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Potts models in random fields
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The q-state Potts model is studied in the presence of random fields, which locally prefer ordering
of any one of the q states. In d dimensions, the transition is expected to become first-order for

q & q, (d). As in the nonrandom case, mean-field theory still yields q, (d) =2 for all d. Fluctuations
are argued to shift the nonrandom value, q, (d), into a significantly higher value, q, (d). For
q, (d) & q & q, (d) we thus expect random fields to turn the discontinuous transitions into continuous
ones. At d =3 this probably includes the experimentally realizable cases q=3 and 4.

I. INTRODUCTION

The order of the phase transition of the q-state Potts
model' has been the subject of intensive recent research.
The transition is first-order for q &q, (d) and continuous
for q &qo(d). The critical value q, (d), which is universal
for short-range interactions, varies with the dimensionali-

ty of the system, d. At d =2 it was shown exactly that

q, (2) =4. Recent approximate real-space renormal-
ization-group (RG) calculations reproduced this result
and gave details of the behavior for different values of q.
As d~1+, Migdal-type recursion relations indicated
that the transition is continuous for all finite q, i.e.,
q, (1)~ ao. Indeed, it was recently shown that for
d~l+, q, (d) increases as exp[2/(d —1)j. Above the
upper critical dimensionality, d &d„=6, one expects the
Potts model to be correctly described by mean-field
theory. Mean-field theory predicts that all Potts models
with q&2 should have first-order transitions due to the
presence of cubic terms in the appropriate Landau free-
energy expansion. Hence, q, (d}=2 for d &6. Moreover,
a RG study of the inodel in 6-e dimensions showed that
the transition remains first-order for q & 2, i.e.,
q, (6—e)=2. Recent RG studies near four dimensions
showed that q, (d) =2 for d & 4 and that q, (4 e)—
=2+a+0(e ) for d &4. For d =3 it is now believed9

that q, (3) & 3. The critical value q, (d} thus seems to be a
monotonically decreasing function of d changing from ao

at d = 1, via 4 at d =2 to 2 at d =4 (solid line in Fig. 1).
Random quenched fields (which couple linearly to the

order parameter) have drastic effects on phase transitions.
In particular, diagrammatic studies of the n-component
spin Landau-Ginzburg-Wilson model with random fields
indicate deviations from mean-field theory below six di-
mensions, instead of four dimensions (without random
fields). The e expansions of the random-field problem in

d =6—e dimensions are the same, to all orders, as those of
the nonrandom problem in d=4 —e dimensions. ' ' The
situation concerning the lower critical dimensionality, di,
below which there exists no long-range order at any finite
temperature, is less clear. For rotationally invariant O(n)
models, the rule d~d —2 also applies to dI, which is
shifted to di=4. ' For the Ising case, n =1, there exist
arguments yielding either dt ——3 (Refs. 15 and 16) or
2.' ' ' In any case, it is clear that random fields yield
the critical behavior of an effectively reduced dimen-
sionality, and that, therefore, the effects of fluctuations
are much more severe.

The aim of the present paper is to study the effects of
random fields on the order of the transitions of q-state
Potts models. The model is defined in detail in Sec. II.
At the level of mean-field theory (Sec. III) we tried to see
if random fields strengthen or weaken the tendency of the
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FIG. 1. Schematic plot of q, (d) (solid line) and q, (d) (dashed
line).

1263 1984 The American Physical Society



system to undergo a first-order transition. We find that
the transition never becomes continuous. Going beyond
mean-field theory, Sec. IV aims at estimating q, (d) in the
presence of random fields. Since random fields enhance
tlic cffccts of flllctuatloIls, wc cxpcct q (d) to lllci'case lI1

their presence. We argue that q, (d) should now diverge
to infinity at the new lower critical dimensionality di
(probably equal to 2), and should decrease towards q, =2
at d=6 (dashed line in Fig. 1). Section V is devoted to
possible experimental realizations in which random fields
may turn discontinuous transitions into continuous ones.

