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Studies of the intermittent-type chaos in ac- and dc-driven Josephson junctions

I. Goldhirsch
Department ofFluid Mechanics and Heat Transfer, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

Y. Imry and G. Wasserman
Department ofPhysics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel

E. Ben-Jacob
Institute for Theoretical Physics, University of California, Santa Barbara, California 93106

(Received 24 June 1983)

The intermittent-type chaos occurring in rf- and dc-current-driven Josephson junctions is investi-

gated numerically and analytically. A simple physical model is proposed and is used for an analytic
calculation of the temporal correlation function and the power spectrum. The latter has a broad-
band part whose behavior near threshold is discussed. Comparison with numerical results shows

good quantitative agreement. Further generalizations of this approach needed for a quantitative
agreement with the numerical results are outlined. The "effective noise temperature" for the chaot-
ic state is discussed.

I. INTRODUCTION

The small Josephson junction' driven by both ac- and
dc-current sources is a relatively simple physical system
which displays a wealth of nontrivial (and useful) non-
linear phenomena. Among these is the appearance of
chaos without external noise which is of fundamental in-
terest and complicates the operation of devices. Tlie RSJ
(resistively shunted junction, or driven pendulum)
model ' is known to provide a qualitatively correct
description of the behavior of the real junction in many
cases. The same mathematical model seems to be relevant
to other physical systems, such as charge-density waves
and various electronic circuits. The latter are sometimes
used for analog simulation of the properties of the Joseph-
son junction.

A great deal of insight into the phenomena of chaotic
behavior and the various routes to chaos has been
achieved through the use of simple mathematical models
and recursion relations or model maps. One of the hopes
or stipulations is that very simple models possess many
universal properties in common with "real" chaotic sys-
tems which have a macroscopic number of degrees of free-
dom. The agreement between some results obtained in the
investigation of the "simple" dynamical systems and some
experiments on continuous systems is impressive indeed.
What is missing, however, is a link between simple

dynamical systems and real physical systems, such as a
systematic reduction procedure connecting the latter to
the former. Such a procedure would enable one to identi-

fy universality classes and make further predictions relat-
ed to physical systems. As a first, albeit small, step in this
direction —an understanding of simple dynamic physical
models with a small number of degrees of freedom seems
instructive.

One of the interesting modes of chaos is that of inter-

mittency. A system in such a mode would typically
stay for some time in an "ordered" (laminar or periodic)
state, then a burst of some other (possibly, but not neces-
sarily disordered) behavior would appear, followed by a
return to the ordered state and so on. The lengths of the
intervals of time between chaotic bursts are random and
do not possess long-time correlations. This phenomenon
has been identified in the Lorenz model by Pomeau and
Manneville and by Yorke and Yorke. Hirsch, Huber-
rnan, and Scalapino have studied this phenomenon in
one-dimensional maps, putting special emphasis on its
threshold behavior and the effects of noise. Interesting
modeling of this effect in the Lorenz model appeared in
a work by Aizawa. The same effect was detected in
the ' RSJ model of the driven Josephson junction in
Refs. 21, 22, and 39 and was analyzed with the aid of a
model in Ref. 42. Many more systems exhibit this
phenomenon —such as chemically reacting mixtures or
hydrodynamic systems.

In the present paper we restrict ourselves mainly to the
study of the intermittent properties of the RSJ model and
the routes to this mode. This type of chaos is associated
with frequency-locked solutions (corresponding to Shapiro
steps) becoming unstable. Owing to its relevance to the
physics of the Josephson junction and related devices,
such as parametric amplifiers' ' and voltage stan-
dards, ' ' this model has been studied quite extensively.
The case of the zero-dc component was treated in Ref. 39
(with emphasis on bifurcation sequences) and in Refs. 40
and 41. Both ac- and dc-driven systems were treated in
Refs. 42 and 44. Chaotic behavior and routes to
chaos ' ' as well as intermittency ' ' ' ' were stud-
ied also. The relation of chaos with a large gain in
parametric systems based on the ac Josephson effect was
studied in Ref. 45.

The structure of the paper is as follows. Section ll
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presents a partial review of the various solutions as well as
numerical results in periodic and aperiodic regimes in the
steps and in chaotic regions in the gaps between the steps.
Routes leading to one type of solution from others are
described also. A model for calculating the correla-
tion functions and power spectra for the intermittent
chaotic solutions is presented in S~. III and the (small)
corrections needed to improve it are discussed in Sec. IV.
Remarks conccxmng the critical behavior close to thresh-
old are made in Sec. V, and the effective noise tempera-
ture is discussed in Sec. VI. The results are briefly sum-
marized in the concluding section.

II. THE MODEL AND SOME RESULTS

The RSJ model 6 for the small Josephson junction
driven by both dc and ac current sources reads

8+G8+sln8=I+A sin(co „t), (2.1)

where 8 is the junction's phase difference; time is mea-
sured in units of ~J ', co& =(2eIJ/AC)' being the Joseph-
son plasma frequency (where Iz is the Josephson critical
current of the junction); G=(coqRC) ', 8 (assumed con-
stant) is the normal resistance of the junction and C its
capacitance~ I and A are~ respectively~ thc dc cUfIcnt Rnd
the amplitude of the ac driving current, measured in units
of Iq and co,„ the external ac driving frequency, measured
in units of coJ, we shall denote T=2m/co, „as the period of
the forcing.

For given values of the parameters, the solutions of
(2.1) usually settle, after an initial transient, into one of a
typically small set of long-term "steady" (but not neces-
sarily periodic) solutions, which may be characterized by
the average value of the voltage, given via the Josephson
relation by

in ordinary units. It is convenient to Use a dirnensionless
voltage, U = V/MJ which is given in the units employed
here by

(U) =G(8& . (2.2')

For small G the initial conditions (e.g. , 8, 8 at t =0) deter-
mine into which of the (possibly more than one) solu-
tions ' the system will settle.

