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Extensive numerical simulations of the rf-biased Josephson junction are presented. It is shown
that, as the amplitude is increased for fixed damping and frequency, an apparently endless sequence
of bifurcating-chaotic trees separated by periodic solutions exists. The state diagram characterized
in the amplitude-damping plane at fixed frequency (Q2=0.65) shows a complex set of solutions. A
detailed study of the transition in the high-damping limit is presented, indicating the bounds for
asymmetric, bifurcating, and chaotic solutions for low B.. It is shown that strange attractors are
common to trapped and free-running chaotic solutions for nearby amplitudes due to intermittency
among the various basins of attraction. Return maps at high amplitudes are found to be essentially

one dimensional.

Experimental consequences of our simulations are presented in terms of

equivalent noise temperatures at low frequencies, resulting in maximum noise temperatures of the

order of 10°—107 K.

I. INTRODUCTION

The existence of chaotic solutions and the transition to
chaos in dissipative dynamical systems have generated
wide interest in the past few years! due in part to a num-
ber of universalities that are found both in irreversible
maps and in a wide variety of nonlinear differential equa-
tions. One such nonlinear dynamic system is the driven
Josephson junction, a system isomorphic to a variety of
physical systems such as the driven damped pendulum, a
particle in a driven periodic potential or a charge density
wave pinned to its lattice.’ Interest in the chaotic
behavior of Josephson junctions was initially generated by
the suggestion of Huberman et al.® that chaotic solutions
might be responsible for the observed large noise rise in
Josephson junction parametric amplifiers,*~¢ as well as
calculations by Kautz,”® showing the existence of univer-
salities like those of one-dimensional noninvertible maps’
in the presence of a dc bias. Further simulations by
Pederson and Davidson!® revealed a rather complex state
diagram in the amplitude-frequency plane with structure
not previously observed in analog simulations® for rf-
driven junctions. D’Humieres et al.!! showed a variety of
significant features associated with chaotic solutions in
rf-driven junctions, such as the importance of symmetry
breaking, low-frequency chaotic solutions, and the role of
intermittency between phase-locked states. In fact, simu-
lations have shown intermittency to be quite generic to a
variety of Josephson junction circuits both in the rf-bias'?
and dc-bias!® cases, and has been observed in real junc-
tions in a resonant circuit by Miracky et al.'* Experimen-
tal understanding of chaos in the rf-driven junction still
remains unclear. Parametric amplifiers that have shown
unusually large noise rises*~® include those made with
junctions with low capacitances where chaotic solutions
are not expected to occur. Furthermore, Levinson!® has
shown, using analog simulations, that no chaotic solution
exists at the operating points where parametric amplifica-
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tion occurs.

The rf-driven junction is the simplest system in which
one can hope to compare the experimental behavior of real
junctions to simulations, since it contains the fewest ex-
perimental parameters of those Josephson junction sys-
tems that have been found to exhibit chaotic solutions.
Such a comparison should not only provide information
about the transition to chaos and the chaotic state in
Josephson junctions, but might also yield information
about the adequacy of models of Josephson junctions.

In this paper extensive simulations that complement
previous simulations for the rf-driven Josephson junction
are presented. Owing to the interest in the transition to
the high-damping regime, a state diagram has been calcu-
lated in the rf amplitude-damping plane at a fixed fre-
quency up to amplitudes higher than those previously
studied. It is shown that as the rf amplitude increases, the
solutions show a sequence of period-doubling cascades
into a complex chaotic-intermittent state. While each re-
gion in the sequence varies in detail from the others, they
are all qualitatively similar to the period-doubling-chaotic
cascade in one-dimensional maps. Each region contains
phase-locked and unlocked solutions and is followed by a
transition into period-one solutions either directly from a
chaotic state or through a period-two sequence. Intermit-
tent regions are found in the transition to odd-period bi-
furcations, with features similar to tangent bifurcations,
but the detailed behavior is more complicated than that of
one-dimensional maps. The detailed transition in the
high-damping regime shows a period-two region that be-
comes chaotic as the damping is reduced. The bounds for
this behavior are lower than the characteristics damping
value of the hysteretic I-V characteristics of Stewart and
McCumber!é for a dc-biased junction. Noise temperatures
show that in the absence of thermal fluctuations an upper
limit of ~3X10° K exists for a 1-mA junction. The ef-
fect of thermal fluctuations is also discussed.

