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Anomalies in the transport properties of a disordered solid
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This paper points to the existence of new anomalies in the transport properties of a one-dimensional
solid. The anomalies are associated with the period-(r «2) marginally stable cycles of a key-phase re-

currence relation. Standard perturbation theory diverges at these points and an alternative expansion
about the periodic cycles is introduced. The low-order anomalies corresponding to r =2 and 3 are evaluat-
ed.

n2 = 2 (ln (1 +SJ exp [i (8& —8J + pJ 1) ] ) ) (2)

The quantities S&, g&, 8& approaching in the above equations
are a dimensionless scattering parameter and phases associ-
ated with the T matrix of the jth scatterer and are readily
calculated within a given model. '

Equation (1) is a realization of a result due to Thouless'4
and Herbert and Jones" that the inverse localization length

It is well known' ' that the spectral and localization prop-
erties of disordered solids contain anomalies that are absent
in their crystalline counterparts. The most notable of these
arise at a band center, where for particular models4 the
density of states can diverge. For such models the
anomalies are known to be a consequence of a symmetry of
the Hamiltonian. However, anomalies also arise in the ab-
sence of such symmetries. ' An example is provided by
the Anderson model with unit hopping elements and ran-
dom site energies of mean-square deviation a-'. Thouless'
has shown that the inverse localization length n at a band
center takes the form n=o'/4+O(o. 4), whereas Kappus
and Wegner' find that the exact result is a = o'/C + 0(o. ),
with C =4.377. . . . This discrepancy is due to the presence
of a sharp band center resonance in o. of width —o-2.

In the present paper it is noted that the band center ano-
maly is just one of an infinite set of resonances arising
within an energy band. The resonances correspond to the
periodic marginally stable cycles of a finite difference equa-
tion for the phase P of a real solution of the Schrodinger
equation. To each cycle there is a corresponding anomaly in
the random system, the band center anomaly being associat-
ed with the period-2 cycle. Within a band in the zero-noise
limit there are an infinite number of such cycles and as a
consequence nondegenerate perturbation theory diverges
everywhere. To evaluate a given anomaly a theory is
described which incorporates an expansion about the cycles
of interest and, for a particular model, anomalies at the
period-2 and -3 cycles are evaluated explicitly.

Following Schmidt" and Landauer, " the integrated densi-
ty of states per scatterer D(E) and the inverse localization
length o. are conveniently computed within a random T-

matrix approach, ' which yields the general result

n 2sriD(E) = n, +—ts2 2i8, —
where

8= (8t), ni = —(ln(l —St2) )

and integrated density states are real and imaginary parts of
the same complex number. The quantities o.1 and 8 on the
right-hand side are readily evaluated, because they involve
known quantities only. The problem of computing o. and
D(E) is reduced to that of evaluating the remaining contri-
bution n2. This involves an average over the cumulative
phase P, which is found to satisfy the following recurrence
relation, '

exp[i(8&+ttit 1)] +S&exp[i']
exp[i ttii] =

exp [ —i 8&] + Sjexp [i ( b& t1 —8J) ]
(3)

The anomalies under consideration arise in the weak-
disorder, weak-scattering limit, where S& ((1. In this limit,
Eq. (2) yields

2
~2 2a101p1 a202p2 +

3 a303p3 +

where the following notation has been employed,

p, = (exp[immi] )

avq, = (Sfexp[i ( q + r) 8i +i ( q —r) 8J] )

and it has been noted that, for a one-dimensional solid,
1 is independent of the nature of the jth segment.

A simple "nondegenerate" perturbation theory which
yields a series for the moments IM, will be illustrated by
evaluating u2 to lowest order in S. Expanding Eq. (3) to
first order in S and averaging yields

is 1(1 apl i) allo a112 P'2

Similarly, squaring and averaging yields p,2( 1 —ap22)
= O(S). Hence in the limit S ~ 0, provided apii &1 and
a022 &1, one obtains

iM, t = aiip/(1 —apii)

and

tt2 =2aioiaiio/(1 —apii)

It is straightforward to extend the analysis to higher order
in S. However, more conditions of the form a„,&1 are
thereby generated. For a given energy, one or more of
these conditions will be violated and, at some high order in
S, the perturbation series will diverge.

To illustrate this, consider a sequence of equal strength
delta functions with positions xj uniformly distributed over
the interval + Ax centered at their crystalline values ja. For
this model the quantities S& and 8& are independent of the
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disorder, so the subscripts will be omitted. One obtains

ape, = S~o-, ,exp[i (q + r) 8]

8 = Epa a—rctan [S/(1 —S2) ' 2]

where

(6)

a band edge is crossed can hardly be regarded as anomalous,
so that in what follows, we focus attention on the period-
(r ~2) cycles only. The position 8, of a period-r cycle is
given by

cos8, = (1 —S2)' ~cosmic/r, m =1,2, . . . , r —1 . (7)
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and Eo is the Fermi wave vector. For such a system, Fig. 1

shows the variation of n with 8 when S =0.22, b,x =1, and
the electron energy =1 eV. The top graph (n= constant)
shows the result of combining Eqs. (16) and (11) to yield n
to order S . The center figure shows the result of evaluat-
ing n to order S4, while in the bottom figure, terms up to
order S have been evaluated. As higher-order terms are
computed, an increasing number of divergences arise which
eventually populate the whole of an energy band. Such
divergences are clearly unphysical. They can be attributed
to the presence of periodic cycles in Eq. (3) (Ref. 16) and
signal the appearance of anomalies in n and D(E). In what
follows, the low-order in-band anomalies in n will be
evaluated.