II. MODEL

The q-state Potts model in a random field is described
by the following Hamiltonian:

~= —J g (q5, ,
—1)—g gH;(q5, —1), (1)

&ij ) l 0,'

where o; is a spinlike variable at the site i of a d-
dimensiona1 lattice which can attain q different values
o;=1,2, . . . , q. J (~0) is the ferromagnetic exchange
coupling between nearest-neighbor (NN) sites i and j, and
(ij ) denotes a summation over NN sites only. The in-

teraction between NN spins is —J(q —1) (if they are in

the same state) or J (if they are in different states). The
random (quenched) field H; favors the state o; =a.

In this work we consider a class of random-field distri-
bution functions which give the same probability, 1/q, to

fields along each one of the available q states, thus
preserving the permutational symmetry of the q-state
Potts model. The simplest representative of this class is

p{HIH', , . . . , H~j= ,
' g-5(H;—H) g5(HI').

a= 1 P+a

Note that (2) assumes a constant (nonrandom) value H for
the magnitude of the field H;. In principle, it is possible
to consider a random distribution of H as well. However,
it turns out that the most important effects follow from
the random "orientation" of the field. As usual, ~e as-
sume no correlations among the random fields at different
sites, i.e., F{H; j = g,.p {H; j.

The average free energy per spin F is given by
'

F= (f{H;j ),„/N =—g P {Hg jf{Hg
. j,

fgcxI

= —( I/P)ln [ Tr exp( PA {cr;,H—; j )] .

In (3), kII is the Boltzmann constant, T is the temperature,
P=1/kaT, Pi {o;,H; j is the Hamiltonian for a given
configuration of the fields {H;j, and the trace is taken
over all the dynamic degrees of freedom, i.e., the spins

III. MEAN-FIELD THEORY

In the mean-field approximation one assumes that the local order parameter, 5~ ~—1/q, acquires a nonzero average

value in one of the available q states, for instance, (5 —1/q ) =Q5 i. In that case,

f{H; j =CA(q —1)JQ /2 —(1/P)gin{ Tr exp[PCJQ(q5~ I
—1)+PH~(q5~ ~ 1)]j, —

I~; I
gt g t

where C is the coordination number. The trace has different values for cr; =1 and for cr;&I, and one finds

f{H; j =CD JQ /2 (1/P) gin e—xp{P[CJQ+H;(q5, 1)]j+g e—xp{P[ CJQI(q —1)+—H; (q5 r 1)]j—
where J=(q —1)J. Averaging (5) with (2) and summing over y we obtain the mean-field average free energy,

F=CJQ /2 —G(Q,H),
where H =(q —1)H and

G(Q,H) = (I/ Pq)l {npex[P(CJQ+ )H]+(q —1)exp[ —P(CJQ+H)/(q —1)]j

+ [(q —1)/qP]ln(exp{P[CJQ H/(q —1)]j +ex—p{P[—CJQ/(q —1)+H] j

+(q —2)exp{ P(CJQ+H)/(q —1)j ) . —

(6)

The solution Q=0 will have the lowest free energy for sufficiently high temperature and (random) fields. As the tem-
perature is lowered, one finds an additional solution g&0, with lower free energy, by minimizing F(g) and equating the
minimum to F(0).

If the transition is continuous or weakly first-order, we can find the transition point by expanding (6) in powers of Q
around Q =0. Writing

F=FO+Fig+ 2rg +wg +ug +O(g ), -

the coefficients are found to be



I = —(I/P}ln[eP +(q —1)e P /'q "],
p) —o

r(q) =(CJ/T)(T T,—), T, =T, (0)(1—q ), T, (0)=CJ/kp(q 1)—,

Io(I )=Ic(0)(l—q.) (I+2q.), w(0)=p C J (2—q)/6(q —1}

u(q. ) =II(0)(1—q. ) I 1+v+[6/(q —6q+6) j[—(q —5q+5)++(q —3q+3)2]I,
u(0) =PIC J (q —6q+6)/24{1 —q)

(epH c pH/(q— I))/{—epH+(q 1)c pH/(q——Ii}

PH =x =[(q 1)/q]l—n t [1+(q —1)~]/(1 —q ) j

(12)

(13)

(14)

Note that q. is a monotonically decreasing function of
x =PH, i.e., 1 & r & 0 for ao &x & 0.