The organization of the paper is as follows. In Sec. II
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the equations for the rf-driven junction are presented to-
gether with a discussion of the simulation techniques
used. In Sec. III we discuss a typical sequence with in-
creasing rf drive at fixed frequency and damping. In Sec.
IV the state diagram at fixed frequency is presented and
the high-damping limit is discussed. In Sec. V we discuss
strange attractors, intermittency, and return maps associ-
ated with the state diagram of Sec. IV. Finally, in Sec. VI
we discuss applications of our simulations to experiments
and in Sec. VII we present our conclusions.

II. THE RESISTIVELY SHUNTED JUNCTION MODEL

The rf-driven Josephson junction is modeled using the
usual shunted junction model, which assumes that the
junction is effectively current-biased by an rf drive. Then
if a Josephson element is shunted by a fixed resistance Ry
and a capacitor C we can write

c—‘—’dTV +{; FIgsing =1 gsin(ot) , (1)
where ¢ is the total phase difference across the junction
and I ¢ is the rf current.

This equation combined with the second Josephson rela-

tion

ﬁf‘% =2eV (2)

can be reduced to a single dimensionless third-order equa-
tion

d? 1 d . .
Zg *VE j? +sing=psin(Qr) , 3)

where time has been normalized by the inverse of the plas-
ma frequency w, =(2el, /%iC )72, the natural frequency of
the system, p is the rf-driving amplitude I,; normalized by
the critical current I,, Q is the normalized applied fre-
quency, and B, is the Stewart-McCumber parameter
B.=2el,R%C /#, which is a measure of the damping of
the system.

As noted in the Introduction, Eq. (3) is isomorphic to
the driven damped pendulum,!! charge-density waves in
the presence of time-varying electric field, and a charged
particle in a viscous medium in a sinusoidal potential with
a time-varying electric field. In what follows we will use
the latter analog in order to understand qualitatively some
features of the solutions to Eq. (3).

Solutions to Eq. (3) were obtained using a fourth-order
Runge-Kutta algorithm. After transients died out, a
search was made for solutions of the form
ot +Qu/Q))=¢(t)+2mnl and ¢(t +27/Q))=¢(2),
where n and [ are integers. Typically, both initial condi-
tions were set to zero, which yields both stable and un-
stable solutions. In order to study the effect of noise on
regimes of the parameter space and to eliminate unstable
solutions, noise was introduced in our calculations.

In the presence of thermal fluctuations and as long as
eV >>kpT, the autocorrelation of the noise current is
given by the usual Johnson noise expression

(L, (OI,(t +7))=(2kpT /Ry )8(7) . 4)
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Since a Gaussian distribution with a finite width is used to
generate noise events, the normalized noise current
pn =1, /1, autocorrelation is then given by

(pu(Dpn(t +7)) =(4/yB*A0)S( 1) , 5

where At is the normalized time step used in the calcula-
tion and y=#I,/ekgT is the noise parameter of Am-
begaokar and Halperin.!?

Using (5) and (3), one can then write the usual Langevin
equation for the Josephson junction in the presence of
noise. In general, a time step A¢ between 0.01 and 0.001
was used and typical transients were found to be of the or-
der of 30—50 driving force periods. In the case of
tangentlike bifurcations, even a larger number of periods
had to be neglected to guarantee the attainment of a
steady state. When needed, the power spectrum of the
voltage was calculated using
2

s

(6)

2| poT. 0
S&(Q):—f lfo d(7)e' M dt
with averaging times of up to 512 periods of the rf drive.

