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A configuration-space pseudopotential„which is closely related to that used by Aldrich and Pines

to describe the effective interaction between background particles in He and He, is constructed and

used to calculate the roton-roton scattering amplitude. From that amplitude we obtain a theory that
is completely congruent with the roton-liquid theory of Bedell, Pines, and Fornin. %e calculate
two-roton bound states, roton-liquid parameters, and roton lifetimes, as well as information about

the hybridization of the two-roton bound state with excitations of higher and lower energy. Excel-
lent agreement between theory and experiment is obtained for the 1=2 bound state at zero pair
momentum, the roton lifetime, the roton contribution to the normal-fluid viscosity and the normal-

fluid density, and the temperature variation of the roton energy. The effective roton-roton coupling

parameters at large pair momentum are found to be an order of magnitude larger than those for
small or vanishing pair momentum. At SVP we find that a substantial number of two-roton bound

0

states of varying symmetry exist for pair momentum up to -3 A '; at standard pressure, however
0

the roton-roton interaction for momenta —1 A is found to become repulsive, so that both the

I =2 bound state at zero pair momentum and bound states at intermediate momenta are predicted to
disappear under pressure.

I. INTRODUCTION

Since Landau' proposed the phonon-roton spectrum to
explain the thermodynamical properties of superfluid He,
great effort has been made to provide a microscopic
derivation of that spectrum. After the pioneering work of
Feynman and Cohen ' the proposed excitation spectrum
was verified by neutron scattering measurements.
More precise neutron scattering experiments revealed
many new details (see Fig. 1), such as

(i) the existence of a second branch of the excitation
spectrum, located at higher energies than the phonon-
roton branch, and

(ii) saturation of the spectrum for large momenta at
about 26, where 6 is the roton energy.
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For wave vectors less than approximately 2 A ', the
lower branch may be thought of as corresponding to the
excitation of a single quasiparticle from the condensate,
while the upper branch corresponds to exciting two or
more quasiparticles from the condensate. The satura-
tion of the lower branch at momenta -3 A was ex-
plained by Pitaevskii as resulting from roton-roton
scattering.

Following the discovery by Gleytak and Yan I a Ra-
man scattering experiment of structure in the vicinity of
25, Ruvalds and Zawadowski, and independently Iwamo-
to, ' suggested that the roton-roton interaction was attrac-
tive and that this attraction would lead to a two-roton res-
onance or bound state, which couM explain the Raman

FIG. 1. Schematic depiction of the observed excitation spec-
trum of superfluid He. The spectrum suggested by Landau is
shown by the dotted line. The hybridization between the two-
roton branch with approximate energy 2A and Landau's spec-
truxn results in two branches. The lower branch starts at
E(E =0)=0 and is shown by the solid line. At larger momenta
the solid line Inerges into the shadowed area characteristic of the
roton pairs. The upper multiparticle branch has the two-roton
nature at smaller momenta, but around the hybridization point
changes its character in such a way that its mean energy ap-
proaches the free particle energy q /2m with a breadth which is
a considerable fraction of its mean energy. The shadowed re-
gion represents the range in energy of the multiparticle branch.
The position of the center weights of the shadowed areas are in-
dicated by points. The energy is shown on temperature scale.
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scattering experiments of Greytak and his collabora-
tol's, ' Rs well Rs niaklllg R slgIllficallt contrlbutlon to thc
two excitation branches observed in neutron scattering ex-
periments. ' ' They further argued that hybridization of
the two-roton resonant or bound states at momenta
-2.5 A with excitations thai lie at higher and lo~er
energies plays a significant role in determining the results
of the neutron scattering experiments.

Quf princ1pal aiID 1Q th1s pRpcx' 1s to dcvclop a theory
which is capable of describing these and other major
consequences of roton-roton interaction. These include
the following:

(1) The existence and binding energy of two-roton
bound states as a function of roton pair momentum.