Many of the solutions are frequency locked with respect
to the external ac frequency in the sense that their average
voltage satisfies

n
(U) =—Gru, „, n, m integers

m
(2.3)

i.e., 9 advances by 2~n during m periods of the external
source T,„. Since these solutions may exist for a range of
I, onc obtains the well-known Shapiro steps in the dc l- V
characteristics. The m =1, n ~ j. steps are called harmon-
ic, Rnd thc m + 1 ones Rfc subhafmonic ' steps. Thcfc
may be infinitely n1any exceedingly small subharmonic
steps forming a "devil's staircase" structure, when no
external Ilolsc ls added to tllc systcnl. T1lc posslblhty of

period doUbling on thc steps will bc discussed below. In
addition to the frequency-locked solutions, there also exist
solutions with unlocked frequencies in between the steps,
and their (U) appears to change continuously with I.
These solutions that we ' as well as other investiga-
toxs ' have seen are not periodic. They appear to be
chaotic in the sense of exhibiting a sensitive dependence at
long times on small changes in the initial conditions. The
ranges of chaotic solutions may be increased by enlarging
thc gaps bctwccn thc sizeable harmonic steps. This can bc
done by reducing the stability of the latter. The stability
of the steps was discussed in some detail in Refs. 12, 21,
Rnd 4. GcIlcfally, thcsc c11aotic solutions appear Rt low
co„and, usually, at not-too-high values of the dissipation
constant G. Estimates for real values of the parameters
needed to yield chaotic solutions were given in Ref. 44.
The nature of the chaotic solutions in the stability gaps of
the large harmonic steps is of the intermittent type: The
system stays for several cycles near the solution corre-
sponding to the less unstable step, which is an unstable or-
bit in phase space, then wanders, typically for a cycle or
two, into the range of the other step, following which it
goes back to a cycle near the first step, etc. The "jumps"
between the steps appear to be random, and they are deter-
mined by the strength of the instability of the solution
cox'responding to a given step. %hen the interstep gap is
spanned by varying I, the x'elative stability is changed; the
lower step is predominant near the lower edge of the gap,
and the opposite happens near the upper edge. It may
well happen that setting I close to a range of existence of
an incipient not-too-small subharmonic step ' within
the gap may make the solution spend also some time in
the vicinity of that orbit. There is some evidence for this
111 tllc (sorflcwllRt) slllall cIYatlc cllallgcs 111 'tllc Ila'tlllc of
the chaotic solutions, in addition to the main changes ex-
plained above, as I is varied, but we have not examined
this interesting possibility in any detail.

Another important effect that happens sometimes when
the stability limit of a step is approached is a period-
doubling sequence, first discovered for this model in Ref.
15 and for the pure ac case in Ref. 39 and shown numeri-
cally in certain cases to agree with the Feigenbaum se-
quence by Kautz. We have seen such effects as well
(the step "1/1" becoming "2/2") in our numerical and
analog simulations. Typically, the period doubling ap-
peal's as R symmetry bl'cRklng of thc sollltloll wllcl'c tllc
pieces representing two consecutive original periods, T, of
the solution become unequivalent so that the periodicity
becomes 2T instead of T (see Fig. 3). However, 8 ad-
vances now by 4m during a time 2T, so that (U ) stays the
same. Thus the period doubling occurs on a given step.
Since further doublings Inay occur employing the same
mechanism (we emphasize that they, as well as the first
bifurcation, do not appear to occur in all cases), they
should also remain on the same step characterized by (u ).
Thus, the whole period-doubling sequence of the above
type, if it occurs, should remain on the initial step, ' In
fact, even the chaotic behavior which follows immediately
after the accumulation point of the period-doubling
thresholds may still have a "locked" frequency and an
average voltage which is still on the step. The disorder as-
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sociated with this type of chaos is created by a stochastic
amplitude modulation of the peaks in 0, while the associ-
ated frequency, or average v may stay locked. This kind
of effect was indeed found numerically by Kautz who
obtained in some cases completed bifurcation sequences
into a chaotic behavior on a particular step. In addition
to this, when I is increased beyond the stability limit of
the whole voltage-locked step, intermittency will start
since the system wanders randomly into ranges of phase
space where 8 is effectively different from the "original"
step. Such ranges, are, for example, the vicinity of a
phase space orbit of a different step. Therefore, one finds
here the very interesting possibility of two types of ran-
domness characterizing the chaotic state—random ampli-
tude modulation and intermittency involving frequency
(or voltage) changes.

While this paper is mainly devoted to a study of the
latter effect, one should be aware of the interesting possi-
bility that the two above-mentioned mechanisms may in
fact not be totally independent. The Manneville-Pomeau
picture associates intermittency with the proximity of a
tangent bifurcation. Such a mechanism in fact occurs in-
side the chaotic range of the logistic map where bands of,
e.g., period-three solutions exist. Such bands may be ap-
proached from the chaotic range by tangent bifurcations
which are associated with intermittent behavior. It is of
interest to find out whether intermittency in other sys-
tems, such as ours, may be a related phenomenon. How-
ever, there is as yet no clear evidence for this correspon-
dence in this case. ' One may note, in this connection,
that in the overdamped limit ' "' the ensuing first-
order equation may be described by a one-dimensional
(1D) mapping which does display a special type of tangent
bifurcation" and an associated aperiodic solution, but
with apparently no period three necessarily involved.