III. SOLUTIONS WITH INCREASING rf DRIVE

Figure 1(a) shows a qualitative representation of the
types of solutions observed as the amplitude of the rf
drive is increased from p=0.8 to p=10 for fixed damping
(B, =5) and normalized frequency ({21=0.65). This value
of the normalized frequency was chosen since we found
the richest structure in the state diagram around this par-
ticular value. Triangular regions indicate qualitatively
whether subharmonic or chaotic solutions are observed.
A total of eight regions are shown in Fig. 1(a). For the
particular damping represented in Fig. 1(a), each of the
eight regions begins with a period doubling sequence fol-
lowed by chaotic solutions. Within each chaotic region, a
variety of phenomena are found, the most common
feature being the existence of period-three and -five win-
dows. Figure 1(b) shows the average voltage across the
junction for each region in Fig. 1(a). [To generate Fig.
1(b), we introduced a small amount of noise corresponding
to 0.5 K for a junction with a 1-mA critical current in or-
der to eliminate unstable solutions. Similarly, the rf bias
was increased smoothly in order to have symmetry break-
ing of the same sign, which does not occur for a fixed set
of initial conditions at each rf drive.] In general, the aver-
age voltage of any period-two solutions corresponds to a
phase-locked solution. Within the chaotic regime, it is
possible to observe both phase-locked and unlocked solu-
tions, the former commonly following or preceding re-
gions of subharmonic or period-one behavior.

There are two significant features in Fig. 1. First, as
the amplitude increases, there is an apparently endless se-
quence of bifurcating-chaotic trees. Second, phase-locked
solutions on a step other than the n =0 are only present at
low rf drives. The origin of the sequence of bifurcating-
chaotic trees can be understood by considering the analog
of a forced charged particle moving in a sinusoidal poten-
tial. As pointed out by D’Humieres et al.,!! the signature
preceding the bifurcating cascade is the onset of symmetry
breaking. Symmetry breaking begins as the particle starts
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FIG. 1. (a) Schematic representation of the type of solutions found for 2=0.65 and B, =35 as a function of the rf amplitude p. For
any given p, the character of the solution is represented by one point (period one), two points (period 2¥), three points (3 X 2¥), five
points (period 5 2%), or solid (chaotic solutions). All higher-order solutions are not indicated and only major regions are indicated.
(b) Average voltage {(d¢/dT ) of solutions for the same parameters as used in (a). Note how phase-locked solutions on the n =1 step
and subharmonic steps are absent at high amplitudes. Note also how the fluctuations in voltage become smaller as the amplitude is

increased.

to “explore” the nonlinear part of the first well in which
its motion began. (In the driven damped pendulum, this
corresponds to larger oscillations around the equilibrium
position.) At slightly higher amplitudes, the period-
doubling sequence develops, followed by the chaotic re-
gime, which begins to occur as the particle moves near a
maximum in the sinusoidal potential. The motion of the

particle becomes periodic again as the slow motion of the
particle occurs near the minima of the first well (where
the oscillations began at low amplitude) and near the
minima of the adjacent well. If the rf drive is increased
further, the motion repeats the same qualitative sequence.
The symmetry is broken again as the particle excursion
reaches the nonlinear part of each of the two neighboring
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wells. This is followed by another bifurcation tree and
chaos as the rf amplitude is increased. Thus, the series of
chaotic trees corresponds to essentially the same motion,
except that the particle visits an additional well for each
region. Thus, one would expect an endless sequence of
bifurcating-chaotic regions as motion in each additional
well generates an additional bifurcating-chaotic sequence.
The simple picture described above is complicated by
the existence of periodic-running solutions. These occur
whenever “strong” asymmetry is observed and the motion
of the particle reaches an additional well on one side. An
example of this behavior for the first region of Fig. 1(a) at
low rf drive is shown in Fig. 2. Figure 2(a) shows the
phase-plane solution at the beginning of the first bifurcat-
ing sequence together with the real motion in the
sinusoidal potential. Figure 2(b) shows the phase-plane
solution for the second region of Fig. 1(a). There is strong
symmetry breaking, which results in a free-running solu-
tion, as shown in the inset in Fig. 2. Thus, regions 1 and 2
of Fig. 1(a) correspond to oscillations within one well, the
difference being that the second is a free-running solution
(phase locked or not) in which in each cycle the particle
oscillates once in each well and diffuses to the next one,

T T
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FIG. 2. (a) Phase-plane solution ¢ vs ¢ (mod ) for a periodic
solution with broken symmetry near the first bifurcating-chaotic
region (B.=5, 0=0.65, p=0.925). The inset shows the solu-
tion ¢ vs ¢ in “real” space showing the single-well “trapped”
motion. (b) Phase-plane solution ¢ vs ¢ for strong symmetry
breaking near the second bifurcating-chaotic region. The inset
demonstrates the free-running nature of the solution (B.=35,
0=0.65, p=1.25). Both insets are in arbitrary units.
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thus yielding a nonzero average voltage. This solution is
phase locked and corresponds to the n =1 step of Fig.
1(b).