(2) The temperature dependence of the roton energy
and lifetime, which Mezei, ' using spin-echo neutron
scattering techniques, has determined to a high degree of
RccUI'Rcy and which arc dctcrm1ncd by Ioton-I'otoIl 1Q-

teractions at T & 1.0 K.
(3) The temperature dependence of the normal fluid

density p„, at T & 1.4 K.
(4) Transport coefficients of He in the temperature re-

gion (T) 1.4 K) in which roton interactions play a dom-
1nallt role.

(5) The phenomenological parameters of the roton-
liquid theory developed by Bedell, Pines, and Fomin' as a
Bose-hquid analog of Landau's theory of Fermi liquids.

(6) Neutron scattering experiments at momenta
greater than approximately 2.5 A

There is some redundancy in this list, in that for
1.4&T&1.8 K, the viscosity and thermal conductivity
are determined by the roton lifetime and energy, while the
temperature dependence of the roton energy and the nor-
mal density are determined by the two lowest-order
phenomenological parameters of roton-liquid theory.

Our bas1c approach 1s to descr1be roton-Ioton 1nterac-
tion by a pseudopotential that is closely related to that in-

troduced by Aldrich and Pines' ' in their polarization-
potential approach to the calculation of the phonon-
maxon-roton branch of "He and the density- and spin-
fluctuation excitation spectra of He. Aldrich and
Pines have shown that the density-fluctuation excitations
in He and "He have a common origin in the force on a
given quasiparticle arising from the average self-consistent
fields of the other particles, and that this restoring force
can be calculated from a configuration-space pseudopo-
tential that has the following properties:

(i) It is repulsive for r & r„attractive beyond.
(11) T11c Rttl active pREt of tllc illtcl'Rctloll ls ldcn'tlcal to

that for baI'e He atoms.
(iii) The repulsive part is a soft-core interaction, whose

strength at the origin, a, can be determined from the
known spatial average of the pseudopotential.

Wc RI'guc that S1ncc rotons arc essentially cxc1tcd Hc
quasiparticles, their interaction should be describable by a
similar kind of pseudopotential.

OU1 pscudopotcntlal thus Ilas only two Rd)ustablc pa-
rameters; these are chosen to obtain a fit to the experimen-
tally determined binding energy in the I =2 channel of ro-
ton pairs of net momentum zero, and the I =0 interaction
parameter of roton-liquid theory B.oth thc pscudopotcn-
tial and the resulting scattering amplitude are found to
possess a great deal of structure, a requirement which had
been anticipated in the pioneering calculations of Fomin
and Tutto. We use our two-I'oton scattering amplitude
to calculate the aforementioned consequences of roton-
roton 1ntcl ac't1on with IcsUlts wh1ch Rrc 1Q cxccllcnt
agreement with experiment.

The paper is organized as follows: In Sec. II we give a
brief review of theoretical and experimental work on two-
roton states; because no recent review article on these
states is available, we consider in some detail the interplay
between bound states and the scattering amplitude, as well

as between Raman scattering and neutron scattering ex-
periments. Section III and the Appendix are devoted to
the formal machinary required to calculate, via the
scattering amplitude, the physical consequences of a given
roton-roton pseudopotcntial. In Sec. IV we discuss the ex-
tent to which parameters that fix the roton-roton pseudo-
potential may vary, and we give the "best-fit" values for
that interaction at saturated vapor pressure (SVP). In Sec.
V we use the pseudopotential to calculate the two-roton
bound-state energies as a function of pair momentum for
various angular momentum channels, thc I'oton-11quld pa-
rameters, and the roton lifetime; we also give our results
for the way in which the pseudopotential and properties of
the two-roton states vary with pressure. In Sec. VI the
role of the two-roton spectrum in the neutron scattering is
discussed briefly, and in Sec. VII we give our concluding
remarks. The Appendix is devoted to the computational
details related to the vertex functions.