We now present some further results of our numerical
studies of Eq. (2.1). In addition to exploratory analog
simulations, the equation was solved numerically by a
Runge-Kutta method with typically 30—40 integra-
tion points per cycle T. From the 8(t), 8(t), for a given
solution we constructed the phase-space orbit (where 8 vs
cos8 is a convenient representation for this problem), the
Poincare sections (8 vs cos8 for times successively differ-
ing by one period T), the time-correlation function of 8,
C(t), and its cosine Fourier transform, S(co). S(co) is the
power spectrum of 8. C(t) is defined by averaging the au-
tocorrelation of 8

understand the qualitative nature of the solution and not
to get higher precision, which would necessitate much
longer computations. S(co) was also obtained by squaring
the transform of 8(t), yielding similar results.

While we have done computations for other cases as
well, it is convenient to display the important features by
discussing a specific range. The numerical results shown
here were all obtained for

G =0.7S, co,„=0.25, A =0.4 . (2.6)

The relevant part of the I Vch-aracteristics for these
values of the parameters is schematically shown in Fig. 1.
We shaH concentrate on the range of the I inside the gap
between the zeroth and the first step as well as on the por-
tions of three steps adjacent to the gap, i.e., 0.6 &I & 0.72.

We now present some numerical results for several
values of the dc current I, where for each value
C(t), S(co), the phase-space plot and Poincare section are
shown. Numerical examples for the solution were
displayed in Refs. 21—23 and 42.

A simple static situation, on the first step (8)=0, for
I=0.6 is shown in Fig. 2. The Poincare section is one
point, the phase-space orbit is a closed curve, C(t) is a
periodic function, and S(co) is a series of 5 functions
(within our resolution) at co,„and its integral multiples. A
period-doubled (8)=0 solution is exhibited in Fig. 3, for
I=0.7142. Here the Poincare section consists of two
points, the phase-space orbit has a loop, and C(t) displays
a "broken symmetry" with alternating larger and smaller
peaks. Correspondingly, S(co) has now also subharmonic
peaks at half-integral multiples of co„. A period-doubled
case near the lower edge of step 1 ((v) =Geo,„) is shown
in Fig. 4 for I=0.717, where many of the features are
qualitatively similar to the previous case except that now,
since (8) &0, C(t) has a positive average as well. This
also results in a new "5 function" peak in S(co) at the ori-
gin (co=0), which is an important feature of any (U ) =0
solution. The phase-space orbits in Figs. 3 and 4 do not
appear to be single curves and the Poincare points have
some scatter. This appears to be beyond the numerical ac-

(2.4)

This correlation was evaluated by numerical integration
over the discrete (time) points of 8(t), where To was in-

creased up to a few hundred cycles and C(t) evaluated in
a range T~ that was smaller than Tp by about an order of
magnitude. The convergence as function of To was visu-

ally checked. S(co) was defined via

S (co) =2f C(~)cos(cot)dt . (2.5)
p

It was calculated numerically with a resolution 2~/T& and
an upper limit of the order of 10',„. Our aim has been to

V/RIJ

FIG. 1. A schematic I-V characteristic for Eq. (2.6).
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FIG. 2. (a) Phase-space plot and Poincare section (crosses), (b)
the correlation function C(v), and (c) the power spectrum. The
parameters are as in Eq. (2.6); the dc current value is I=0.6, a
simple static solution.

FIG. 3. &a. (a) Phase-space plot and Poincare section (crosses), (b)
the correlation function C(v ), and (c) the power spectrum. The
parameters are as in Eq. (2.6); the dc current value is I=0.7142,
a frequency-doubled static solution.
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cuI'acy Rnd wc think that 1t reflects some frequency-locked
amplitude-modulated chaos (as discussed in Refs. 30 and
44). (See Fig. 5.)

Finally, we display in Fig. 6 an intermittent chaotic
solution. Here the stochasticity is violent; as seen in Figs.
6(a) and 6(b), C(t) (as well as 8) has a nonzero average (al-
though (U) is some number less than that for the first
step), with the resulting 5(ro) part of S(co). The continu-
ous spectrum of S(ro) in between the peaks is prominent.
lim„oS(co)=S(0) is finite. We call attention to the
many small peaks in S(co) in between the "5-function"
ones at nm, „. These reflect a tendency towards multiple
periods. In the next section we analyze the features of
C(t) and S(co), which follow from the intermittent nature
of this last case.

-p i 1 i I ~) i~~ l i i ~i i i ~ ) i )

-I.o -o.8 -o.6 -o.~ -o.z o o.z o.o o.6 o.e
III. CALCULATIONS OF THE CORRELATION

FUNCTION AND THE PO% ER SPECTRUM
IN SIMPLIFIED STOCHASTIC MODELS
FOR THE INTERMITTENT BEHAVIOR
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In this section we present two models of intermittent
behavior. The first one is identical to the model presented
in Refs. 38 and 42 (namely, we assume random hopping
between two unstable cycles). We calculate the correlation
function corresponding to this model and the resulting
power spectrum and comment on the meaning of the re-
sults. The second model describes a situation which is
closer in nature to the "standard" picture of intermittency.
We assume that the system evolves periodically for some
time (which is always an integer number of periods of the
forcing), then it becomes random for several periods and
so on. The transitions between the laminar" and random
behavior are dictated by "known" transition probabilities
as in the previous models. Finally, we analyze the mean-
ing of the results obtained from these models. This sec-
tion is divided into three subsections; the first describing
the model of Ref. 1, henceforth called model A, the second
presenting the other model, which we name 8, and the
third providing an analysis of the results.

l000-

1.0

FIG. 4. (a) Phase-space plot and Poincare section (crosses), (b)
the correlation function C(~), and (c) the power spectrum. The
parameters are as in Eq. (2.6); the dc current value is I=0.717,
a frequency-doubled running solution on step 1.