The eight (8, =5) regions in Fig. 1(a) thus correspond
to oscillations in the first six wells, with the second and
fourth regions corresponding to free-running solutions
with strong symmetry breaking.

It is difficult to determine the space variables required
for strong symmetry breaking. In general at very high rf
drives no free-running solutions are observed, which is
somewhat counterintuitive. Figure 3 shows the motion in
the initial bifurcating regime corresponding to motion in
the first five wells (or first five rotations of the pendu-
lum), clearly indicating the origin of the series of se-
quences described earlier.

For all regions studied, it is clear that the slow motion of
the cycle is critical in determining the subsequent behavior.
Symmetry breaking begins when slow motion occurs near
the nonlinear part of the well, chaotic solutions begin to
occur as the slow motion gets close to the maxima of the
potential, and period-one solutions reappear when the slow
motion reaches the minima of the adjacent wells.

Careful study of symmetry breaking shows that the
direction of asymmetry depends on which side of the well
the nonlinear regime is first visited. This is strongly
dependent on the initial conditions.

(ARB. UNITS))
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FIG. 3. Phase-plane solutions ¢ vs ¢ in “real” space showing
the bifurcating solutions at the beginning of the regions 1, 3, 5,
6, and 7 of Fig. 1, which show trapped solutions. The bottom
shows the sinusoidal potential. Clearly, each succesive region
corresponds to adding an additional well to the motion. All tra-
jectories are for B, =5 and Q=0.65. Amplitudes are for each
region p;=0.95, p3=2.51, ps=4.185, p=>5.85, and p;=7.52.
Note the effect on the limit cycle velocity due to the potential.
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IV. THE STATE DIAGRAM

A. General features

While extensive characterization of solutions has been
made in the amplitude-frequency plane with fixed damp-
ing,>101L18 jt js of interest to consider the amplitude-
damping state diagram at fixed frequency. This interest is
twofold: first, it allows for the study of the transition to
the high-damping regime; second, it is a useful guide in
considering possible experiments with real junctions where
it should be possible to vary B, by varying temperature,
and thus “tune” the junction to regions where a rich
variety of solutions can be observed.

Figure 4 shows the state diagram in the rf amplitude-
damping plane up to B, =25 for a fixed frequency near
the plasma frequency (2=0.65). This diagram was gen-
erated in the absence of noise starting from zero initial
conditions. The state diagram of Fig. 4 shows in detail
the solutions obtained at low rf excitation amplitudes p.
The dark regions represent subharmonic solutions of the
form 2%Xxn, where n is indicated in the figure and

2.0
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FIG. 4. State diagram in the amplitude-damping plane for
0=0.65 showing the different periodicity of the solutions.
Empty regions correspond to period-one solutions. Solid regions
correspond to period doubling, tripling, and quintupling, as indi-
cated in the figure. Cross-hatched regions indicate chaotic solu-
tions. Only major bifurcating-chaotic solutions are indicated.
The diagram was generate by exploring the solution plane with a
grid Ap=0.01 and AB,=0.025 starting from zero initial condi-
tions in the absence of noise.
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K =1,2,3,... . The dashed regions indicate chaotic solu-
tions, and the empty regions indicate period-one solutions.
For clarity, only major subharmonic regions with n =2, 3,
and 5 are indicated. Similarly, no indication is given as to
whether the solution is phase locked or not. The state dia-
gram in Fig. 4 is only modified slightly by the addition of
small noise temperature. Unstable solutions typically cor-
respond to small regions of subharmonic behavior or to
regions of oscillations around the potential maxima (or the
up position in the pendulum analogy).

While complex, the map shown in Fig. 4 shows the
finer structure of each of the series of regions discussed in
Sec. III. Each period-one region is followed by a bifurcat-
ing cascade of the form 2% which in turn leads to chaotic
solutions (dashed regions). The cascade always follows
Feingenbaum’s scenario within the numerical precision
used. However, we have found incomplete cascades in
which the cascade reverses itself without reaching a chaot-
ic regime. In analogy with irreversible maps, period-three
and -five regions are found within the chaotic regime.
Period-three regions are usually the widest observed.
Higher-order regions tend to be narrow and are more
commonly observed for high 3, values.

