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Boson creation by an atom moving near a surface
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We consider the various mechanisms for energy transfer by an atom moving in its van der Waals poten-

tial a distance z from a surface. For the excahnge of either surface optical phonons at an ionic surface or

surface plasmons at a metal surface we obtain transition rates which exhibit a maximum at an optimum

atomic velocity and which decay exponentially with z. It is found that single-phonon events do not always

dominate the exchange rate. At small z the single-quantum monopole porcess is most important but at

larger z the two-quantum dipole exchange term is greater. Single-quantum transfers arising from higher-

order processes in the Born series are completely negligible.

In this Rapid Communication we examine the possibilities
for energy transfer by an atom moving in the van der Waals
potential near a solid surface. The quanta transferred are
surface optical phonons in the case of an ionic solid or sur-
face plasmons for a metal. Such considerations are of in-
terest relative to recent experiments on scattering of neutral
atoms by metal cylinders'~ or to the question of surface-
optical-phonon transfer in the very recently developed field
of surface phonon spectroscopy using thermal-energy atomic
beams 5 8

The van der Waals potential between an atom and a sur-
face is logically described as the self-energy of the atom
created by the exchange of virtual quanta with the surface
in analogy with the corresponding problem of the image po-
tential for a charge near a surface. ' lf the atom is moving
sufficiently fast, nonconservative imaginary terms appear in

the self-energy corresponding to transfer of real quanta of
energy. The van der Waals potential is the result of the
mutual polarization of the atom-surface system as the atom
is excited to higher states by virtual transfers, but since we
consider cases where the atom is not given a real excitation
to a higher state, the lowest-order contribution to the energy
transfer comes from second-order perturbation theory and is
a two-quantum process. The lowest-order single-quantum
process comes from third-order perturbation theory and we
are able to show that this contribution is negligible in com-
parison to the two-quantum process.

However, as the atom moves close to the surface a dif-
ferent mechanism for energy transfer appears because the
atom interacts with the surface as a collection of charges
rather than as a neutral polarizable particle. This "mono-
pole" contribution occurs as the atomic charge distribution
overlaps the surface region and gives single-phonon
transfers in first-order perturbation theory in a manner
similar to that of a bare charge.

In the following we develop expressions for the total ine-
lastic transition rates for all the processes mentioned above.
We begin by considering the energy transfers through the
mechanism of the multipole expansion of the atom-surface
interaction potential. The interaction of a charge Ze with
the surface excitation field is given by

p( r ) = QI'~e px(iQ R —Q~z~) (a & +a &)
Q

where Q is the parallel momentum of the surface excitation
and I'~2= pZez7rro~h/L2Q with tee~ the surface excitation
energy, L2 the surface area, p=l for surface plasmons on
metals, and

p = (eo —I)/(co+1) —(e„—I)/(e„+I)
for surface optical phonons. Regarding the atom as a netur-
al charge distribution, we can make a multipole expansion
of the atom-surface interaction H'( r ) as follows:

H'( r ) = XI ~[p p(Q)] exp(iQ R —Q/z/)(ao +a &) + —, XI'&[p (i7Q)l'e px(iQ R —Q/z[)(a &
+a &)+ .

Q Q

(3)

where p is the atomic displacement operator and

p, (Q) =(iQ„ig», —Q). The total transition rate from an
initial state i to all possible final states is

I

second-order term in perturbation theory,

Tpj = X (f~H ) l) (l(H (i)/(E~ EI+ If)

(4)

where to lowest order the transition matrix is given by the

the first-order term not contributing because the atom is
never raised to a final excited state. The matrix elements
are those of the dipole term of Eq. (3) taken with respect to
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the state

gq ——exp(i Kq K —ikaz) I i) I ng) (6)

R, =„('I )R( )( I')d (7)
I

a product of a plane wave for particle motion, an atomic
state, and a many-body surface excitation state, respectively.

The transition rate of Eq. (4) can be related to the non-
conservative imaginary part of the spatially dependent self-
energy in the usual way, '

where R;( r ) =2imXp( r )/il'; i.e., ImXp( r ) can be con-
sidered as the nonconservative imaginary part of the spatial
self-energy.

The dipole matrix elements 8& taken with the eigenstates
of Eq. (6) are trivial and we can readily obtain the transition
rate as a function of distance z from the surface according to
the prescription of Eq. (7). We make the reasonable simpli-

fying assumption that the surface excitation energy co~ is in-
dependent of Q and then use closure relations to perform
the sum over the many-body states. This results, for zero
temperature, in a direct and exchange term as follows:

Rz (z) =(16am'/t') X I'qi' exp[ —2(g+Q')lzl](Q Q'+Qg')'5(g'+g'+2Q Q'+2Q K;+2Q' K, +2Q,')
r