The importarice of tile roton-roton scattering was first,
pointed out by I.andau and Khalatnikov' who showed
that it provides an explanation of the temperature-
independent part of the viscosity of liquid He observed
above —1.4 K. Here the dominant thermal excitations are
the rotons; since their lifetime r is determined by roton-
roton scattering, it is inversely proportional to the density
of thermal rotons. Hence the roton contribution to the
viscosity, which involves the product of that density and
r, is independent of the temperature. Landau and Khalat-
nikov used the Born approximation to predict the strength
of the roton-roton scattering from the experimental value
of the viscosity.

Ten years later, Pitaevskii showed that roton-roton
scattering could explain the saturation of the lower branch
of the excitation spectrum at large momenta, which had
been established by neutron scattering experiments. ' He
further showed that if the roton-roton coupling were
repulsive, there would be an end point of the spectrum at
some critical value of the momentum and at energy 2b, .

The first direct measurement on the two-roton spec-
trum was performed by Grcytak and Yan, ' who used Ra-
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man scattering to study the excitation spectrum of "He."
Under these circumstances the total momentum E of the
excited roton pair is almost zero. The shape of the ob-
served spectrum shows a strong deviation from the spec-
trum of two noninteracting rotons. Ruvalds and
Zawadowski and, independently, Iwamoto' suggested
that the anomalous line shape is due to an attractive
roton-roton interaction, which leads to the formation of a
bound or resonant state with an energy just below the
threshold of the two-roton continuum. Subsequently the
resolution of the Raman scattering measurements was
substantially improved, " while neutron scattering experi-
ments made possible a more accurate determination of the
roton energy b,(T). These experiments provide defini-
tive evidence that the roton-roton interaction is attractive
for small total momentum, and a two-roton resonance is
formed below the two-roton energy.

On the basis of the dipole character of the light scatter-
ing mechanism suggested by Stephens, ' one can easily
show that the roton pairs that are created must have angu-
lar momentum l =2. These pairs are not stable because (i)
single rotons possess a lifetime which is strongly tempera-
ture dependent and (ii) a roton pair may directly decay
into a phonon pair with the same energy, leading to a life-
time which is almost independent of the temperature.
At higher temperatures, the first mechanism is the dom-
inant one; therefore, Raman scattering data combined
with a theoretical expression for the line shape provides an
accurate determination of the single-roton lifetime. The
experimental results thereby obtained are in excellent
agreement with the neutron scattering data of Mezei. '

The comparison breaks down at lower temperatures as the
second mechanism becomes dominant. From his experi-
mental data, Mezei' obtained the following expression for
the temperature dependence of the inverse lifetime and of
the roton energy at SVP:
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FIG. 2. Dependence of roton lifetime ~(T ) and the tempera-
ture shift of the roton energy A(T) —6(0) are shown as func-
tions of the attractive roton-roton coupling strength g4~0.
Both quantities are normalized by the temperature-dependent
factor ~T exp[ —6( T)/T ], which is proportional to the
thermal density of rotons. The dotted lines indicate the results
of Born approximation (BA) and Hartree-Fock approximation
(HF), respectively. The normalized inverse lifetime T (T )

saturates at large coupling as pointed out by Yau and Stephens
(Ref. 22). The energy shift measured is negative; thus only with

~
g4

~

& 1.5 X 10 erg cm3 is one able to get the correct sign of
the energy shift. Considering both quantities, the maximum
available values are —„of the experimental ones [see Eqs. (2.1)
and (2.2)]. Thus several scattering channels are required to
describe the experimental values. If a channel contributes to
both quantities in an essential way, then the coupling strength
must be in the shadowed areas. (Note that the coupling I used
in the paper is I =2g4. ) The curves have been calculated by
Tutto (Ref. 24).

1 b,(T)
2r„(T)

=47V T exp (2.1)

A(T) —6(0)= —19' exp
b,(T)

T (2.2)

where all the quantities are given in units of K and at
SVP.