Th1s IIlodcl 1s an 1dcallzcd vclslon of thc bchav1oI' of
the solution of the RSJ equation, as discussed in Sec. II,
when biased in the gap between two steps, e.g., step 0 and
step 1. It is assumed that the solution f(t) (representing 8
or the voltage across the junction) is composed of a ran-
dom succession of two types of cycles, yo(t) and y~(t),
each of them lasting for a time T that equals the period of
the forcing. The functions yo(t) and y~(t) are assumed to
be periodic with period T. They represent the periodic
functions that comprise the stable solutions when the sys-
tem is biased inside steps 0 and I, respectively. %hen the
system is biased in the gap between the steps, these two
solutions are unstable and the solution hops randomly be-
tween them. The random hopping is assumed to be
governed by a probability Po ~ to hop from the yo cycle
(after it has been completed) to the y& cycle and a proba-
bility P& o which is defined similarly. The significance of
the simplifications assumed in the framework of model A
is discussed in Sec. III C.
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The correlatiotion of the function f is d f'is e ined as follows:

C(r)= lim r
T

where the average ( )
'

h
e assume, without loss of gen-

Consequently, insidesi e any time segment n-
n being an integer th l ae so ut.ion e ual
namely, a transition can ha o e seg

'
ion can happen only at the end of the seg-



ment. Another simplification of the calculation of C(r)
follows from the observation that the time-averaging pro-
cedure in Eq. (3.1) can be replaced by 1/T times an in-
tegration over the first time segment O~ t ~ T. This is so
because the average (f(t)f(t+r)) depends only on r,
Po i, Pi c, and jr/TI (identically equal to the &actional
part of r/T, or the distance of t from the beginning of the
segment of time in which it "resides").

In other words, (f(t)f (t+r) ) is periodic with respect
to t with period T and thus the "time average" in Eq. (3.1)
can bc rcplaccd by Rn Rvcragc ovcl R slnglc period. This

1 T
C(r)= —f (f(t)f(t+r))dt .

0
(3.2)

The variable r in Eq. {3.2) can be replaced by xT, 0 &x & 1

Rnd thc variable t can bc wrlttcn Rs nT+gT, whcrc 6 ls an
integer [since obviously C(r) =C( —r), it is sufficient to
assume n & 0] and 0 &y & 1. Hence

1

C(r)= f dx(f(xT)f(xT+mT+yT)) . (3.3)

When x+y &1, the argument (x+y)T+nT lies in the
nth time segment, whereas when 1 &x +y ~2 it resides in
the (n+1)th segment. This suggests that we divide the
integration range in Eq. (3.3) into two subranges:
0&x & 1 —y and 1 —y &x & 1. In the first of these
subranges the argument of the second f is in the nth seg-
ment and in the second subrange it is in the (n + 1)th seg-
ment. Let P(i,j„n) be the probability that f(t)=y;(t) in
the first time segment and f(i) =y~(t) in the nth time seg-
ment (i,j =0 or 1). It follows from the discussion present-
ed above that

1 1 yC(r)= g QP(i j;n)f dx y;(xT)yj((x+y)T)
i =0 j=0

1 1 1

+ g QP(ij;n+1) f dxy;(xT)yj((x+y)T) .
i =0 j=O

(3.4)

Note that in writing Eq. (3.4) the periodicity of y; has
been used. The next step is the calculation of P(i,j;n)
This quantity can be calculated by employing the
transfer-matrix method. Let us define a 2&2 matrix I by
its clelTlcnts: Fo 0= 1 —Po 1~ Fo 1 =Po 1q E1 0=I 1 o~ and
Fi i ——1 —Pi 0. FJ is thus the probability of a transition
from a cycle of type i to a cycle of type j (including the
case i =j) after one time step. It follows that the transi-
tion probability froin type-i cycle to a type-j cycle after n
time segments is (F");1, i.e., the (ij ) element of F". The
probability P(i,j;n) is the product of the probability of
finding a cycle of type i, I';, and the probability of hop-
ping &om cycle i to cycle j after n steps, (F");J, i.e.,
P(i j;n) =P;(F");J. A straightforward calculation using
the right and left eigenvectors of F:

1 ~0, 1

with eigenvalues 1 and Q =1 P, Po —i, re—spectively,
yields

P(0,0;n) =Po+PDPiQ",

P(1,0;n) =P(0, 1;n) =PiPo —PiPDQ",

P(1, 1;n)=Pi +P()Pi Q",

where (with i„j =0, 1)

P~, I'J;P=—
~i,j ++j,r' ~0„1+~1,0

Equations (3.5) can be conveniently shorthanded:
P (ij;n ) =A; J +8;J Q", with obvious definitions of 3;~
and 8;J. Substituting this form into Eq. {3.4), we obtain

1 1

C(r)=g g 3;.f y;(xT)y ((x+y)T)dx.
i=0j=0

1 —p 1

+Q"g 8;1f y;(xT)y/((x+y)T)ix+8; JQ f y;(xT)yz((x+y)T)dx
i,j

(3.7)

T
TO—

ln/Q J
ln

i
1 Po i —Pi 0i—(3.9)

As we recall, y= jr/TI and n =[r/T] (identically equal
to the noninteger and integer parts of r/T, respectively).
Thus we can write

C(r) =F( jr/T t )+Q{")G(jr/T I ),
where the definitions of F and G are obvious &om Eq.
(3.7). Thus the correlation function C(r) is composed of a
periodic part, whose period equals that of the forcing, and
a decaying part. The latter part is of the form of a decay-
ing oscillation (with period T) whose decay time is

{
Note that close to the lower side of the gap (or as the on-
set of the intermittent behavior is approached from within
the gap) Pc i tends to zero and Pi 0 is close to 1. Hence ro
becomes very small, which means in practice that Q"=0
for n ) 1 and the effective decay time will be one period,
T. The decaying part of C(r) is, of course, responsible for
the broadband part of the power spectrum, whereas the
periodic part gives rise to a set of 5 functions.