Q, Q

x Xlz/pl (g~+2Q ~ Kt+g~yqz)
l

+ glzgpl'Iz ~ I'(g'+2Q K;+ g,'+qP) '(g'+2Q' K;+Q,'+q'~) (8)

where the atom is moving parallel to the surface with wave
vector K; (or velocity v; =0K~/m), Qz = 2m ', /f,
q~z =2me~/l~ with e~ the atomic excitation energy measured
from the ground state. The factor (Q Q'+Qg')' comes

from collapsing the products of the p p, (Q) assuming that
the atomic energies are independent of azimuthal quantum
number and z~o is an atomic-state matrix element of the z

component of the atomic displacement operator p.
We now choose to ignore all recoil effects, i.e., all terms

I

I

quadratic in g and g' in the 5 function and in the denomi-
nators since their effect can be shown to- be completely
negligible even for atoms as small as helium. We also
neglect the terms involving Q E; in the energy denomina-
tors, which has the effect of eliminating high-velocity
corrections in the asymptotic region. Then the transition
rate can be readily reduced to a single integral over modified
Bessel functions of the second kind, and by Fourier
transforming the Bessel functions we arrive at the final
closed form expression

2

RP(z) =(P z e Q,
' mm/8f K; ) Xlzgl /(Q, +q~ ) (d /db ) [exp( —Jb )(y +b~+4y b)/Jb ]I

I

(9)

where y =2lzl Q,'/K;. Upon performing the derivations we obtain for the leading term in the asymptotic region

2

RzD(z) P~(3Z e 7rmQ, ' /128@@;) XlzNI /(Q, +qP) exp( —4lzl5)/Izl
g ~ ao

1

(10)

where 5= Q,'/2K;.
Since this transition rate is a two-quantum process, it is of

interest to compare it to the various possibilities for single-

quantum exchange. Qne possibility of single-quantum ex-
change is from higher-order terms in the perturbation series
and this is considered below but found to be relatively
unimportant. Another possibility is when the atom is near
the solid and the individual charges can interact directly with

the surface excitation field. This monopole contribution is

so named because it gives a single-quantum contribution
from the first-order term in perturbation theory just as does
a bare charge.

To obtain this contribution we treat the atom as a point
charge Ze surrounded by an electron cloud, p( r )
=5( r ) —p,~( r ). Each individual element of charge in-

teracts with the surface through the potential of Eq. (1).
Thus the total interaction Hamiltonian can be written as

H'( r ) = „d r 'p( r') @( r + r ) (11)

which can be Fourier convoluted to appear as

I

Taking the matrix elements of H'( r ) between states Pf
and Q& of Eq. (6) differing by a single created phonon and

inserting the result into the transition rate of Eq. (4) gives a

total transition rate

Ri= g(2~/&) Ip-, g -„I'8(t'(q' —2q k;)/2m+to&~)

(13)

If, as above, we let the atom move parallel to the surface in
the x direction and use the prescription of Eq. (7) for deter-
mining the spatially dependent transition rate, we arrive at

(14)

where q = (Q,'/2IC, , g„,q, ) and the notation (p-„V-„),
means the Fourier component of the product in the direc-
tion perpendicular to the surface. To evaluate Rp(z) for a
specific case we consider a simple form for the charge distri-
bution p(r), that of a hydrogen-like atom in its ground
state, "

H'(r ) = Xexp( —iq r )p q 4 q
(12)

p( r ) = 5( r ) —o3exp( —nr)/8m (15)
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with a=2Z, ff/ao and ao is the Bohr radius. The necessary Fourier transforms are readily carried out and we have

Ro(z) =(pZe Q /16tE1) J dQ Q[2Q +3a + Izla (Q +a )' ] exp[ —2lzl(Q +a ) ']/(Q'+a')

with Q = (Q) +5') '/'. The integral cannot easily be carried out in terms of tabulated functions but the asymptotic expan-
sion is readily evaluated as

R11(z) ~ pZe a Q Jar/32tE [5 +a ) '4~z[' 'exp[ —2(z~(5 +4a ) l (17)

The decay constant for this single-quantum process 2(8'+4a')'/2 includes the decay range a of the charge distribution.
This indicates that the monopole process will be most important at small separation where the atomic charge density actually
begins to overlap the surface.

The monopole process also contributes to the two-quantum exchange rate just as the dipole contribution obtained above.
This can be calculated from second-order perturbation theory to give the transition rate

RM ~ (Z2e4mQ4/212 JQ$3It 37r7/2) [ Iz la (8 +a ) ' +28 +3a ) exp[ 4(z( (82 +a2)1/2)I (52 + 2) 21/4) )3/2

There is in addition a two-quantum interference term involving both the monopole and dipole constributions:

R2 D ~ Z'e'5'm/(4/r'n' ') g~z/Ol'/(Q, '+q/') " ' ' exp[ —2(z[8 —2[z(5'+a')' ')i~z~a'(5'+a )' +28'+3a l'
( 52 + 2) 9/4 [5 + ( 52 + 2) 1/2]

) ~

3/2

(18)

For completeness and for comparison we have also con-
sidered the lowest-order single-quantum process arising
from the multipole expansion. This comes from third-order
perturbation theory and involves the quadrupole and dipole
terms of Eq. (3). In the asymptotic region the result can be
expressed in terms of modified Bessel functions and the de-
cay behavior away from the surface is dominated by an ex-
ponential of argument 2[z (8 = [z [Q, /E; = 2)z [4o,/37; while

R2 (z) decays with exactly twice that argument. This is the
general behavior of a single-quantum versus a double-
quanturn process.