In the zero-noise limit, it is clear from the connection
between the integrated density of states and the phase
change per scatterer" that a period-1 attractor must occupy
an interval corresponding to an energy gap. This interval is
marked in Fig. 1. The divergence of perturbation theory as

Within a band, these values of 8 form a dense set of mea-
sure zero.

The general problem of computing the moments p, close
to a given cycle can be solved by constructing the "degen-
erate" counterpart of the above nondegenerate perturbation
theory. Raising both sides of Eq. (3) to an arbitrary power
m, expanding in S, and averaging yields a "secular" equa-
tion of the form

~Ntp p'p NtNt0
pm]

where

(k wm —p)
( I ) k+P —m

m!(k+p —1)!
( m —k)!k!( k +p —m)!

Within a band in the presence of noise it is readily shown
that lim p, =0. Hence the sum on the left-hand side
of Eq. (8) can be cut off at some large value of P ( =P,
say) to yield a simple matrix equation for the moments. In
practice, o.2 is computed for a given choice of P, and then
recomputed for a larger choice until convergence is
achieved. To this end it is useful to expand about the cycle
of interest by writing 8= 8„+g,. It is also convenient to in-
troduce the parameter v„=g,/S'(I —at) which embodies
the noncommutability of the limits S~O, Ax~0, and

0.
As an example, consider the period-2 anomaly at a band

center where 82=m/2. To lowest order in S, the earlier ex-
pression for p, ] in terms of p, 2 remains valid, so an expres-
sion for p,2 yields n2 to lowest order. Choosing P, =2, one
obtains from (8) p,2= p/(I —i v2), where P = (o t

—a.2)/
4(l —of). Similarly, choosing P, =4 yields
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This simple approximation contains the essential features of
the result for n shown in Fig. 2, obtained by inverting Eq.
(8) with P, =8. Shown also in Fig. 2 are the results of a
numerical simulation in a sequence of 10 delta functions.

The analysis at a period-3 cycle follows a similar pattern.
The anomaly arises via the moment p, 3 and affects o,2 at or-
der S4. Choosing P, =4 yields
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FIG. 1. Result for a obtained by employing nondegenerate per-
turbation theory to evaluate Eq. (4) to order S2 (top), S4 (center),
and S (bottom). As higher-order terms are included, an increasing
number of divergences arise.

Similarly, the result obtained by inverting Eqs. (8) with

P, =8 is shown in Fig. 3.
Note that the vertical axes of Figs. 2 and 3 differ by or-

ders of magnitude. To understand the scaling behavior of
successive anomalies, it is sufficient to note that the rth
anomaly affects n2 through the moment p, As v, oo this
quantity is of order S', whereas when v, ~0, p, , is of order
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FIG. 2. Band center period-2 anomaly in a, obtained by inverting
the matrix 8'of Eq. (8) with P, =8. For comparison, the dots
show the results of a numerical simulation carried out along the
lines described in Ref. 12 on a sequence of 10 scatterers. No im-

provement is obtained by increasing P, .

S' 2. Hence from the expansion (4) one obtains, for the
relative magnitude of the anomaly at a period-r cycle,
nq(0) =n2(oo) =O(S" 2), where we have written
a2=n2(t). This shows that the weight under a resonance
decreases exponentially with the periodicity of the associated
cycle.

It is to be emphasized that these resonances are not sim-

ply an artifact of the delta-function model. The formalism
leading to Eqs. (5) and (8) can be applied to a variety of
one-dimensional disordered systems. In particular, Eqs. (I)
to (5) yield for the Anderson model discussed in the intro-
duction, nt = (s2) +O(o4) and a2= —p2(s ) +O(cr ),
where (s2) =rr2/(4 —E2) +O(o4). To lowest order at a
band center (E =0) the contribution nt = o'/4, which is

simply Thouless's result for the inverse localization length
0.. The anomaly arises from the contribution n2, which may
be obtained from p,2. To compute this quantity, one again
proceeds from Eq. (8) by expanding about the period-2 cy-
cle. The results are identical to those of the delta-function
model (Eq. 9) provided the symbols are redefined as fol-
lows: v2 4/2/3o', p ~ —„.Thus the resonances arising

within these two different models have essentially the same
shape. Choosing P, =2 yields, for the parameter C intro-
duced in the opening paragraph, C=4.364. . . . Similarly,
choosing P, =4 yields C =4.376. . . .

It has been shown that nondegenerate perturbation theory
contains spurious divergences, which signal the presence of

FIG. 3. Period-3 anomaly in a obtained from Eq. (8) with P, =8.
The peak position is given accurately by the denominator of Eq. (9).

anomalies in the transport properties of a one-dimensional
disordered solid. The anomalies can be computed by ex-
panding about the periodic cycles of a cumulative phase P
and appear to be a general feature of one-dimensional disor-
dered chains. It has been noted that the period-(r ~2) cy-
cles of the zero-noise map for $ are marginally stable.
Some insight into the origin of the anomalies can be gained
by examining the question of how these can be stabilized.
From the connection between D(E) and the phase change
per scatterer, " it is clear that a stable cycle at a given energy
is accompanied by a gap in the density of states. Hence, for
example, the application of a symmetry-breaking term,
which displaces every second scatterer of the crystal and ef-
fectively doubles the lattice constant, should stabilize the
band center cycle. Such symmetry breaking leads to fine
structure in the transport properties of the resulting crystal,
which evidently survives in the presence of noise. The
present paper does not address the question of whether or
not the anomalies persist to higher dimensions. However,
the presence of a band center resonance in at least one
model of a two-dimensional disordered solid7 suggests that
the answer will be in the affirmative.
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