An outline of the calculation of the power spectrum
S(co) corresponding to C(r) (or its Fourier transform) has
been presented in Ref. 42. Since

S(co)=f e'"'C(r)dr=2 f cos(cow)C(r)dr,
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we may use Eq. (3.2) and t =xT as before to write

S(io)=f d~e'"'f dx(f(xT)f(xT+~)),
which can be rewritten as

Defining o =~ —(n x—)T, one obtains

ce f d f d i(n x—)Tm r roa''T

X(f(xT)f(nT+o)) . (3.11)
S(co)= g f dx f d~e' '

X (f(xT)f(xT+r))

{3.10)

Sillcc XT ls 111 'tllc flls't 'tlnlc scglilcllt Rlld nT+o ls 111 tllc
nth segment, it follows that f(xT) and f(nT+o) can be
replaced by y;{xT) and yj(o), respectively, i and j being 0
or 1, averaged over the probability P(ij;n) It. follows
that

1 1 aq

S(co)=f dx g g g e'"" f doe '" e' P(ij; ~

n
~
)y;(xT)yJ(o),

i=O j=O n= —Ix

where P(i j;n)=P(i j; n) ha—s been used.
Defining

T
f;(c0)=f dre'"'y;(r), i =0, 1

we obtain from (3.7)

(3.13)

1 1

S(RI)=—g g g P(l,g; ~n ()e'"" f; (to)fj.(co) .
i=O j=O n =—ao

Uslilg (3.6) thc silllilllatloll 111 Eq. (3.9) cR11 bc lcadily pcl'-
formed with the result

+ T ifo fi I' o —i,
(3.15)

Note that the spectrum consists of a series of Bragg peaks
at the driving frequency and its harmonics and a broad-
band spectrum. The latter vanishes when fo ——f„ i.e.,
when the two cycles are identical, since then the "transi-
tions" become meaningless. If either Po or Pi vanishes,
then the broadband part disappears as weB, with an ampli-
tude proportional to the small P;. Of course, only one
type of cycle (j Qi) is present in the limit P; =0. Finally,
note the modulation of the broadband part by the
[1+Q —2Q cos(oIT)] ' term.

In the zeroth step there is no phase change after the
completion of a cycle (at least on the average) and in the
first step the phase change per cycle is 2m.. Thus for the
sake of modeling the spectrum we may assume

r

2&t
yo(t) =ooslll +goT

2% 00

S(ro)=
i
Pofo(co)+Pifi(co)

i g 5(coT 2mn)—
T

trum decays algebraically for to»co,„. In practice, of
course, the spectrum will decay stronger than any power
of to as to —+oo, where a characteristic decay frequency
could be, e.g., the inverse of the (small but finite) transi-
tion time between the two cycles." Another, more
mathematical, way to see this would be to note that

f co "S(co)dol should converge for all integer n &0,
since this quantity corresponds to ((f'"') ) (f'"' is the nth
derivative of n) The. reason our model does not comply
with this convergence requirement is related to the fact
that yo(t) and y, (t) as well as their derivatives in Eq.
(3.11) do not connect smoothly with each other. Had we
"smoothed" this transition (as, of course, happens in prac-
tice) the algebraic decay would have been cut off at an m

corresponding to the width of the smoothing connection,
as mentioned above.

B. ModcI8

The difference between this model and model A is in the
fact that cycle 1 is replaced here by a random function,
and, for simplicity, we assume that cycle 0 is replaced by a
5 function located at the center of the period. This model
has been constructed having in mind the spatial analogy
of a series of finite crystallites ' (in which the "atom" is),
say, in the center between two underlying lattice points,
separated by a "fluid" phase. In this case the "time" cor-
responds to a spatial coordinate. Alternatively, the crys-
tallites may represent a laminar phase, whereas the fluid
phase Inay represent intermittent bursts.

Using the terminology of Sec. III A, we define:

uo" (t)=@5(It/TJ ——,
' ), (3.17)

u 1 (t)=gg( t t/T j ) where n = [I/T]
The random fuIlctions g„are assumed to have a coIlstant
average and a 5-function correlation:

2fEt 2m'
yi(t)=oiS111 +/I +

(3.16)
(g„),„(It/T J)=&,

C][g„,(x )—C] ),„=k5(x —x')5„„.
These forms are supported by a perturbative analysis. '

Since the resulting fo(to) and f, (co) satisfy

[ fo(co) [ ~1/2' and
~
fl(to) [2~1/co, the model spec-

Equations (3.17) and (3.18) define model 8.
As in Sec. III A, we denote by f(t) the full succession of

uo's and ui's. The corresPonding Power sPectrum S(ol)



can be written as in Sec. III A:

S(ro)= f dx f dte' '&f(xT)f(xT+~)),„
and, as before:

1 (n+1 —x)T
g P(ij; ~

n
~

)f dx f dte'"'&u '(xT)uj"'(xT+t)),„
ij ~O

+P(t', ;n')e'""rf dxe '""rf doe'" &u 0'(xT)u'"'(o)),„,
i =0 j=O

where o=~ .(n —x)T—O. It follows from (3.17) and (3.18) that

(3.19)

(3.20)

r

& uo '(xT)uo"'(cr) ),„=p 5 (3.21a)

(actually no averagillg ls lllvolved llere),

&u,'"(xT)u',"'(o)).„=Cp5(x ——,
' ),

& u'P (xT)u o"'(o ) ),„=Cp5

&u',"(xT)u',"'(o)).„=X5„,5 x ——+C'. (3.21c)

With the use of (3.21), the integrals in (3.20) can be performed, yielding

S(co)= g e'"" P(0,0;n)p T+ g e' " P(0, 1;n)2cpT
sill(CO T/2)

NT
1t =—00 n =—00

00 00

+ g e'"" P(1,0;n)2cpT + g e'"" P(1,1;n)4c T +P(1,1;0)2ET .
Q)T Q)T

(3.22)

Noting that P (1,1,0)=1 and using Eq. (3.6) we obtain
r

S(~)=2lrT Pop+2CPi
sin(m T/2)

5(coT 2~n)+PoP, T p ——2C sin(~ T/2)
NT coT

2
2

+2SCT .
1+g —2Q cos(AT)

Note the three parts of the spectrum. The first is a series
of Bragg peaks as before. The second part corresponds to
the broadband spectrum of model A. The third part is a
white-noise background representing the randomness of
the functions g„.

