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It is shown that the results presented by Reinisch and Fernandez have an alternative interpretation
where the soliton does behave as a Newtonian particle. The key features required for this alternative inter-

pretation are (i) properly defining where the center of the soliton is, and (ii) expanding the solution so as

to avoid any secular terms. When these two objectives are achieved, then the center of the soliton is

found to satisfy Newton's equation of motion for a point particle.

Recently there has been some controversy about the vali-
dity of soliton perturbation theories and the interpretation
of a soliton as a particle. This was first noted in Ko and
Kuehl's' study of the K dV equation with time-dependent
coefficients. Their result for the position of a soliton x,
when transformed into the notation of Kaup and Newell, '
gave

dxm
4 2 I

dt 3q
=4q—

where 2q is the amplitude of the soliton and I" is the
damping. On the other hand, a soliton perturbation theory
found2

4 2+ I
dt

"
3n

'

where x is Kaup and Newell's position for the soliton.
These sign differences are real, and, numerical results did
support Ko and Kuehl's result. '

More recently Reinisch and Fernandez have numerically
studied4 the sine-Gordon kink under the influence of a con-
stant torque. They also found their numerical results at
variance with the predictions of soliton perturbation
theories' ' and have proposed to explain this by declaring
the soliton to be a non-Newtonian particle. What I propose
is that one does not have to be that drastic and also that the
Ko and Kuehl observation and the Reinisch and Fernandez
observation may have a common explanation.

First, let me state some facts, then I shall give my inter-
pretation of these results.

(l) The soliton or kink is not rigid and is not a "point
particle. "" (Therefore one must qualify to what extent one
is referring to it as a "Newtonian" or a "non-Newtonian"
particle. Should one look at the short-time or long-time
scales to see this?)

(2) Any "extended particle" will respond with a time de-
lay to an externally applied force. '~ (This is also verified by
Reinisch and Fernandez's numerical results. To the extent
that the soliton is not a point particle, one could say that the
soliton was non-Newtonian. In this respect, Reinisch and
Fernandez were correct. What they observed were the com-
bined transient effects of a soliton reshaping itself" and ex-
periencing a time delay. )

(3) The expansion used by Reinisch and Fernandez con-
tained secular terms. (The presence of secular terms limits
the validity of their expansion to short-time scales. )

(4) The concept of a "soliton" comes from considering

the solution for t +~, whereby the general solution
separates into "a collection of solitons in a sea of radia-
tion. " (Thus to identify or locate a soliton, one should use
a solution valid for large-time scales, not short-time scales. )

(5) The definition of the center of a soliton used by
Reinisch and Fernandez is different from the definition
used in soliton perturbation theories.

Now what I want to do here is to present an alternative
interpretation of the Reinisch and Fernandez result. 4 As
they did, I start with the perturbed sine-Gordon equation

u„—u +sinu = eR(x, t)

I now difffer from their procedure and instead expand u as

u(x, t) = Uo(x) +eu"'(x, t) +... (2)

X shall be defined such that no secular terms will appear in
(2). I shall define the center of the soliton to be at the
center of Up, which is where X=O. This also differs from
the definition of the center according to Reinisch and Fer-
nandez, who took it to be where u„(x,t) was a maximum.
To avoid relativistic effects and to maintain simplicity, I
shall take x, ~0(e), and require that

+X2

Then from (1), (2), and (4), the first-order result is

UpxXtt + Butt + KLQ = 6R(i) (i)

where

L = —rl~+cos Uo(x)

(4)

(6)

The operator L has one zero eigenvalue, which is a bound
state whose eigenfunction is proportional to Up„.' If I now
demand that u ' must not contain any secular terms in this
(first) order, then ut"~ must be orthogonal to this bound-
state eigenfunction. Thus I take

u"'(x, t) = J" dk ~k(t)fk(x) (7)

whence both X and ak are uniquely determined by

Ji f, (x)R (x, t)dx
Xtt=&

b X Up„X dX

where x is to be determined and Uo(x) is exactly the one-
soliton soliton given by

Uo(x) =4tan '(e —+«)
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ak„+o)k2ak= „I fk(x)R(x, r) dx . (9)

In the above, fb and fk are the eigenfunctions of L (Ref. 7)
and ~k2=1+k'. Equations (8) and (9) are the results for a
general forcing term R (x, t). As one may see from (8), the
acceleration X„of the soliton is directly proportional to the
bound-state component of R(x, t), while from (9), the am-
plitude of the continuous spectrum is driven by the kth
component of R(x, r).