What do these experiments tell us about the roton-roton
interaction? First, as noted above light scattering provides
information about the interaction in the limit of very
small roton pair momenta E-0 and in the l =2 channel.
On the other hand, the roton lifetime is mostly influenced
by pairs of momentum K-1.5po, 3 Yau and Stephens
pointed out that a local (structureless) roton-roton interac-
tion leads to a single-roton decay rate which is only about
4 of that observed. Similar conclusions have been drawn

for the decay rate of the roton pairs which form the two-
roton resonance. [In this case, the rotons are not on en-
ergy shell, so that the imaginary self-energy ImX(co), with
off-energy-shell values of co, plays a role.] This failure to
explain experiment indicates that the strength of roton-
roton scattering estimated by Landau and Khalatnikov'
is too strong for the Born approximation to be applicable.

A similar situation arises with the temperature-dependent
shift of the roton energy b,(T), ' which, like the roton
lifetime, depends upon the roton-roton scattering ampli-
tude. When one goes beyond the Born approximation to
calculate this scattering amplitude, and then attempts to
fit the roton lifetime and energy shift, one finds that no
matter what coupling strength one assumes for a contact
(local) interaction, one cannot obtain a fit to experiment.
This situation is illustrated in Fig. 2 which we take from
the work of Tutto. The lessons of Fig. 2 are thus two-
fold:

(1) It is not sufficient to use the Born approximation to
calculate the roton-roton scattering amplitude.

(2) In calculations of the scattering amplitude that go
beyond the Born approximation, it is essential to work
with a nonlocal roton-roton interaction.

We further note that the roton energy shift is negative, as
is required by experiment, only in a narrow range of cou-
pling strength.
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These considerations led Fomin and Pitaevskii ' to
examine the conditions imposed by experiment on the
structure of the roton-roton interaction. The symmetry of
a roton pair depends upon the pair momentum K. At
K=O there is an exact rotational invariance in momen-

tum space. At finite K, the only exact symmetry is rota-

tion about the axis of K. Therefore for E =0, the total
angular momentum l is a good quantum number; it must
be even because of Bose statistics. At small pair momen-

tum, K «po, the rotational invariance is weakly broken;
thus the (2l+I)-fold degeneracy is split, and the states
can be characterized by the azimuthal quantum numbers

m =0, m =+ I m =+2, . . . , m =+/, where the relevant

axis is parallel to K. For large pair momenta (E &po), a
different symmetry emerges. Consider a roton pair with
momenta on or near the roton sphere of radius po as
shown in Fig. 3. In roton-roton scattering, this pair

(p~, pq), whose momenta are inclined at some angle 0, is

scattered to another pair (p3, p&) state; as long as the latter
pair are also on or near the roton sphere, the angle be-

tween p3 and p4 is approximately also given by 0. In ad-

dition to the angle 0, each pair may be characterized by an
azimuthal angle P, the angle between the projection on the

plane perpendicular to K, momentum of one of the ro-

tons, and some axis in that plane (see Fig. 3). The symme-

try of the wave function with respect to its dependence on

P can be characterized by an azimuthal quantum numberI again. The Bose character of rotons is reflected in the
dependence on P in the wave function, if one assumes that

the dependence of the pair wave function on the absolute
value of the single-roton momentum p& is smooth and
that it does not have a zero near the roton sphere. For the
roton pairs which are of physical interest, m takes only
even values, as first shown by Fomin. The scattering can
then be described in terms of the scattering angle 4 be-

tween the two planes determined by the momenta of the
roton pairs before and after the scattering, respectively

(see Fig. 4). In the crossover region between small K and

FIG. 4. Momentum space description of the scattering of a
roton pair (p&, p2) into another pair (p3, p4). The total pair
momentum E is conserved. The angle P between the planes
formed by the momenta before and after the scattering is shown.

K-po, the roton-pair wave functions possess no addition-
al symmetry; the description of roton-roton scattering is
rather complex, and one finds both odd and even values of
m appearing.