It is interesting to consider the motion in the period tri-
pling regions, as shown in Fig. 5 for p=1.025. The figure
shows the phase-space plot, and the inset shows the
motion in real space for a particle in a sinusoidal well.
Once again, the slow motion part of the cycle appears to
be crucial. The particle makes two small symmetric oscil-
lations within the first well after which it travels symme-
trically to the two adjacent wells. Each small oscillation
takes one period of the driving frequency, and the motion
in the adjacent wells takes another period. As the ampli-
tude is increased, the small oscillations begin to occur
closer and closer to the maxima until the period tripling
breaks down near the maxima and chaotic behavior is re-
stored.

Period-one and subharmonic regions are always phase
locked, and it is possible to switch from a phase-locked
n =1 solution to an n =2 solution, a behavior observed,

e
ar QXX
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FIG. 5. Phase-plane solution ¢ vs ¢ (mod ) for a typical tri-
pling region (2=0.65, B.=5, p=1.025). Amplitude changes
simply change the location and size of the two antisymmetric
loops. The inset has arbitrary units.
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for example, in the wide period-one region near p=2 for
B. values larger than 10. For 3, =25 the state diagram of
Fig. 4 agrees quantitatively with the solutions of Pedersen
and Davidson.!® On the other hand, the map agrees with
that of D’Humieres et al.!! only qualitatively, the details
of the observed sequence are the same, but the rf ampli-
tudes at which the sequences begin are much higher in the
calculated state diagram. In contrast to the analog simu-
lations of Cirillo and Pedersen,!? the transition to chaos
for B, < 15 occurs through a bifurcating tree.

The overall effect on the p-f, state diagram of varying
the frequency of the rf drive can be summarized as fol-
lows: As the frequency is lowered below =0.65 each
bifurcating-chaotic region becomes narrower and the spac-
ing between regions is reduced. At sufficiently low fre-
quencies all regions merge, leaving only wide chaotic
zones. Simultaneously the range of B, values for which
the initial transition to chaos occurs without bifurcations
increases in size, bifurcating cascades occurring only at
the lowest 3, values. For larger  values (but 2 < 1) the
opposite is observed. This indicates that in any experi-
ment with real junctions, there is an optimum range be-
tween 0.65 < Q) <1 where a rich variety of solutions occur
over the widest amplitude range. In this frequency inter-
val, transitions to chaos occur through bifurcating cas-
cades over the widest damping range.

B. Transition to the high-damping limit

The transition to the high-damping limit (8, —0) is of
interest for a variety of reasons. First, this limit corre-
sponds to a second-order nonlinear differential equation
for which no bifurcations or chaotic solutions are expect-
ed. Second, the experimental evidence* that initially gen-
erated interest in the chaotic behavior of Josephson junc-
tions came from parametric amplifiers that used low .
superconducting microbridges as the nonlinear element.
Finally, it is intriguing to explore whether such transitions
exhibit critical behavior. Figure 6 shows in detail the re-
gion of low B, for the state diagram shown earlier,
displaying the bounds for asymmetric, bifurcating, and
chaotic solutions. For ., <0.04 all solutions are sym-
metric and periodic at this frequency. Above B, =0.04,
solutions exhibit symmetry breaking up to [,=0.632,
where incomplete 2* cascades emerge. With increasing rf
amplitude at fixed B, the bifurcating reverses itself before
solutions once again become periodic. For higher S,
values, both the forward and reverse cascades develop ful-
ly and are separated simultaneously by regions of chaotic
solutions. The appearance of the reverse cascade, while
not a common feature of one-dimensional maps, is often
observed in rf-biased Josephson junctions.!! For example,
in Fig. 1, regions 3—5 exhibit this reverse sequence. It is
clear from Fig. 6 that both pitchfork bifurcations and
chaotic solutions can occur even in nonhysteretic junc-
tions. The onset of chaotic solutions occurs at 3, =0.788,
which is below the Stewart-McCumber'® value for hys-
teretic junctions. Figure 7 shows a sequence of phase-
space portraits for fixed amplitude and increasing S,
showing typical solutions found for the state diagram
shown in Fig. 6.
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FIG. 6. State-diagram p-f. in the low S, regime showing the
bounds for observation of asymmetric, bifurcating, and chaotic
solutions. The hatched region shows bifurcating 2* solutions
that can reverse-flip as the amplitude is increased at fixed S..
The 2* sequence is also found to be truncated for B, values for
which no chaotic solutions exist (2=0.65).

