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The spin dynamics of a muon interacting with neighboring nuclear spins in the presence of a
strong quadrupolar coupling is investigated. An approximation for calculating the time-dependent
muon polarization is presented which works equally weH for integer and half-odd-integer spins J.
In the particular case of equivalent nuclei with J= 2, an analytic solution is given. The influence of
nuclei in more-distant shells is discussed, and the change of the polarization with muon diffusion is
calculated.

I. INTRODUCTION

Spin-relaxation processes in zero or weak external mag-
netic fields exhibit characteristic features quite different
from those in strong fields. This was first pointed out by
Kubo and Toyabe. ' Their theory, based on the approxima-
tion of random local fields, found wide applications in
muon-spin-rotation experiments. Hayano et a/. have
shown that zero-field experiments are particularly suitable
to investigate the diffusion properties of muons. Recently
Clawson et a/. reported on zero-field measurements in
copper. Analyzing their data in terms of the Kubo-
Toyabe theory they found an increase of the muon hop-
ping rate with decreasing temperature below 5 K.

In a more rigorous approach, however, the internal
dynamics of the nuclear-spin system interacting with the
muon (which cannot be described by local fields) has to be
taken into account. In previous papers ' we have present-
ed some results for the muon polarization function p(t)
which were obtained from a numerical solution of the full
Hamiltonian describing the dipole interaction of a muon
with four to six nuclear spins J=

z or 1. The results
showed marked differences from those of the Kubo-
Toyabc theory In thc long-time bchav101. . Though thc ex-
tension of the theory to more nuclear spins or larger J
values is straightforward, the numerical evaluation is
prohibited by the very large size of the Hamiltonian ma-
trices to be diagonalized, and one must look for approxi-
mations relevant for experiments.

The presence of the muon induces a radial electrical
field gradient leading to an interaction with the quadru-
pole moments of the nuclei. In the limit of strong quad-
rupole inteI'action, a common situation in experiments,
Petzinger and Wei gave an approximate treatment, valid
for integer spins L As shown earlier, however, this

method is not applicable for half-integer values of J, and
it is the purpose of the present article to treat this case ap-
propriately. In particular, we present numerical results
for J= —,

'
spins arranged in various geometries. To make

the results available for analyzing experimental data, we
fitted the calculated polarization p (r) to a simple analytic
function with few parameters.

II. THEORY

The spin Hamiltonian under consideration is given by
the sum of the dipolar interactions between the muon
(I=—,

'
) and X neighboring nuclear spins J and the quad-

rupole interactions of the nuclear spins due to field gra-
dients produced by the muon,

with

Hk =~kl I Jk 3(n'k I—)(nk'Jk)]

aP=~P[(nk J„)(n„J„)——,
' J(&+1)] .

nk 18 thc unit vccto1 1Il d11cct1oIl from thc p to thc nu-
cleus k at d1stancc P'k, and Nk 1s g1vcIl by

I11 Eq. (4) 1t is asslliilcd that, thc field g1'adicilt duc to thc

Qc1984 The American Physical Society



1130 E. HOLZSCHUH AND P. F. MEIER 29

muon is axially symmetric around nk and that there are
no other field gradients at the nuclei.

For the nuclear spins Jk we define the projection opera-
tors Pk which project out the 2J+1 substates mk in the

following way:

where

(Ilk Jk )
I teak & =ink

I
trtk &

The contribution Hk to the Hamiltonian is now rewritten
as

Hk=+Pk, „Hk+Pk;
mk mk

= QPk„H, kPk, m, + g Pk, m, HkPk; .
(mk&mk )

I
mk, mk

The quadrupole interaction, which is diagonal in the rep-
resentation defined by Eq. (7), occurs in the first term
only. The second term involves transitions between the
levels of the quadrupole Hamiltonian induced by the dipo-
lar interaction. If co~ is much larger than co the corre-
sponding off-diagonal matrix elements may be neglected
when they connect quadrupole levels with different quad-
rupole energies. Since the dipolar part Hk has vanishing
matrix elements between states with

I
mk —mk

I
&1 the

neglect of the second term in Eq. (8) can be justified for
all mk except mk ——+ —,.

Therefore we define

Ak ——A'{ —2cok(nk I )mk

~coP[mk ——,J(J~1)]}Pk~k . (14)

Qk( nk J k )Qk (15)

and

Qk(nkX Jk)Qk ——nkXok,

where o-k are Pauli matrices, we can write

In the case of a single nuclear spin (N =1) where an ana-
lytic solution is possible it has been shown that this ap-
proximation leads to errors in the eigenvalues of the order
of (co /co~) which can be safely neglected in the calcula-
tion of the muon polarization function for the times of in-
terest. To further check the approximation we have com-
pared the numerical solutions of the full and the truncated
problem for N =2 and again found complete agreement
for times t which fulfill co t & 2 if co~& 20co .