C. A1181/SlS

The most obvious common features of the two models
presented in this section are the existence of a set of Bragg
peaks and a broadband part in the power spectrum. The 5
functions in the power spectrum result from the existence
of an "external clock"—the periodic forcing. This under-
lying periodicity cannot be destroyed by random or inter-
mittent interruptions of the periodic structure, nor by the
slight dephasings of the yo(t) and y, (t) functions, for ex-
ample, or small changes in the periodicity around the
average. In other words, a long-range order is induced in

I

the system in the sense that y; (t) and y;(t+nT) are corre-
lated on the average even for very large n. These ques-
tions are discussed in more detail in the next section. The
broadband part or the white noise is obviously representa-
tive of the random elements of the system. In the case of
two types of solutions, as in our models, the finite lifetime
of each solution is responsible for the broadband part.
The existence of the latter reduces in ouI models the
weight of the 5 functions part but does not endow them
w1th a finite width.

To summarize this section, we have shown how to con-
struct simple models for intermittent chaos (with special
emphasis on periodically forced systems). We have
analyzed the nature of the resulting solutions and the cor-
responding power spectra. Further features of the physics
of the real model, which complicate the resulting correla-
tion function and power spectrum, are discussed in the
next section.
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IV. CORRECTIONS TO MODEL A

FOR INTERMITTENCY IN THE dc-
AND ac-DRIVEN JUNCTION

We believe that model A of Sec. III is a very reasonable
qualitative approximation to the correlation function of 9
and its power spectrum for the real model embodied by
Eq. (2.1). The predictions of model A and a numerical
solution of Eq. (2.1) for the power spectrum were com-
pared in Ref. 42 for a typical intermittent chaotic case
and found to be indeed in a qualitative agreement. For
completeness we present here in Fig. 7 the S(co) parts of
Figs 2.and 3 of Ref. 42, which show this comparison.
Moreover, for the parameters used in Eq. (3.15) to gen-
erate the full curve in Fig. 7 (with P& p 0.75, ——Pp ~

——0.25,
ap =0.45, a, =0.9, tl}p ——0, P& ——1.5), we find that
lim„pS(co) is of the order of 10 '. Allowing for the
sharp subharmonic peaks on top of the continuous back-
ground, the numerical result is consistent with this order
of magnitude. A closer idea of the corrections needed to
model A can be obtained, however, by looking at the nu-
merical results for 8(t) and C(t} in Figs. 2—6 of Sec. II
and comparing them to the general picture given by model
A. The latter is seen from Eq. (3.8} for the correlation
function C(t) to consist of a periodic part plus another
periodic part multiplied by a decay factor Q('~ }. It is the
purpose of this section to discuss the corrections needed to
bring Eq. (3.8) in better agreement with the numerically
obtained C(t). It will be seen that these corrections, while
important and sometimes conveying some relevant phys-
ics, should not alter most of the qualitative aspects of
S(co).

Three main features displayed in the numerical results
and not appearing in model A are as follows.

(1) A modulation of the intensity of the peaks in the
long-time part of C(t). An important part of this modu-
lation is the (possibly multiple) period doubling' '

of the incipient periodic solutions yp(t} and y~(t). In some
regions of the parameters space one may also be in the vi-
cinity of further periods such as 3, 5, 7, etc.' The effects
of such modulations on S(co) are qualitatively understood.

(2) A frequency modulation exists in the solution 0(t)
in the sense that the pieces yp(t), y&(t) may be slightly dis-
placed in time with respect to a strict periodicity, especial-
ly near the jumps between the two unstable attractors;
yp(t), y&(t) are each periodic only on the average. This
type of dephasing can be theoretically handled and shown,
if not too large, to just reduce the periodic part of C(t),
i.e., to transfer some of the intensity of S(co) from the 5
functions (Bragg peaks) to the background

(3) Correlations over times finite but larger than rp of
Eq. (3.9) may appear if the system has some memory and
the jumps are not completely independent. It is rather
straightforward to estimate the effects of such correla-
tions.

C(t) =R (t)Cp(t), (4.1)

where the correction function R(t), should not change
drastically over times much shorter than T, but it changes
sufficiently between periods to account for the amplitude
modulation of C (t) T. his means that the Fourier
transform of R(t), R(co), is nonzero for co&2m/T=c. o,„.
If R(t) is a random function, then R (co) will be flat as
co~0. The R(co) corresponding to a period doubling will
have peaks at co,„/2 and its multiples, with an obvious
analogous behavior for higher periods. An important
property of R (t) is that as long as its long-time average

(R & does not vanish, R(co) will have a 5-function part at
e) =0.