Now', as in Ref. 4, let us take 8 independent of x, so that
we have a constant torque being applied to the sine-Gordon
field. Also, take 8 =0 if t &0 and 8 constant for I, &0.
Then for r &0, (8) yields

(10)

from which we obtain

Since the center of the soliton is at X=o, it then follows
that the soliton (our definition of the center at least) does
behave as a Newtonian particle. 2 5 "

However, as was indeed pointed out in Rcf. 4, such is not
observed. And to understand what has occurred in these nu-
merical experiments, 4 we must include the effects of the
continuous spectrum. From (9), one can readily obtain4 "

u&'~(x, r) + -—'R dk G(k, x) [I -cos( «)], (12)

u"&= ——'R
J dk G(k;x)

OO

+ RJ dk G(k, x)cos—( r)

The first part is time independent, and corresponds to a per-
manent change in the soliton's shape. Thc second term
may be evaluated by stationary phase, and represents out-
ward traveling radiation.

If instead we are interested in short-time scales, then we
may expand (12) in a Taylor series, obtaining

u"'(x, r) = 'Rr'JI dk(i+k—')—G(k, x) +0(r'), (15)

k cos(kx) —sin(kx)tanhx
(1+k')'sinh(n k/2)

In Ref. 4, the integral in (12) is evaluated by contour in-

tegration and is reduced to an infinite series. However, that
infinite series is only convergent if one is outside the light
cone. Inside the light cone, one must use other techniques.
For large times u~' will conveniently separate into the two
parts

which evaluates to

u'"(x, r) = "R 2— +
cosh&

Now f«m (2), (11), and (16), we have

1

u(x, r) = Uo x+ —~Rr2 + R 2 — +0(r')
4 cosh~

(17)

ups
= eR (x, r) (19)

What (19) demonstrates is simply that the response of u at
x is independent of what u is at another value of X. Each
element of u is responding like a free partic1C, independent
of all other elements, and its response is only determined by
the value of the forcing term at the position of that element.
In other words, the concepts of solitons and radiation are
only of value when one is concerned with or interested in
the intermediate or long-time behavior. On the short-time
scales, the soliton concept is of less value than the field
concept, as was demonstrated by Eq. (19).

I also suggest that a similar analysis of thc E dVequation
may well explain Ko and Kuehl's' result, but that remains
to be seen.

Since we have evaluated (12) by a Taylor*s series expansion
in I;, we may as well do the same for the soliton part, noting
that Uo„= +2/coshx. Whence

u(x, r) =Uo(x)+ —,'er'R+O«') .

Naturally, Eq. (18) is exactly the same result as that ob-
tained in Ref. 4. However, I have obtained it via a different
definition and interpretation. I interpret Eq. (17)
Newtonian particle moving with a constant acceleration, and
with radiation being created at a rate proportional to i2 on
short-time scales. %hat will be observed numerically is
shown in Eq. (18). As shown by Eq. (18), the buildup of
the above-created radiation will exactly cancel the soliton
motion, causing thc sollton to seem to hang motionless.

One can also explain this by considering the various time
scale involved. In a Taylor series expansion as in Eq. (18),
one is implicitly considering the response of the system on a
very-short-time scale, at least faster than the time required
for a signal to cross the width of the soliton. On such a
short-time scale, for example, the left side of the soliton
will not know what has happened on the right side of the
soliton. Thus whatever happens on the right side cannot ef-
fect the left side. Thus each element of the sine-Gordon
field will respond independendy of all other elements. To
make this clearer, consider now Eq. (1) on this short-time
scale, and in the rest frame of the soliton. Since we start
with an equilibrium state, we have u —sinu =0, at least on
this time scale, which leaves only
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