An inspection of Eqs. (13) and (14) shows that the trun-
cated Hamiltonian is the direct sum of three parts which
operate on spaces of dimensions 2X1, 2X1, an) 2X2,
each of which contains the quadrupole energy cok as an
additive constant, which therefore will be omitted in the
following. For X nuclear spins the state space is thus re-
duced to invariant subspaces with the largest dimension
being 2)&2N.

For the particular case of J= —,
' the problem can

be further reduced. Noting that

Qk Pk, 1/2+Pk, —1/2 ~

and rewrite Eq. (8) as

QkHk Qk ~k[ I o k (nk )( k o k)]

By a unitary transformation of Hk,

(17)

mk (~+1/2)
Pk, nlkHkPk, mk+QkHkQk+~k ~

Hk (nk 0 k)Hk(nk 0 k)

where the remainder is we obtain

Rk ——

mk (~+1/2)
Pk ~„Hk Qk+QkHk

mk (&+1/2)
Pk, m, ~kmk —~k Ok ~

mk (~+1/2)
(19)

k' k +1/2)
(mk~mk )

In the limit of strong quadrupole energy we can neglect

Rk since it involves dipole transitions between quadrupole
levels separated by energies of order co~ or is zero for the
degenerate cases where mk ———mk.

We denote the truncated Hamiltonian by Hk,

and are thus left with an isotropic interaction.
The total Hamiltonian can now be written as

N
H= —A'I g (ak 3/2$ ak 3/2@ok)k

k=1
(20)

akmk ™k nk (21)

where the direct sum refers to the four-dimensional sub-
space of nucleus k. The quantities

with

mk (~+ I /2)
~k, „+QkHkQk

Pk, ,HkPk, „+QkHkQk
mk (++1/2)

which can be written as

(12)

(13)

can be considered as effective fields produced by the dipo-
lar interactions from the nuclear-spin states mk ——+ —,',
whereas the internal dynamics of the states mk ——+ —,

' has
been transformed into the effective spin- —, interaction
described by the spin variables o k.

In this way the Hamiltonian is partitioned into the
direct sum of 3 contributions,



H =—fico~[I.(o.k +ok, + +ok„)+ I B,], (23)

where 8 is an effective field produced by the X —h. vec-
toI's RI, +3' determined by thc partltlon. By combining
the hJ effective spins —, into a total spin

6/= z(ok, +ok, + ' ' ' +o'k„»

a further reduction is possible,

Hj ——y gpHj p (25)
p. J

since the 2 '-dimensional product representation induced
by Eq. (24) is reducible. I'J takes the value hj /2,
&J/2 —1, . . . , 0 or —,', and gp. are thc multiplicities occur-

J
ring ln thc dccoIDposltlon. Thc Hamlltonlans Hj p RI'c

given by

Hj p. ———2%) I Fj —~ I Bj .

Thc sollltloil of this clgcllvaluc plobicm ls stralglitfol'-
ward. In the Appendix we give the eigcnvalues togetheI'
with the corresponding contribution pj I;(t) to the muon,

polarization p(t).
According to Eqs. (18), (22), and (2S) we thus write

p(t) = g g g~ p;,F, (t), (27)
j=l F,.

H= Hj, (22)
J =1

whcl c thc spin space on which Hj acts has dlmcnslon
A-2X2' where hj (hJ=0, 1, . . . , X} denotes the number of

67k s occurring ln thc partition J.
If all N nuclei have the same dipolar interaction fre-

quency co, each partial Hamiltonian is of the form

FoI' thc tctI'RhcdI'al, octahcdf Rl, Rnd cubic arrangcIDent
one obtains M =16&~a, 24&&ca, and 32&ua, respec-
tlVCly.

In experiments the muon is sitting at an interstitial lat-
tice site, and we therefore have to consider the effect of
thc nuclcaf splns beyond thc flI'st shell. O'Ur theory can
caslly bc Rppllcd to scvcfal shells. Considering Nl Quclcl
with spin J = —, on a first shell with dlpolm' frequency ~i
and N2 on a second shell with m2, we obtain' a partition-

%( +%2
ing into 3 ' ' Hamiltonians IIJ. of the form

Hg —fm——i(2 I.Gi+ I Bi)—Ac()2(2 I Gl+ I '&1),

where the maximum values of Gi and Gz are Ei/2 and
Xz/2. This three-spin problem, however, is no longer
RQRlytlcally solvable.