The corrected power spectrum S(co) is given by a con-
volution of the one of the model, Sp(co) with R (co),

S ( co ) =Sp (co ) Iaj R (co):— Id co 'S
p ( co

' )R ( co —co
'
)= 1

2m
(4.2)

Thus the Bragg peaks'-5 functions of Sp at the integral
multiples of co,„will just be multiplied by (R & [which can
be expected to be not far from unity if the modulation
R (t) is not very strong, as appears to be the case for our
results]. The continuous spectrum part of R(co) will exist
in S(co) around all the Bragg points of Sp with weights
proportional to those of the latter. In the interesting case
of a tendency for an n-multiple period, the 5-function
peaks of R(co) at co,„/n and its harmonics will now occur
in a manner reminiscent of superlattice Bragg peaks, i.e.,
at (m+k/n)co, „with k and m integers. Usually n =2
(period doubling) will be most important. However a very
interesting case, with many subharmonics is displayed in
Fig. 6. Similar phenomena, of course, occur for the
periodic solutions, exhibiting period doubling, etc., as seen
in Figs. 3—5.~ 4' 44

B. Effects of frequency modulation

Here we concentrate on the understanding of the effect
of small random shifts in time of the functions yp(t), y, (t)
on the first term [periodic part of C(t)] of Eq. (3.7). Such
small shifts do occur in the real intermittent solutions.
We shall show here that if they average to zero, the 5
functions in S(co) are not broadened but only lose intensi-
ty to the continuous background. To model this effect we
take the periodic part of C(t) to be the correlation of a
function of the type

f(t) =gg(t nT —u„), — (4.3)

where g can be taken to be nonzero only in an interval of
size T and

A. Effects of amplitude modulation, period doubling, etc.

The simplest way to take the amplitude modulation into
account is by representing it as a multiplicative correction
R (t) to the correlation function of model A, henceforth
denoted as Cp(t). Thus the corrected C(t) will be given by

Below, we discuss the modifications which the above ef-
fects will cause to C(t) and S(co). (u„&=0, (u„u & =o'5„, o.«T (4.4)
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and, for simplicity, we assume a Gaussian distribution of
thc Q s. ThUs

(4.5)

The power spectrum off is given by

S~(to)= —
~g„~

2 e " +5(toT —2mn)+(I —e "
)

(4.6)

where g„ is the Fourier transform of g(t). This is similar
to the familiar reduction of lattice Bragg peaks by the
Debye-Wailer factor (e "

) and the transfer of the cor-
responding intensity to the continuous background.

~ g„~ plays the role of a form factor.

C. Effects Gf 110Q-MRrkov1811 coITclatloHs

If such memory effects appear, they may cause the de-
caying part of C(t) [second, Q" term, in Eq. (3.7)] to be
modified. In particular, instead of the decay given by Eq.
(3.9) a longer decay time may appear. Such an effect can
1ndccd cxlst, especially Ilcar thc cnd of thc chaot1c Iangc.
A hint of this effect may be noticed in Fig. 6. A long, fin-
ite relaxation time r~ &&To will thus modify or augment
the continuous part of S(~) [last term in Eq. (3.15)] with
a peak near the origin of width -r& . We, therefore, feel
that the effect of the three corrections needed to model 3
is not large, is well defined in principle, and should not
spoil the qualitative agreement with the numerical S(to).

»=(I—Io)/Io, (5.1)

we expect that as @~0 the probabilities I'p and I'I should
behave like

P) ——A»', Po ——1 —A»" (5-2)

where 3 is a numerical constant and x is a critical ex-
ponent that must bc dctcI mined scparatcly. This means
that the average number of periods the solution spends
around the orb1ts 0 and 1, n p and n» respect1vely, should
behave, as e—+0, like

gp
(5.3)

or since n~ —+const, np-e, where the constancy of n1 in
the liInit, which follows from our numerical data
(n ~

—1—2 for»~0), means that cycle 1 is rather unstable

VA'thin the model calculation of Sec. III, the critical
behavior as the edge of a step i, I;, is approached from the
chaotic side is as follows. The probability to be in the ith
step (which for definiteness will now be taken to be the 0
step) tends to unity. At the same time, the probability to
be on the other step, j=1, will tend to zero. Thus defin-
ing the small dimensionless measure of the proximity to
thI'cshold

and the instability of cycle 0 becomes marginal as»~0.
In terms of the Liapounov exponent A~ characterizing the
latter instability, one finds Po ——e ', and therefore Ao
also van1shcs Rs

(5.4)

when e—+0. For I~Ip, Ap ~0 and the o. th steps loses its
stability because Ao~O —when I~Io «om below. As-
suming thc UsuRl symmetry 1Q thc crit1cal bchav1oI', wc ex-
pect Ao- —

~

»
~

"in this case.
We have roughly determined x numerically from our

data, using Eq. (5.3). We find that x is on the order of
0.5—1. The value of x for the model of Ref. 37 was 0.5.

Using the results of Sec. III, we see that the parameter
Q tends to a limit which is much smaller than unity as
»~0. This means, as explained in Sec. III, that the effec-
tive decay time, within the model calculation, is one
period. The critical behavior of C(t) is thus due to, in the
model of Sec. III, just the amplitude, POP& of Q" [see Eq.
(3.6) of the second, decaying, term of C(t). This means
that thc RIIlplltudc of this contr1but1on vanlshcs w1th I

g

like»". This leads to a similar behavior of the broadband
part of S(to) (the second term in Eq. (3.15)]:

S„„,(co)-»* as»~0, (5.5)

VI. THE EFFECTIVE NOISE TEMPERATURE
OF THE INTERMITTENT CHAOTIC STATE

Although thc chaotic bchav1or 1s spontancoUsly gcIlc1at-
ed from the deterministic dynamics of the systems, it has
random jUInps Rnd R continuous powcl spcct1 Um that
seem to be similar to the effects of real external, e.g.,
thermal, Qolsc. ThUs onc IIlay say that thc chaot1c state
has it own noise, which is equivalent in some respects to a
thcrmRl nolsc Rt RQ cffcctlvc tcInpcrRtUI'c T,g. In fact,
high effective noise temperatures have been reported for
dcv1ccs that II11ght have bccn 1Q chaot1c states, Rnd the
connection is already suggested in Ref. 39. We emphasize
that the concept of temperature in this context does not
necessarily imply a full equivalence to thermal equilibri-
um physics or that a canonical distribution is relevant to
this deterministic noise. However, some similarities to
thermodynamic temperature exist and the concept seems
to be useful and suggestive.