Following Pitaevskii and Fomin, the possible momen-
tum dependence of bound states is illustrated in Fig. 5,
where at small momenta two bound states are depicted
with I =2,4 with splitting according to m; furthermore, at
large momenta there is not more than one bound state for
each even m. Finally, the intermediate region is extrapo-
lated. It is important to point out, however, that bound
states with the same I cannot intersect; thus for a given
m only the lowest lying bound state at E-0 can continue
to the larger momentum region. The different scattering

wo -roton contInuumrr'r'rrrrrrrrr

~ ~ ~ ~ s s m O
m=+2
m=+4
m = oclcl

FIG. 3. Momenta pl and p2 of a roton pair with total
momentum K are shown. The momenta p~ and p2 are near the
roton sphere. The possible positions of the momenta are indicat-
ed by the dotted circle. The angle between the momenta is
denoted by 0. The wave function of the pair with total momen-
tum K depends on the angle P and the absolute values of mo-

rnenta p~ and p2.

FIG. 5. Schematic depiction of the momentum dependence of
the different two-roton bound-state energies, following Pi-

taevskii and Fomin (Ref. 27). At momentum E =0 the bound

states are characterized by the total angular momentum (I even).

At finite momentum K the degeneracy is split. In the large

momentum region the bound state is labeled by a single azimu-

thal quantum number (m even). The dispersion curves with dif-

ferent
~

m
~

are indicated by different lines given in the figure.

The dispersion of the bound states with m odd starts at K =0
and at larger momenta those quickly merge into the two-roton

continuum. The curves shown are schematic; the angular mo-

menta I =2,4 are chosen as an example. It is important, howev-

er, to note that the dispersion curves with the same symmetry

cannot cross.
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channels characterized by I =0, +2, +4. . . Contribute 1Q-

dependently ' to the hfetime and temperature-dependent
energy shift of the rotons. Considering the shadow region
IQ Flg. 2, the coQclusioQ can bc drawn thRt at least scvcIl
channels are required to explain the experimental data
given by Eqs. (2.1) and (2.2). Thus the coupling strengths
must be in the narrow shadowed interval shown in Fig. 2
if only seven channels contribute.

Additional information about the roton-roton interac-
tion comes from neutron scattering experiments. Neu-
tron scattering is the only experimental technique which
provides direct information about roton pairs of compara-

tively large net momentum, K. Since only s-wave scatter-
ing of neutrons by the nuclei of the He atoms plays a sig-
nificant role, that information is restricted to the m =0
channel of the roton-roton interaction. (Put another way,
the excited roton pairs must be structureless in momen-

tum space for rotations about their net momentum K.)
As Tutto Rnd ZR%'ado%'skI have cIIlphasIzcd, where hy-
bridizatioil of tliis two-ro'toil state (witll eitllei the siilgle-

particlc states which 11c bclo% 1t oI thc multiparticlc states
which lie above it) plays an important role, the effective
roton-roton coupling constant in the m =0 channel can be
significantly modified. As we discuss in further detail in
Scc. VI, cv1dcncc that thIs 1s thc cofI'cct phys1cal p1ctUrc
comes from the fit to the neutron scattering data carried
out by Smith et al.

These results impose a number of constraints on the
form of the roton-roton interaction. Previous theoretical
attempts to obtain this interaction have tended to focus on
comparatively isolated aspects of the consequences of the
interaction (e.g., the I =0, 1 =2 bound pair states at
E=O, or the m =0 states for large pair momen-
turn ' ); to our knowledge there has been no prior at-
tempt to pursue all the relevant consequences of the in-
teraction„ including of course, the existence of bound
states at E =0 WIth quantum numbers I P 4, Rnd thc
momentum dependence of the m =0 component of the in-
teraction. For example, because the I =2 bound state at
E=0 corresponds to an effective coupling that is weaker
by almost an order of magnitude than those of higher an-
gular momentum, theories that focus on deriving this en-
ergy from an effective weak attractive interaction, such as
the phonon-induced interaction between rotons, ' even
though apparently successful, have obviously neglected
the much larger attractive terms that are responsible for
binding in l &4 states and for the observed lifetime and
temperature-dependent energy of the rotons. (Thus we
shall scc 1Q Scc. IV that this phonon-Induced IntcractIon Is
alIIlost an ox'dcr of IIlagnltud sIIlallel than tjle direct 1Q"