Since the contribution of further shells to the second
moment, which ls additive, ls slTlall wc cxpcct thcID to
cause an appreciable change of p(t) only at large times.
This justifies the use of an additional approximation in
treating the further shells. An analytic solution is still
possible by truncating completely, for further shells, the
second term in Eq. (8), which involves transitions between

mk&mk levels. The Hamiltonian can then be reduced to
expressions of the form of Eq. (26) with modified effective
fields.

We have calculated p(t) in this way for a muon at the
octahedral site in a fcc lattice interacting with nuclei of
spin J=—,

' on two shells. An estimate of the error in-

duced by this further approximation can be obtained by
comparin~ the correct second moments of the first shell,
Mi ——24coi, of the second shell, Mz ——(96/81)col, and the
value for the approximation Ml ——(80/81)coi.

The additional fields produced by thc eigh«ucici on
the second shell increases the number X~ of different fre-
quencies drastically (X~-4X10 ). A histogram of the
amplitudes as a function of frequency is shown in Fig. 2.
This may be compared to the frequency distribution

iH ~ + t —iH. ~ & t

pj I; (r)=Try(pe '2Ie ' } .
J J

(28)

The trace is taken over the subspace of the spin operators
I and Fj, Rnd p ls thc dcnslty matrix,

+
(29)

We thus have obtained an analytic solution for the
muon polarization in the case of N equivalent spin- —, nu-

clei valid in the limit of strong quadrupole interaction.

In this way we have calculated the muon polarization
function for a p+ interacting with %=4, 6, and 8 nuclei
with J=

2 in a tetrahedral, octahedral, and cubic arrange-
ment, respectively. The Iesults are shown in Fig. 1. It is
seen that with increasing X the oscillations are reduced
and the minimum is shifted to shorter times. The latter
effect is simply a consequence of an increasing second mo-
ment M which can be calculated exactly (see, e.g., «f. 5).

12 1.6
TIME tI~ ) j

FIG. 1. Polarization function for a muon interacting with
%=4, 6, or 8 nuclei with J=

z in a tetrahedral (T ), octahedral

(0), or cubic (C) arrangement, respectively. Time in units of
I/a)D.
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TABLE I. Parameter values for Eq. (33). 8 and +i 1n un1ts
of Qpi.

0.24121
0.37634
0.11859
1.65

7.609S7
4.90900
0.81610
0.26459

5 7.5 '10
FREQUENCY (uri)

FIG. 2. Histogram of the unnormalized a p
'

RGl lltudcs vs fI'c-

foI' the olarization of a muon at the octahedral site in a
fcc lattice Interacting mth J=

2 nucle1 on e
second-neighbor shells. Frequency in units of co~ and bin size is
0.1.

CO
A (co) ~to exp

which was assum yed b Kubo and Toyabe' (KT), and
h' h 1 ads to the polarization function

2 2 —h2s2/2 (32)pKT(t)= —,'+ —,(1—6 t )e

where 6 is half of the second moment.
I Fi . 3 we compare the polarization unctions calcu-n lg. w

d f r the first- and second-nearest-neigh
b the addltlon-ls seen ath t the changes in p(t) introduced y

s chan cal interaction o e sf th second shell are small. The g
for t ~0.7/cubi is ue o e'd t the increase of the second moment

m att 4% and the characteristic maximum aby about % an
lmes the smallt-0.92/cubi is barely affected. For larger tiines

oscillations are re uce .d d A significant deviation is seen

t that corrections from the dipole interac-
tion among the nuclei and from the quadrupo e
~k =+

2 will show up.
o make the results available for further applications

function:

g 2t 2/2p(t)=C+ gA;cos(Q;t)e

The eight parameters for this equation ar gare iven in Table
sion fits the calculated function for t ~2/coiI. This expression i s e

'
co

with a 1oot-IDcan-square dcvlatlon 0
IDaxlmal dcvlatlon o

'
n of 3 X 10 occurring at large times.

uon at the oc-In Fig. 4 we compare our results for a muon at t e oc-

tion, Eq. (32), with 6 chosen to produce the same second
rl (t) is a monotonically increasing

xhibit the charac-function for t ~0.5/equi and does not ex i it e c
092/co . This difference may beteristic maximum at

nt when diffusion of the muon is considered.lclcvant w cD 1 u
namic muon polar-In the strong-collision model the dynam'

ization function p v, t is( )
'

determined by the integral equa-
tion

(34)p(vt =e p, )— "' (t)+v dt'p(v, t t )e Jp(—t ),
0

where v is the average hoppmg rate and p
4

t is the static

C)
~ 0.6

K 04
C)~ 02

O
I-
w 0.5
0

CL

O.O—

0 12 1.8
TIME E((u() j

l 1 l

3.5
TIME t((u() j

f r a muon at the octahedralFIG. 3. Polarization functions .or a m

site in a fcc lattice interacting with J=
2 nuclenuclei on the first-

(dashed linc) Rn cd th first- and second- (sohd linc nearest-
neighbor shells. or t )F 0.8 the curves are shoran in the upper
part of Rn cnlargcd scale. T1IQc 1n units of 1/col.