Equation (10), I" I ——0, follows directly from the permu-
tational symmetry of (2). The fact that m+0 for q+2 im-

plies tllat wit11111 mean-fllcld theory thc tl'Rlisltlon ls always
first-order. ' Note that Ilt decreases monotonically with
pH, approaching zero as pH~ao. For q=2, Ic=0 and
one recovers the Ising model in a random field. '

For 1&q &3—1/3=1.268 and for q &3+v 3=4.732
we find that u(0) &0, and higher-order terms are needed
for stability. This does not affect the experimentally
relevant values q=2, 3, and 4. In addition, u decreases
with increasing ~, and becomes negative for q & ~'(q) [with
q'(q)=0. 577, 0.542, and 0.465 for q=2, 3 and 4, respec-
tively].

Truncating (8) at quartic order, we indeed find a first-
ordcr tlans1t1on Rt

(15)

w1th. thc discontlnu1ty

EQ(~)=-
2u(r)

(16)

The explicit dependence of r„and of AQ on r may give us
an indication on the effects of the random fields. For
both q =3 and 4, r~ first decreases with increasing ~, and
then starts to increase due to the approach of u(~) to zero
at q*(q). One should clearly include higher-order terms in
the latter regime. A similar analysis of EQ is even less
conclusive: b,Q increases with ~ for q =3, and shows an
initial decrease with q for q =4 (turning to an increase as
I' is approached). One can thus not make any general
statements in regard to the "strength" of the first-order
transition in the presence of the random fields.

In any case, it is clear from Eq. (12) that (J(v) never
changes sign as function of r. One will thus never en-

countcl RIl Rccldcntal continuous tlaIlslt1on 1Q thc pl'cs-

ence of the random fields.
Similar qualitative results were found when we aver-

aged over the magnitude of H, e.g., with a square or with
RIl cxponcntlal distribution.

We now return to Eq. (7}and consider directly the low-

temperature limit, P~ oo. In this limit, Eq. {6)reduces to

CJQ /2 —CJQ, H &CJQ

CJQ /2 H, H &—CJQ .

This yields the paramagnetic phase, Q =0 (with I"= H)—
for H &CJ/2, and a ferromagnetic phase, Q=1 (with
I'"= —CJ/2) for H&CJ/2. The transition at zero tem-
perature is thus always strongly first-order, occurring at
H =CJ/2.

IV. FLUCTUATIONS

In the absence of random fields, fluctuations yield
nonclassical critical exponents for the Potts model below
six dimensions. Similarly, q, (d) deviates from 2 below
four dimensions. We now consider the e expansions of
these quantities in 6—e and 4 —e dimensions, respectively.
Thcsc E cxpanslons alc based on d1agraITlITlatlc perturba-
tion expansions in u, u, etc. Expanding also in the ran-
dom fields, the most divergent diagrams can be shown to
be treelike (with a random field at the end of each branch).
Repeating the arguments of Aharony et al. '0 and Young(1
tllclc exists Ril exact Illappillg of cacll of tllcsc diagrams
oQto onc 1n thc QonrandoG1 cxpanslon, pI'ov1dcd tIlat d 1s

replaced by d —2. One can now repeat the calculations of
Priest and I.ubensky and find that the random-field
Potts-model exponents deviate from their mean-field
values below eight dimensions, with, e.g., 2v=l+e/7
+0{E ) 111 d =8 —c dlmcnslons. Ollc call s111111Rrly Icpcat'
all the steps used by Aharony and Pytte and find that
q, (d)=2 for d &6, while q, (d)=2+@+0(c ) in 6 =6—c
dimensions. It is not clear if one may extend these state-
ments beyond the asymptotic regime near d =6. If one
could, then we would be led to the conclusion that
q, (d) =q, (d —2). In particular, this would imply that the
new lower critical dimensionality is equal to 3, and that
q, (d)~00 as d~3+.