We have carried out a number of calculations for light
atoms moving near ionic as well as metallic surfaces. The
summations over atomic states appearing in Eqs. (9) and
(19) can be related directly to the atomic polarizability and
were evaluated using Pade approximants. '3 An example is
shown in Fig. 1 which gives the surface-optical-phonon ex-
change rates for He moving parallel to a LiF surface at a
distance of 1 A. The single- and double-phonon exchange
rates are exhibited separately. It is evident that there is an
optimum particle energy for inelastic exchange at somewhat
less than 1 eV with the transition rates decreasing rather
rapidly for both higher and lower energies. At this separa-
tion the two-phonon events [which are dominated by the di-
pole term of Eq. (9)] are non-negligible but considerably
smaller than the single-phonon contribution. The single-
phonon rate is that due to the monopole contribution of Eq.
(17). The single-quantum process coming from third-order
perturbation theory is completely negligible.

Figure 2 gives the ratio of Ro the single-phonon rate, to
the total two-phonon rate T~ as a function of distance
between atom and surface for a particle energy of 1 eV
(near the maximum exhibited in Fig. 1). Except for the
very smallest separations, the two-quantum rate is dominat-
ed always by the dipole contribution of Eq. (9). At dis-
tances in the neighborhood of 1 A the single-phonon ex-
change dominates the scattering, but at larger separation it
is the dipole two-quantum process which is larger. This in-
teresting result is characteristic of all energies except the
smallest. Only when the atomic energy is comparable to the
surface-optical-phonon energy is the single-quantum ex-
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FIG. 1. The one- and two-quantum exchange rates as a function
of particle energy for He moving parallel to a LiF surface at a dis-

C2

tance of 1 A. Ro is the single-surface-phonon transfer rate and T&

is the total rate for all possible two-phonon processes. The surface
optical-plasmon frequency is given by co, -sum(so+1)/
(e +1)=71 meV (Ref. 14).

I

change the largest term for all separation distance. Howev-
er, under these conditions the exponential decay range
parameter 5= Q,'/2E&=«1, /u, iS large and all tranSfer rateS
become negligibly small as z becomes appreciable.

Since LiF has a rather large surface-optical-phonon fre-
quency [71 meV (Ref. 14 )], it is of interest to consider a
crystal such as AgBr which has a surface-optical-phonon fre-
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quency of 16 meV. '4 The situation is found to be very simi-
lar to that for LiF except that the maximum transfer rate
occurs at a particle energy of slightly less than 0.1 eV re-
flecting the smaller phonon frequency. For atomic veloci-
ties in the neighborhood of the maximum exchange rates,
single-quantum processes dominate for z ( 1.5 A and
double-quantum processes dominate at larger distances.

We have also considered the exchange of surface
plasmons at metal surfaces since the model is virtually
identical to that for surface optical phonons. Again there is
an optimum particle energy at which the maximum ex-
change rates occur but this is now in the keV range. It is
about 10 keV for the He-Al system which has the relatively
large surface plasmon energy of 11.2 eV and it occurs at
about 1 eV for He-Cs, where the surface plasmon energy is
2.5 eV. For energies at and above this optimum energy it is
the double-plasmon exchange process which dominates and
this is due almost entirely to the dipole term of Eq. (9) or
(10). Only at lower energies (and where the transition rates
are an order of magnitude smaller) do the single-plasmon
transfers dominate.

The conclusions that we can draw from this work are
similar for the exchange of surface optical phonons at ionic
surfaces or surface plasmons at metal surfaces. The major
contributors to the inelastic exchange rates are the single-
quantum monopole mechanism and the double-quantum di-
pole process. All other processes examined seem to be rela-
tively unimportant, and in particular single-quantum
transfers arising from higher-order terms in the perturbation
expansion are totally negligible. The exchange rates decay
exponentially with the separation z between surface and
atom. As a function of particle energy there is a maximum
in the exchange rate at approximately 5 or 10 times the
surface-optical-phonon energy, or in the keV range for the
exchange of surface plasmons.

An interesting result pertaining to both ionic and metal
surfaces is that the single-quantum process is not always
dominant. At metal surfaces the single-plasmon process is
the most important only in the low-keV range and below,
and the single-quantum process is almost negligible at
higher energies where the transfer rates are at their max-
imum. For the exchange of surface optical phonons at ionic
surfaces the effect is not so clear cut, but at particle energies
which give the maximum inelastic transfer rates the single-
quantum process is most important near the surface but for
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FIG. 2. The ratio of the single-quantum exchange rate 80 to the
double-quantum exchange rate T2 for He moving parallel to a LiF
surface. The He energy is 1 eV corresponding to a speed of 6900
m/s.

z ) 1.2-1.6 A it becomes the two-quantum process which
dominates.
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