FIG. 4. Comparison of the Kubo-Toyabeabe function (dashed
line) with the polarization of a muon at t e oce octahedral site in a

nuclei on the first- andfcc lattice interacting with J=
2 nuc

hbor shells. Time units of 1/coi. Parameter insecond-nc1g r s c
Eq. (32) has been chosen such that both curves ave
second moment, M =24+ 80/81.
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function. Although this Volterra equation of the second
kind could be solved by Laplace transformation, the awk-
ward inverse transformation makes a direct numerical
solution by discretization much more convenient.

In Fig. 5, p (v, t) is shown for several values of v as cal-
culated from Eq. (34) using the parametrized form (33) for
the static function p(t). It is see that the maximum at
around t =0.9/coi is gradually reduced with increasing v.
This is in contrast to the dynamic Kubo-Toyabe theory
where a maximum is built up for small but nonzero v and
does not show up in the static limit.

In conclusion we have presented an approximation for
calculating the muon polarization function in zero exter-
nal field which gives good results in the experimentally
relevant case of strong quadrupole interaction. For X
equivalent nuclei with J= —, an analytic solution is possi-
ble which shows characteristic oscillations depending on
the geometrical arrangement on the first shell. Inclusion
of further shells influences the results only slightly for
times of experimental relevance. There is no universal
function like that proposed by Kubo and Toyabe which
accurately describes the muon polarization in zero field.
This should be considered when zero-field data are used to
determine the muon diffusion rate.

O

M Og

D
CL 0

0.2——
0.0

A~ = ——+—[8 +8(2m —1)+F(F+1)+—,
' ]'i

15 2
TIME [((ui) j

FIG. 5. Dynamic polarization functions obtained from the
solution of the integral equation (34) for hopping rates v=0.2,
0.5, 1, or 2Xco~ as indicated. Curve v=0 is the static function
given by Eq. (33). Time in units of l. /co&.
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where m = —F+1, . . . , +Eand by

A@++1 (co/2)(F +——8),
A, p (co/2)(F——8) . —

(A3)

(A4)

APPENDIX
It is convenient to introduce the angles u (0(a &ir/2)
for m = F, . . . , F+1 b—y

The eigenvalues of the Hamiltonian

8 =co( I F+ I.B ) (Al)

[F(F+ 1)—m (m —I )]'~2
1

m ———82

(A5)

are given by The muon polarization parallel to 8 is then given by"

It

2F+1
F

[cos (2a~)+sin (2tx )cos(A~ A~)t]—
m =—F+1

(A6)

whereas for the perpendicular case one has

F
p (t)= g [cos cx~ p1sin (x~cos(A~+1 —A~ )t+cos lx~+1cos c~cos(A~+1 —A~)t2E+ 1

+S111 cx~+is111 cx~cos(A,~+1—A,~ )t+slll tx~+1cos cx~cos(A,~+1—A,~ )1 ]

For a muon initially polarized in direction m one thus ob-
tains the polariation along m from

p (t)=cos Op~~(t)+sin Op (t), (A8)

where 8 is the angle between m and B.
The normalization of p has been chosen such that

p (0)=1. Since each Hamiltonian H~F in Eq. (26) has

the form of Eq. (Al), the contributions pj F (t) [see Eq.
(27)] are given by

m 2F +1 ~(t)
2(21+1)"
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For a muon and a Cu nucleus at a distance of half the lattice

constant (octahedral site) one has co =0.11 ps ', whereas
Q)~=3.2 ps

Preliminary results of an exact calculation for N =4
(tetrahedral case) further confirm the validity of the approxi-
mation [M. Schillaci and P. F. Meier (unpublished)].

OIt is assumed that the quadrupole interaction exceeds the dipo-
lar one also for the second shell.

Knowing the eigenvalues and eigenfunctions of the Hamiltoni-
an [Eq. (Al)] the calculation of the muon polarization func-
tions for the parallel and perpendicular cases is straightfor-
ward. See Ref. 7 where a similar problem has been solved.