In practical terms, T,~~ may be related to the noise gen-

where S„„,(to) is the continuous part of S(co).
All the above is within the approximate model of Sec.

III. The possible additional broadband part of S(to) be-
cause of the amplitude-modulated chaos on the upper edge
of step 0, following the bifurcation sequence, is neglected.
According to Refs. 40 and 44, that type of chaos may still
have S(0):—lim OS(to)=0. Thus Eq. (5.5) should hold
for the latter limiting value.

Possible correlations in the interstep jumps, neglected in
ouI treatment, will result in a relaxation time, similar to
or in addition to vo of Eq. (3.9), which may show a criti-
cal slowing down as»~0. This would entail a piece of
S(co) which will narrow into a 5(to) as»~0. To check
this, longer simulations than ours will be needed.



STUDIES OF THE INTERMITTENT-TYPE CHAOS IN. . . JOSEPHSON JUNCTIONS

Here S&(0) is the ~~0 limit of S&(co)—the power
spectrum of 8. In terms of our dimensionless
S(0)=Se(0)/cpJ, we find

king T,tt = —,GS(0)
AI.

2e
(6.2)

(Note that fiIJ!2e is on the order of the Josephson cou-
pling energy of the junction, fiIz/2e=—2 eV for Iz-=I
mA. } Making the estimate S(0)-10 ' for the case of Fig.
6 as discussed in Sec. IV, we find k&T,tt-0. 02fiIz/2e.
For IJ——1 mA this yields T,ff-400 K. Furthermore,
when I is reduced towards Ip, S(0) [Eq. (5.5)] vanishes
like e' and therefore, so does T,tt.

T~tt —e as e~0 .

In Ref. 22 it was suggested that one may view the sys-
tern as a two-level one, where Po and P~ are given by an
assumed equilibrium distribution at a temperature T,f~,

1.e.)

—5/k~T ff=e
~o

(6.4)

6 was roughly estimated numerically by adding to Eq.
(3.1) a Langevin force g(t) corresponding to the noise
from the resistor 8 at an "external" noise temperature
T,„„satisfying (in our dimensionless units)

(6.5)

where y =fiIz/ektit is a dimensionless noise parameter.
Assuming the noises to be additive, one could get from

the numerically determined Pp(T,„,) and Pi(T,„,), using
an effective temperature T,tt+ T,„„anestimate of b, . For
a chaotic solution very close to that of Fig. 6, this
had yielded T,tt of the order of magnitude of
—10 (A'/2e)IJ ' While this is smaller by more than an
order of magnitude than the above estimate based on
S(0), one should remember that only two order-of-
rnagnitude estimates have been compared here. Clearly,
the assumption of additive chaotic and external thermal
noises is not obviously justified. It should, however, be
roughly correct since it identifies T,ff with the tempera-
ture that once it is much larger than the temperature T,„,
of the thermal bath, the latter will not perturb Pp and Pi
significantly. We also do not have any physical theory for
A. To make sense, it should change sign around the rnid-
dle of the chaotic gap, to allow for the dominant role of
step 1 when I tends to the lower edge of that step. Also,
for Eqs. (6.3) and (6.4) to hold simultaneously, 5 must

crated across the resistance R. Using (in a formal way)
the Nyquist theorem

S„(0)= limS„(t0) =4Rkti T
u —+0

and the Josephson voltage-frequency relation Eq. (2.2),
one finds, in ordinary units,

kiiT tt= Sp(0)/R
1

(6.1}
4 2e

vanish like e"inc as e~0, with an analogous variation
near the upper edge. In any case, we find, in agreement
with Kautz that it is quite possible to get a T,~f due to
chaos which is larger than the ambient noise temperature.

VII. CONCLUSIONS

The RSJ model (or its pendulum analog) driven by both
dc and ac forces displays, in addition to its many other in-
teresting nonlinear properties, at least two different types
of chaos. A third mode of chaos has recently been sug-
gested in Ref. 40. We have concentrated in this paper on
studying the properties of the intermittent-type chaos,
where the system spontaneously and stochastically jumps
between two unstable orbits. The way the system ap-
proaches this kind of chaos was discussed. A model for
approximating the solutions, their correlation functions,
and power spectra was presented and the corrections need-
ed to make it more realistic discussed. Two definitions of
the effective noise temperature for the intermittent chaotic
state and some of the relations between them were briefly
discussed. We believe that this type of intermittent phe-
nomena is quite general and should occur in a variety of
other physical systems.

We emphasize that a tremendous amount of work still
remains to be done for an exhaustive study of this prob-
lem. The full phase diagram ' giving the states of
the system and the nature of the transitions among them,
in the [G,A, to,„,IJ) parameter space is not known. Like-
wise, the problem can be represented by a 20 mapping, '

via, e.g., a Poincare section, but it is not clear how much
information is lost in that process. Nor do we know the
conditions under which this 20 mapping may be
equivalent to a one-dimensional (1D) one—to yield the
Feigenbaum universality class which is sometimes ob-
served in our problem. The interesting limiting case of
the overdamped " junction, 6—+ oo, where the model
reduces to a nonautonomous first-order equation, will be
the subject of further study. The Poincare section for this
problem is a 10 map and aperiodic solutions do exist both
for it and for the original equation. The effect of, e.g.,
thermal noise, coupled with the internally generated
noise due to the chaos is important, especially near the
threshold for chaos. Detailed numerical studies as brief-
ly mentioned in Sec. VI and perhaps a scaling ' analysis
of these effects are necessary. Finally, one would like to
go on from a single junction to two coupled ones and then
to various arrays, approximating the continuum 1' and
2D cases. We have already found chaos for the dc
SQUID (superconducting quantum interference device),
when driven by an rf source, and there can be no doubt
that it exists in many different configurations. ' We
hope that additional experimental and theoretical work
will further clarify the behavior of these intriguing sys-
tems.
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