The low S, transition shown in Fig. 6 clearly demon-
strates that low capacitance microbridges are unlikely to
exhibit large noise rises as noted by Levenson and Feld-
man.!”” This, of course, presupposes that a microbridge
can be described adequately by Eq. (1) where any possible
inductive, heating,?’ or nonequilibrium effects have been
neglected. Thus, while the results of Chiao et al.* origi-
nally motived much of the interest in chaos in Josephson
junctions, no simulation has yet provided a clear-cut ex-
planation of their experimental observation.

As B, decreased below 10, the minimum amplitude p,
for which bifurcations are observed increases smoothly
down to B, nmin=0.6 but no phase-transition-like relation-
ship of the form ppi, o 1/(B, — B, min)* is observed. It is
found that each of the first four bifurcating regions for
low B, at 2=0.65 can be parametrized rather well by
Pmin,j =V;j/Bcaj, where v is a constant for each of the j
regions and a;=0.44510.002, ay=a3;=0.317+0.002, and
a,=0.19710.002=a?. While the exact exponents change
with Q, the relationships between exponents remain valid
for three points calculated between Q=0.65 and 0.78.

V. STRANGE ATTRACTORS, RETURN MAPS,
AND INTERMITTENCY

The strange attractor corresponding to the first
bifurcating-chaotic region of Fig. 1(a) is shown in Fig. 8,
together with its power spectrum S;(Q). The regions oc-
cupied by the 2¥ and 3 2* attractors are also indicated.
While the value of the rf amplitude corresponds to the
first region of Fig. 1(a), the same strange attractor is ob-
served for the second region, which is characterized by
free-running solutions with one oscillation per well. Fig-
ure 9 shows in detail how in a manner analogous to one-
dimensional irreversible maps,?""?? the section of the 3 x 2¥
attractor, shows intermittency, as the period tripling re-
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FIG. 7. Typical sequence of phase-plane portraits ¢ vs ¢ for fixed amplitude (p=2.35) and increasing B, showing the strong
changes in solutions: (a) total symmetry (B8,=0.4), (b) broken symmetry (8.=0.64), (c) period doubling (B,=0.72), and (d) period

four (B.=0.78).

gion is approached. Note that this basin of attraction is
common to both 3X2* regions found for single-well (re-
gion 1) and free-running (region 2) solutions. As the am-
plitude is increased, the 3% 2k cascade develops, and once
past the tripling window the same attractor shown in Fig.
8 reappears. The strange attractor of Fig. 8 is found to be
a composite of the attractors corresponding to harmonic
and subharmonic chaotic phase-locked states found in the
first two regions described in Sec. III. Thus, the numeri-
cal simulations exhibit the same type of intermittent
behavior noted by D’Humieres et al.!! using analog simu-
lations. Since in our case the solutions are computed in
the absence of noise, it is clear that this intermittency is
an intrinsic property of the motion and is not due to possi-
ble noise-induced transition between chaotic phase-locked
states. The observed Poincaré maps may contain more
than two attractors, hence, the behavior is reminiscent of
the model proposed by Ben-Jacob et al.,'* in which only
two attractors are involved in the motion.

Figure 10 displays the first five strange attractors. At
higher amplitudes their structure seems to be much
simpler, a consequence of the absence of intermittent-
chaotic solutions, since past the fourth of the regions in
the sequence, only the n =0 phase-locked state is ob-
served. The complexity of the calculated solutions would
suggest that any attempt to construct a return map for ei-
ther ¢ and ¢ would be quite difficult since the Poincaré

