u). Then the Ham-
1lton1RQ and thc par1ty opclatol can bc simultaneously dl-
agonal1zed to g1ve even- and odd-par1ty stand1ng-wave
solUtlons

The prefactor of the decay rate is obtained from the
quadratic fluctuations around the steepest-descent solution
given in Sec. III. The prefactor A is given by

~ =(~a~)'"z '", (4 1)

cos(tou +5+), u ~ T++
cos(tou —5+ ), u & —T

sin(cou —5 ), u ~ —T .

(4.11)

(4.12)

de t( too+ Ho )

det'(too+Ho+ V)
(4.2)

The operator Ho is defined by the following equation:

H,g(t)=- ~+ " f dt'~ ~, , (4.3)dt' ~~ — (t —t')'

and the potential Vis given by

V= 3q, (t)/M . —

If necessary it is easy to construct a representation in
terms of incoming and outgoing waves from Eqs. (4.11)
and (4.12). For example, if we consider a wave incident
from the left giving rise to a reflected and a transmitted
WRVC, %'C gCt

( )
Se, u)T

'

e IAPQ +g~
—l 67Q

where
Here q, (t) is the steepest-descent solution obtained in Sec.
III. The symbol det' in Eq. (3.2) means that the 0 eigen-
value 1S to bc omitted; Ho can bc cas1ly shown to bc HcI'-
mitian. We again introduce a set of dimensionless vari-
ables as defined in the earlier section. We therefore write

S=1+ g ie sin5

is8 =i g o.e sin5

(4.14)

[b(a)k]'", For the dissipative case, ho as given by Eq. (4.7) has eigen-
states given by the following expressions:

det(1+ho)k=
det'(1+ h o+ U)

(4 6) and

10',+(u) = cos(a)o+„u) —=
(
too+„) (4.16)

Thc opcratoI' Ao 1S glvcn by

d'g 2a +"
hoP(u) =—;+ fdQ

Rnd thc potcntlal U ls

u = —3z, (u) .

g(u) f(u )
(4 7)

(u —u')

(2n —1)m

2g
(4.18)

1V„(u)= sin(coo„u) =—
( coo„),

R

which are also the eigenstates of parity. The length of the
box in which the wave functions are normalized is 2E..
Defining too+„and co&„ in the following way,

As mentioned earher b and z, (u) are known from the
preceding section. For a=O the prefactor can be calculat-
ed in many different ways (see, for example, the paper by
I.anger, Ref. 17). However, for a not equal to 0 we have
to extend the usual Fredholm scattering theory so as to
be applicable to the present problem. Before we do that
we shall now show how one must define phase shift for

thc cnclgy c1gcnvalucs RI'c g1vcn by

Eon =(on) +2atoon

(4.19)

(4.20)
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where the integers n take the values 1,2,3, . . . , and 0. is
either + or —.

When v+0, the Hamiltonian in the dissipative case is
ho+ U. The following arguments show that the concept of
phase shift still remains meaningful. If we assume that
%'(u)-e'"" when u ~ oo, the error comes from two
separate sources: (a) the error from Uitj and (b) the error
from the nonlocal term. Both of these errors vanish as
u ~ ao, the first because 0+~0 as u —+ oo and the second
because the error coming from the nonlocal term vanishes
as I/u as u~oo. Since parity is still a good quantum
number for ho+ U, we can construct, once again, even- and
odd-parity standing waves just as in the nondissipative
case. Now the spectrum will be given by

E„=(co„)+2aco„,

7l 7T n5
Q)n

R R

Now define

AEo„——Eo„+)
—Eon

2m
( coo„+a )

5E„=En —Eon

25„
(~o„+a) .

We therefore have

(4.23)

(4.24)

(4.25)

where

and

(2n —1)n

2R
(4.22)

5E„
gal

AEon
(4.26)

and k can now be calculated in terms of the phase shifts
defined above, and we have the following:

det'(1+h, + V}
k

det(1+ ho )

5E„
(1+Eh )exp . g ln 1+

bound states n~ 1+Eon

bound states

5E„
(1+Eb )exp

Eo.
1 1

AE „+0 R

1 "d, 5+(E')+5'(E')
0 (1+E') (4.27)

Clearly the final equation is of the same form as for the nondissipative cases. An expansion of the Fredholm deter-

minant gives the tangent of the phase shift as follows:

tan5 «)= —~ &E
I

V IE& + f, E E &E
I V IEi& &Ei

I

V IE& + (4.28)

However, one must remember that

(u Icoo„)
(u IEO„) =

b,EO„

1

2n.(coo„+a )

' 1/2 cos(cog„Q )

(4.29)
sin(coo„u)

'

Note the presence of a in the above equation. Although
the above series converges for large co (or a), for co~0
and small u its convergence is quite poor. For small co we
calculate the ratios of the eigenvalues numerically;

I
coo„)

are chosen as the basis to represent ho+u as a 291)&291
matrix. The choice of the size of the matrix reflects a
compromise between the computing time and the accura-
cy gained in making the matrix larger. Figures 6 and 7

show (1+ED„)/(1+E„)as a function of co„ for a=0 and
a=1, respectively. Although co„'s are discrete we have
drawn smooth lines through them. The solid line is the
result of changing the integral in Eq. (4.27) into a discrete
sum and using the approximation 5 (E)

n. (E
I

V
I
E) .—Note that the discrete sum that re-

sults depends on the grid size. Both grid sizes (Figs. 6 and
7) were chosen to be 0.03. The dashed line is the result of
the numerical diagonalization of the matrices using the
same grid size mentioned above. It turns out that the ra-
tios (1+Eo„)/(1+E„)are almost the same, on the scale
of the figures, for cr= + or o = —.We therefore do not
distinguish between them in the plot. As expected when m

or a is large the approximate expression for the phase
shift given above does quite well. At this point it is im-
portant to note the following: The approximate form
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(I+ E„)
(I + E~)

X
X

X

J.O0

FIG. 6. Ratio of the eigenvalues of ho and ho+U as a func-
tion of N„. Dashed line corresponds to the numencal diagonali-
zation of the matrices and solid line corresponds to a simple ap-
proximation given in the text. The parameter a is equal to 0.