It is now widely believed that the shift d ~d —2 should
not be apphed for the Ising model at low dimensionali-
ties. ' ' ' These arguments may be directly generalized to
any discrete spin model, and in particular to the q-state
Potts model. At low temperatures, the random fields will
break thc systcID 1nto domains, whcrc 1Q each doIDRin thc
spina point along the local average field, provided d &2.
This identif1cation of dI as 2 seems not to be modified
even if roughening of the domain boundary is allowed
for. In fact, it has been suggested that d ~d'
=d —2+1}{d'), rather than d~d —2."" This yields



di =2 and leads to the line q, (d) =q, (d') shown in Fig. 1.
Even if all of these detailed quantitative statements are
not fully justified, we believe that the line q, (d) will be
similar to that drawn in Fig. 1. In particular, q, (d)
should approach infinity at di (equal to 2), and 2 at d =6.
Any reasonable interpolation between these two limits will

imply that q =3 and probably q =4 are below q, (3), so
that the transitions in these cases may turn second-order
by the application of random fields.

It should be noted that the fact that 3 &q, (3) does not
necessarily mean that the transition of the random-field
three-state Potts model is continuous. Rather, the transi-
tion may become continuous for some range of values of
the random field.

Our first conclusion is that random fields should des-
troy long-range order for all Potts models in two dimen-
sions. There exist many realizations of these models for
adsorbed layers, and random fields are easily generated
on them by, e.g., randomizing the substrate and thus
creating random local chemical potentials. Experiments
(real or computer) can be made to verify the disappearance
of long-range order.

Regarding thI'ee dimensions, the most lnterestlng case
seems to be q =3, since q, (3) ~3 &q, (3). The application
of a random field is expected to turn the first-order transi-
tion into a continuous one via a tricritical point. One ex-
perimental realization of this model occurs in SrTiO&,
when it is stressed along [111]. The coupling to strain
degrees of freedom involves terms in the Hamiltonian of
the form g &A,J~Q; Q~~, where Q is the three-component
antiferrodistortive order parameter. Impurities will gen-
erate local random strains, i.e., random values of A,z,
with [A;~~],„=0. Under [111]stress one has ordering of
the [111]component of Q, (Q(iii) ), generating a three-
state Potts term in the two components perpendicular to
it, (Q(»i))[(Q') —3Q'(Q ) ]. The random AFj 's will
then generate random linear terms of the form
3 '(Q(it i) )Q', i = 1,2, which act as random fields. An in-
crease in the concentration of the impurities, or an in-

crease in the [111]stress (and therefore in (Q(iiil )), may
then turn the transition at which Q' and Q order into a
continuous one.

The mixed antiferromagnet Fei „Co„Clz (Ref. 27) pro-
vides another possible realization of q=3,d=3. The
Hamiltonian describing the magnetic transitions includes

terms of the form wS S;"[(S;") 3—(Sf) ], where S; is the
three-component staggered magnetization. Moreover, the
impurities generate random anisotropy terms, e.g.,
A;~S,'Sg, with [A;~],„=0. Again, ordering of S' generates
a (q =3)-state Potts model in a random field.

It has recently been suggested that phase transitions
induced by a uniform magnetic field directed along [111]
in certain type-I fcc antiferromagnets (such as NdSb,
NdAs, CeAs, and others) provide a physical realization of
the (q =4)-state Potts model in 4 =3 dimensions. By di-

luting these antiferromagnets in the presence of the uni-
form field it may be possible to generate random fields.
Assuming that q, (3)&4 (Fig. 1), then increasing the
strength of the uniform field will probably change the or-
der of the transition from first-order to continuous.

We expect that similar effects should occur in any sys-
tem which undergoes a first-order transition in three di-

mensions and a continuous one in lower dimensions. The
strong random-field fluctuations, which cause an effective
reduction in the dimensionality of the system, should in-

duce the crossover from first-order to continuous transi-
tions predicted in this work.
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