maps imply that a two-dimensional return map is re-
quired. In fact, we find that intermittency between
almost-stable phase-locked states is the most significant
obstacle. This is demonstrated in Fig. 11, which shows
calculated return maps for three regions, one [Fig. 11(a)]
with intermittent-chaotic behavior and two in which this
phenomena is absent [Figs. 11(b) and 11(c)]. In Fig. 11(a)
the nature of the map is quite difficult to discern. Note in
particular the presence of dense regions of “random”
points near ¢=0 and 27. In contrast to Fig. 11(a), at
higher amplitudes the return maps become well-behaved
functions on the interval with no “random” points. As
the amplitude is increased the return maps [Figs. 11(b)
and 11(c)] become simpler and show features quite similar
to one-dimensional maps such as the logistic equation.
The dense regions near $=0 and 27 in Fig. 11(a) reflect
the hopping between basins of attraction, which intro-
duces an additional random contribution to the already
quasiperiodic motion of the chaotic state. This motion be-
tween attractors is not contained in the Ben-Jacob et al.!?
model where the motion is assumed to switch between
nearby attractors, but the details of the transient motion
are neglected.

A different type of intermittency for one-dimensional
maps has been described by Manneville and Pomeau?! and
Hirsh et al.,?? and studied in Josephson junctions by Yeh
and Kao'? using analog simulations. This intermittent
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FIG. 8. (a) Poincaré map of the strange attractor corresponding to the first two regions of Fig. 1(a). The attractor is common to
both regions and is a composite of the various basins of attraction, as indicated qualitatively in the figure (2=0.65, B.=5,
p=0.985). The label indicates both that either single well or free-running solutions occur within this region. (b) Power spectrum S

as a function of function of frequency for the strange attractor of (a).

state is characterized by a sudden chaotic (or periodic)
burst as odd-period regions are approached. In the simu-
lations it is found that while most aspects of this intermit-
tent state agree well with the detailed analysis of Hirsh
et al.,?? additional features are observed. The most im-
portant difference is that the periodic laminarlike regions
within the intermittent state also can exhibit sudden bursts
of high-order subharmonic behavior. This is demonstrat-

ed in Fig. 12 where the voltage is shown every period as a
function of time for p=1.4175 [Fig. 12(a)] and p=1.419
[Fig. 12(b)] for B,=5 and Qg ¢s. Note that in Fig. 12(b)
the solution switches between period six and period twelve
in an intermitttent fashion. In general, this phenomenon
occurs only in extremely narrow amplitude windows.
Careful study of similar windows of the logistic map do
not show such a behavior.
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FIG. 9. Approach to a period tripling region showing the
areas of the Poincaré section where intermittency takes place.
The period three arrows indicate the fixed points once the period
three window has reached (2=0.65, 8, =5, p=1.4175).

VI. APPLICATIONS TO EXPERIMENTS WITH REAL
JOSEPHSON JUNCTIONS

It is of interest to consider the experimental conse-
quences of the simulations presented in this work. As ex-
pected, the optimum frequency range for observing a
variety of phenomena occurs near the plasma frequency
@p. On the other hand, the appropriate choice of B, is not
as evident. For low values of B, (B. <3), the first transi-
tion to chaos occurs through wider amplitude ranges than
at higher 3, values. However, the width in the damping
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plane becomes quite narrow since the minimum amplitude
for observing bifurcations diverges for low B,. This might
make any experiments in this region difficult as fluctua-
tions might switch the state of the junctions between dif-
ferent regions. For higher values of B, the first transition
to chaos occurs through a bifurcating region only for
B: <15 and 0.6 <Q <1. However, the bifurcating region
becomes narrower in amplitude as B, is increased. Thus,
B =15—10 appears to be the optimum range for observ-
ing the initial transition to chaos. In contrast, regions
higher in amplitude exhibit wider bifurcating regions
preceding chaos, and more of these regions are present at
higher B, values where additional free-running solutions
emerge.

The sequence of bifurcating-chaotic regions discussed in
Sec. III should be readily observed, but good coupling to
the radiation would be required to reach high values of the
normalized amplitude p. This requires high-normal-state
resistance junctions, which, as also discussed below, im-
plies lower effective noise temperatures in the chaotic
state.

The main experimental difficulty in the study of chaos
in Josephson junctions is the detection of low-level signals
at high frequencies. However, as shown in Fig. 8, the
chaotic state is broadband, and thus one could character-
ize it by the power spectrum at frequencies well below the
driving frequency. It is then interesting to define an effec-
tive noise temperature and to consider the range of effec-
tive noise temperatures predicted by simulations. The
normalized power spectrum at low frequencies, S $(2—0),
can then be related to the real voltage power spectrum
12,

-}'—SV(Q—->0) . (7

2eC

§4(2—0)= 7l

60—

|
0 I
2

¢(T)

FIG. 10. Poincaré sections for the first seven regions of Fig. 1(a) showing the structure of the strange attractors. The points in the
attractors have been connected with solid and dashed lines for clarity (8,=5, 2=0.65). The numbers indicate the regions of Fig.

