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Attractive atom-surface interaction: Saturation effects in positronium
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The attractive interaction between an atom and a surface is examined within the general framework of a
self-energy formalism. Considered in detail are deviations from the van der Waals force due to recoil ef-
fects and finite velocity of the particle. Calculations for positronium moving near a metal surface show
that for such systems recoil and velocity effects are significant even at very low energies.

The dispersion force or van der Waals attraction between
an atom or molecule and a surface is the dominant interac-
tion at large separation. Near the surface there are
velocity-dependent correction terms but these are generally
non-negligible for atoms only if the speed is very high, cor-
responding to a light atom with energy in the keV range.!
In this paper we consider the attractive interaction between
an atom and a surface using a general self-energy formalism
and one result is to obtain the velocity-dependent correc-
tions for a particle moving parallel or perpendicular to the
surface.

However, if one considers the similar problem of a bare
charge g, where the analog of the van der Waals force is the
classical image potential g2/4z, it is known that the potential
saturates to a constant near the surface. This saturation,
which has recently been experimentally observed for elec-
trons,? is due to two effects; the finite velocity of the charge
coupled with the consequent inability of the surface excita-
tions to follow this motion,? and recoil of the charge as it
exchanges virtual quanta with the surface.* Even for a very
slow electron the recoil effects cause saturation of the po-
tential, and deviations from the classical image behavior for
an electron persist several angstroms away from the sur-
face.’

The importance of finite velocity and recoil effects in
charge-surface interactions suggests that it would be of in-
terest to consider similar effects in a very-low-mass atomic
system, namely positronium, which has been the object of
much recent experimental activity.® Of particular interest
are the recent experiments demonstrating the production of
thermal energy positronium as a result of the interaction of
low-energy positrons with surfaces.” Using a general self-
energy approach we have considered the interaction of posi-
tronium with a surface and find deviations from the van der
Waals potential that extend to a separation of several
angstroms even for thermal energies. Quantum-mechanical
recoil saturation effects appear near the surface.

The energy shift due to an atom interacting with a surface
is given to lowest nonvanishing order in perturbation theory
by

AEy=3,({0| V]y) (¥|V]0))/(Eq—E,+i8) . )]
Y
A state vector |y) of the noninteracting system is written as

the product [n)|I)|pl), of a surface state vector of ener-
gy E,, an atomic state vector with energy €, +e¢;, and the
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translational state vector with energy ey, respectively. The
total energy shift can also be written as the integral of the
spatially dependent self-energy 3,( ) weighted by the pro-
bability density of the atom in its original state,

AEy= [ dF (a0l F)S(F)(Flao) . @

A comparison of this form with the perturbation expansion
leads directly to a systematic generalization of the space-
dependent self-energy to all orders of perturbation theory,’
and from Eq. (1) the lowest nonvanishing term is

(¢l T)
So(T) = _—

?;kz (ol T)
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(3)

The interaction operator V is developed by starting from
the Hamiltonian & for an element of charge ¢ interacting
with the surface modes,

() =3 Tgexp(—Qlz| +iQ-R) (a5 +a_37) . @
q

This model neglects interactions of the charge with the bulk
but such effects have been demonstrated to be non-
negligible only very near ( ~1 A) to the surface.® Capital
letters (Q,R) are used for vectors parallel to the surface
and lower case is used for perpendicular components (gq,z).
The coupling constant '} = Ze’mhwg/L2Q, where L? is the
surface area. For surface optical phonons it is multiplied by
the factor

[(eo—1)/(e+1)] —[(ex—1) /(e +1)] ,

where ¢ is the static dielectric constant and e, is the dielec-
tric constant at high frequencies.

An atom can be considered as a charge density p( T) con-
sisting of a nuclear charge Ze and an electron cloud. The
atomic interaction Hamiltonian ¥V becomes

v(r)=f[arp(FIo(F+7) . )

The multipole expansion of Eq. (5) begins with the dipole
term

V=3 Tolf &(@]lexp(-Qlz|+iQ-K) (a5 +a_3) , (6)
Q
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where E is the atomic displacement operator.
For a plane-wave basis set the self-energy of Eq. (3) becomes

20T3(01511) - @(@)Pexpl — Qlz| +i(k —ko)2]
2 = — - —
o) ; 2,: %k[Q2 +(k — ko)21[#2( K} +k3 —(Q+ Rp)? =K /2m —kwg—¢)]