E) is used only for high energies.
It certainly would be more accurate to use
5 (E)-tan '(m ~(E

~

V
~
E)~); however, this is not neces-

sary since for low energies we use the exact numerical re-
sults obtained from diagonalizing the matrix, as men-
tioned above. On the other hand, the use of arctan would
make the ratio (1+E„)/(1+E„)finite instead of infinity
at zero energy for the case a =0. Thus it is because of the
approximation arctan(x)-x that the Born approximation
curve is seen to blow up at zero energy. There is an im-
portant difference between the present one-dimensional
case Rnd tllc usllal tllrcc-dlIIlcllslollal case wllclc
(r

~
E)l ——(2kmjM )' jI(kr) and therefore for potentials

with support we find that &(E
~

V
~
E)&-k '+' for small

k. In the present case note that [see Eq. (4.29)]
(u ~EO„)~-(c00„) ' leading to a different behavior as

I. l5

FIG. 8. I.og-log plot of the prefactor as a function of a.

we have just discussed. The bound-state eigenvalues are
caslly dlstlllgulsllcd flolll thc colltllllll1111; Ilot ollly Rlc tllcy
well separated from the continuum but their wave func-
tions have the characteristic signature of normalizability.
For a=0 the three bound-state ecgenvalues obtained nu-
merically were Eb ———1.25,0.0,0.75 in excellent agreement
with the exact analytical results. For o,'=10, we again
found three bound-state eigenvalues given by
Eb ———1.615,0.0,0.618, once again in excellent agreement
with the exact analytical results obtained by Caldeira and
I.eggett in this limit. In this large damping limit the
analytical results are given by Eb ———(v 5+ 1)/2, 0,
(~5—1)/2. As far as we know there are no more than
three bound states for 0 ~a & 10.

To calculate E we therefore multiply the ratios of the
numerical eigenvalues up to a cutoff frequency co, and
then use the Fredholm theory to integrate the phase
shift for co ~ co, using the approximation 5

(E
~

V
~
E) . We have chosen co, such that it is

not too small in order to have a good fit with the approxi-
mation mentioned above, and not too large in order to
avoid the effect of finite matrix size. For cI =0, co, =3.93,
this method gives k'~ =7.84 instead of the analytical re-
sult (60)'~; the error is clearly less than 1.5%. For large
o,' this procedure should be even better since the asymptot-
ic fit is considerably more accurate. In Fig. 8 we show
—,
'

log, o(kb) vs logIO(a); some sample data are also present-
ed in Table I. The curve suggests a crossover from small
a to large a at cc-1. The slope of the straight line which
goes through a=4 and a=10 (Fig. 8) is 4.2. However,
the curve is concave upward; this means that the asymp-
totic slope is greater than 4.2. In fact the slope of 4.5 is
expected for large a, smce b-cx, and k-cl'. The fact
that b is proportional to cc follows from the calculations in
Sec. III, and the fact that k is proportional to ccs follows
from the replacement of the phase shift 5 in Eq. (4.27) by
—~.(E i

V iE)..
I.O

FIG. 7. Same as in Fig. 6 except that the parameter o. is 1.
We have presented an accurate calculation of the decay

rate from a metastable well in the presence of dissipative
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coupling to the environment at zero temperature. Al-
though we have concentrated on a particular form of dis-
sipation, which is currently under discussion for systems
involving the Josephson effect, we believe that such a nu-
merical method can be readily extended to other forms of
dissipation provided that the environment degrees of free-
dom can be explicitly integrated out to produce an effec-
tive action involving the system variable alone. In fact the
effective action derived by Ambegaokar et al. to discuss
the problem of oxide layer junction would be simpler to
handle than the dissipative model discussed here. The
simplicity is due to the fact that the nonlocal kernel in the
effective action derived by Ambegaokar et al. is short-
ranged, exponentially decaying, as opposed to the power-
law decay in the present model. The equation equivalent
to our (3.1) that can be derived from the action obtained
by Ambegaokar et al. will be numerically quite well
behaved. The reason why we were able to solve the
present problem effectively is because of the two interest-
ing properties of Eq. (3.1) discussed in Sec. III. A similar
generalization of the Fredholm scattering theory to other
forms of dissipation should be straightforward, and would
be required to calculate the prefactor, unless some other

way is found to calculate the ratio of the determinants. In
the future we plan to look into these problems. Lastly we
must emphasize that given the rapidly growing interest in
the subject of macroscopic quantum tunneling in systems
involving the Josephson effect, it is important to know
that the tunneling rate can be calculated in an accurate
and conceptually straightforward fashion whether or not
the current experiments are able to probe the finer details.
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