1(a) to which each of the attractors is associated.



1240

MIGUEL OCTAVIO

2T

(a)

¢’n+1 .

¢n

27 T
(b)
¢n+9 7 —
|
2T o] L
®n
T
(c)
1
0] T 2T

2T

FIG. 11. Characteristic return maps @, (T) vs ¢,(T) (mod 27) for three of the attractors.of Fig. 10. (a) p=0.985, (b) p=4.72,
and (c) p=7.785. At high amplitudes the maps are one dimensional, whereas at lower amplitudes intermittency makes the definition

of a simple map difficult (2=0.65, B.=5).

de
dt

(T)
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FIG. 12. d¢(T)/dT as a function of time in an intermittent region. Each point represents the value of d¢ /dT for every period of
the forcing frequency. Note in the lower figure how the solution switches from period three to period six.
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FIG. 13. Low-frequency average of the power spectrum S » as a function of rf amplitude for B.=5 and ©=0.65. The lower line
indicates how the nature of the solution for each range of p. Note how the highest value of S 3(Q2—0) (and thus noise temperatures)

is achieved as the system leaves or approaches a chaotic region.

Assuming that an effective equivalent noise temperature
T can be defined by relating the calculated S 4 to the
Johnson noise value Sy =4kpT 4Ry per unit bandwith,
then S, =(8/7)V B or

# Ic

Teff:S&E_VB—:— . (8)

If we take as a standard a junction with a 1-mA critical
current and I Ry=1 mV, B,=5 (C=0.1 pF), then
Tetr~2.66X10°S; K. Figure 13 shows S43(Q—0) as a
function of p for B, =5, simulating an experimental noise
temperature of 10 K. §4(Q2—0) varies within the chaotic
state from 1 to 10%, corresponding to effective noise tem-
peratures between roughly 3 10° and 3% 10° K. In all
the simulations performed we do not observe 84(2—0)
values higher than 5% 10°. This implies an upper bound
of approximately 10° K for our reference junction.

Note in Eq. (8) that the highest noise temperatures
should occur for low-f,, high-I, junctions. For typical
junction parameters, Ty should have a maximum of
10°—107 K. To observe the sequence of chaotic regions
described in this paper, it would be necessary to use high
Ry junctions; since IR, is a constant Eq. (8), T should

be reduced in such an experiment. It is also interesting
that the highest observed noise temperatures occur near
transitions to and from the periodic state. In the simula-
tions, additional noise has little impact on the chaotic
temperature for the range of parameters considered.

VII. CONCLUSIONS

This paper presents extensive numerical simulations of
the rf-biased Josephson junction, which show a rich
variety of phenomena as the various parameters of the
space of variables of the problem are changed. The most
surprising feature of our simulations is that as the rf am-
plitude is increased a sequence of regions with
bifurcating-chaotic solutions is found. Each region varies
in detail from the others, but the general behavior is quali-
tatively similar. It has been demonstrated that further in-
vestigation of intermittency between phase-locked states is
required. This phenomenon does not occur at high ampli-
tudes where it is possible to calculate a well-behaved re-
turn map.

It has also been shown in the limit of high damping
that chaotic motion does not occur below a value close to
the hysteretic parameter in the I-V characteristics of
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Stewart and McCumber. On the other hand, bifurcating
or symmetry-breaking phenomena occur at much lower
values of B,. Free-running solutions occur only when the
symmetry breaking is strong, a feature dependent, in a
complex manner, on the various junction control parame-
ters.

Finally, simulated noise temperatures indicate that ex-
perimental noise temperatures should be between 10° and
10°® K, the latter being close to an upper limit for common
junction parameters. It is hoped that in the near future
experiments should clarify whether the same complexity
observed in simulated is also observed in real Josephson
junction of charge-density-wave systems. Perhaps these
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studies will also teach us about the limitations of the
models commonly used in describing these systems.
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