(0la; +a_gln)(nlag +alg0) ,
)]

where conservation of parallel momentum requires Q=K—K'O. For simplicity we consider a metal surface with a surface
plasmon frequency w, =m,/x/f assumed dispersionless for the remainder of the paper. With the surface temperature equal
to zero, the self-energy reduces to the following integral form:

—ik
Ze2 Qsz e 0

20(2) = - 671’2

where Q2=2mw,/k, qf =2me,/k* and we have made the
assumption that the atomic excitation energies e, are in-
dependent of the azimuthal quantum number. Equation (8)
is the self-energy of an atom a distance z from the surface,
originally moving with a velocity ¥ =#(Ko,ko)/m. The fac-
tors Q2 and k? in the denominator are the manisfestation of
full three-dimensional recoil.

_

Q%exp(— Qlz| +ikz)

, SB[ a J"a0 [ as

0%+ (k —ko)?
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A general solution to Eq. (8) in terms of tabulated func-
tions is not a simple matter but there are a number of spe-
cial cases which illustrate quite nicely the behavior of the
self-energy. First we consider an atom moving perpendicu-
larly toward the surface, i.e., Ko=0 and ko=mv,/k. The
integral over azimuthal angles is trivial and the integral over
k can be carried out as a contour integral in the complex
plane. The final result is

S0(2) = (= Ze2Q2/3) (d*/dz®) 3| (1| B|0YPLA (2] (Q2 +aP) ko) — isgn(2) gz (Q2 +aP) k)1 +3(2) )

where

s = ae (2 +1), g0 = [ a2 +1)

(10)

are the auxiliary functions to the sine and cosine integrals.” The additional term 3'(z) decays exponentially away from the
surface as z~%expl — (Q2 +q? — k?) /2| z|] and is given explicitly by

ikyz
ZeZ Q.‘Ze 0

expl —20 —z( Q2+ Q2 +qf — k)]

¥() = - ZEE— S0 f a0 0°

x[2k§ + Q2 +af —2iko( Q>+ Q7 +aP — k§)'/21 7" .

In the asymptotic region we have

Re3o(2) — (Ze2Q2/1212°) SIHBI0NY(QF +¢2) 1 —[12k3 /22(Q2 +aD + - - - ),
Z=* oo ’

Im3Zy(z) — sgn(2)(Ze?Q2ko/4z%) 3 1{IIBI0YP/( Q2 +qP)? {1 —[20k4 /22(Q} +gD) 1 + - - -} .
27 1

The first term of Eq. (12) is the well known Lifshitz expres-
sion for the van der Waals potential!® and the correction
term varies as the square of the velocity. These expressions
are good for either low or high energy, with a high-energy
particle being defined as one with sufficient speed to create
a surface excitation. At low energies, the imaginary part of

S0(2) = — (Ze*Q}m/48Ko) (d/dz®) 3, | (1| Bl0) L Lo(| 21 (Q2 +42) /Ko — Lo( 21 (QF +aP) /K1 +3"(2) ,
1

(0707 +a7—K§)"

a1n

(12)

(13)

I
3o(2) is conservative, and even at high energies the asymp-
totic expression is conservative since the inelastic contribu-
tions decay exponentially away from the surface.!!

To obtain the case of an atom moving parallel to the sur-
face we set ko=0 and Ko=m v"y/m. The final result can be
expressed in terms of the modified Bessel function Io(p)
and modified Struve function Lo(p) (Ref. 12) as

(14)

where 3''(z) is a term which decays exponentially away from the surface as expl —|z|(Q2 +¢?) /21274,
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ZZ SZ - P 27
3"(z) = eWQ ;|(1|p|0)|2£ de; dé Q3%expl —z0 —z(Q* +20Kcosd + 02 +¢) 2]

6

X (Q2+qf +20Kcosp) "1 (Q* +20Kcos¢p + Q2 +gP) 7! .

(15)

The asymptotic form is similar to Eq. (12) above, consisting of the Lifshitz term with a correction in (v/z)?,

30(2) = — (220212121 SIBI0)/(Q2+a) L +16K3/2(QF +aP)*1 + -+ -] .
27T [

The correction term for an atom with a finite speed is valid
for both low and high energies. It was first obtained by Fer-
rell and Ritchie! and has the opposite sign from the correc-
tion term in the perpendicular case of Eq. (12). This im-
plies that there is an incident angle for which this first-order
correction term vanishes. A further interesting point is that
all recoil effects decay exponentially away from the surface
in both the perpendicular and parallel motion cases [they are

_

30(2) = = (Ze2Q2/121z1%) SAI(IIB10)|/(Q2 +4P)]
1

(16)

[
included in the terms 3'(z) or X"(z), respectively]. This

shows that the Ferrell-Ritchie correction in Eq. (16), origi-
nally obtained in a recoil-free approximation, remains un-
changed by recoil effects.

A final special case of interest is that of an atom moving
very slowly near the surface. In the limit ko= Ky— 0 the
self-energy can be expressed exactly in terms of incomplete
T' functions and exponential integrals,

x {1 = 3T13,121(QF + M) 1 +(322/2) (07 +gPexpl — |z (Q2 + ) ]

— L1202 + g2 PLEy(121 (02 +aP)'P) — Ey(121 (02 +47)'D]1) .

an

The separation between the Lifshitz term and the exponentially decaying recoil effects is clearly seen in the asymptotic form

30(2) = —(Ze2Q/121z1%) J1I(11B10)/(Q2 +qP) 1 {1 —4alexpl — | 2| (02 +aA) P1/1(Q2 +¢P) |21} .
z7 e ]

A result of further interest is the limit near the surface,

30(2) =, = —(2e202/8) 3 1(11B10)PL1/1z — 16(Q7 +47) /9]
= 1

The classical 1/z3 surface singularity saturates to the weaker
1/z behavior as a result of the recoil motion due to the ex-
change of virtual quanta with the surface.

The same velocity-independent 1/z term of Eq. (19) is ob-
tained near the surface even if the atom is moving with a
finite speed, as can be shown from Egs. (9) or (14). This
contrasts with the analogous problem of charge-surface in-
teraction where the saturation value of the potential at the
surface is velocity dependent.’

In order to get an idea of the importance of these finite
velocity and recoil effects near the surface, we plot in Fig. 1
the ratio of ReX¢(z) from Eq. (9) to the asymptotic or
Lifshitz term for slowly moving positronium. The polariza-
tion sums over atomic quantum states were carried out us-
ing the oscillator strengths for a hydrogen-like atom given
by Sugiura.’? The remaining parameter is the surface
plasmon frequency and two curves are shown for the widely
varying cases of Al and Cs, where %w, is 11.2 and 2.5 eV,
respectively. It is seen that deviations from the semiclassi-
cal behavior start several angstroms from the surface at dis-
tances where the positronium electron cloud is not substan-
tially overlapping the surface region; in fact, for 2-eV posi-
tronium near a Cs surface the ratio is still 0.99 at a separa-
tion of 10 A.

The effects due to recoil are dominated mainly by the de-
caying exponential with separation, with a range given by

(Q2+g) V*=[2m(kws +€) 12/,

(18)

19

which in this case has a value of approximately 2 A-L The
range parameter is decreased somewhat by the finite veloci-
ty as seen in Fig. 1 but clearly recoil saturation to a 1/z
dependence for 3y(z) occurs very near to the surface.
However, very near the surface the present calculation is
not valid for a variety of reasons, notably bulk electron in-
teractions become non-negligible, higher-order multipoles

1

0.5 1.0 1.5 2.0
z(R)

FIG. 1. Ratio of the total atom-surface self-energy 3,(z) to the
semiclassical Lifshitz term 3; as a function of distance z from the
surface. Shown are two cases of slow positronium moving perpen-
dicularly to a metal surface. Curve a, 4-eV Ps and Al with
Fwg=11.2 eV, and curve b, 2-eV Ps and Cs with fw;=2.5 €V.
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become important, and eventually the multipole expansion
itself breaks down. Nevertheless, regardless of where the
present approximations break down the particle-surface in-
teraction is the ultimate result of the exchange of virtual
quanta, and with each exchange the atom must recoil. The
effect of this recoil is to weaken the potential interaction.
The calculations presented have demonstrated the range of
such recoil saturation effects and Fig. 1 shows that they can
begin to become apparent when the approximations used
here are still reasonably valid.

It is perhaps surprising that the corrections for finite velo-
city are clearly important even for very-low-energy posi-
tronium. Since these corrections remain of the same form
for all incident energies, high-velocity positronium will exhi-
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bit considerable deviation from the van der Waals 1/z° at-
traction.
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