teraction we introduce there. )
Attempts have also been made to derive the effective

roton-roton interaction from an equivalent weak coupling
theory, IQ whIch thc bale vcftIccs afc cxpIcsscd 1Q terms
of the observed static structure factors, along the lines of
the calculat1ons of the excitation spectrum by Feenberg,
Sunakawa, and their collaborators. "" It has, however,
proven difficult to get the -resultant couplings to have the
correct amplitudes and signs, as is evident from the results
obtained &om the most successful effort of this kind, that
by Carballo and Ruvalds, who took the effective interac-

tion to be a combination of a hard core and an attractive
square well. A quite different approach has been taken by
Roberts and l3onnclly, who adopt Bs 8 starting point 8
semiclassical treatment of roton interaction as that be-
tween classical point dipoles. While their numerical re-
sults are not far from experiment for some of the parame-
ters they calculate, it appears difficult to connect their
work with prior theoretical work, in which the starting
point is a quantum treatment in terms of roton-roton
scattering RIIlplItudcs.

In what follows, then, we shall attempt to be guided in
our choice of a pseudopotential by both the need for con-
s1dcIRblc stluctUI'c in thc 1Qtcractlon Rnd by thc impor-
tance of being able to fit, at one and the same time, bound
state and those aspects of the roton-roton interaction that
are sensitive to interactions in higher momentum chan-
QCIS.

To establish thc conncctlon between ouf I'oton pscUdo-

potential and experiment, we must study the roton-roton

scattering amplitude and self-energy. Here we will be con-

cerned with the contributions of the rotons to the trans-

ports thermodynamics, etc. , pioperties of superfluid He.
The scattering states and bound states will involve ener-

gies that are much less than the roton energy 6 and quasi-

paftlclc momcnta that 81c close 'to thc foton momentum

go. Thc 1Qtcfaction bctwccn quaslpartIclcs can then bc
viewed as scattering on a sphere of radius po, the roton

sphere (see Figs. 3 and 4).

A. 8cthc-Salpctcr cqQstioG fox' thc lotoQ-roton
ScattCrIIlg RBd thC bIQdlIIg ClMX'glCS

In Fig. 6 we show the diagrammatic representation of
the scattering amplitude; the scattering geometry is de-

picted in Rg. 4. As shown, e.g., by Fomin, the Bethe-
Salpeter equation for the symmetrized scattering ampli-

tude I (kk K,
'E, ) ,in the neighborhood of the roton

IDIQ1muID 1s g1vcn by

P = —+kK
2

FIG. 6. Genex'alized two-roton —t&o-roton vertex I . K Is the
total momentum of the roton pairs and k (k ') is the relative
momentum of the incoming (outgoing) x'otons.
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II

r(k, k', K,E)=r(k, k', K)+-,f, r(k, k";K) I (k ",k ';K,E)
(277) E —e/ » —e ~ ~ +/5(K. —kf

(3.1)

with k = —,
'

(p/ —pq), k '= —,(p3 —p4), wh««= p/+ p2

=p3+p4. The energy ep is the experimental single-
particle spectrum which is given by the Landau spectrum
near po, &I

——ho+(p —po) /2//4, where p is the roton
mass. The energy dependence of the irreducible sym-

metrized interaction I (k, k ', K) has been ignored in Eq.
(3.1) since, if it exists at all, it will correspond to varia-
tions on an energy scale that is much larger than E—2A.
All momenta p;, i =1—4, are assumed to lie on the roton
sphere; hence the integral in Eq. (3.1) must be cut off.
The choice for the cutoff momentum will be discussed
later on.

1. Roton pair states with K=0

Here we note that since rotons are bosons the interactions
must be symmetric under exchange; thus only even partial
waves will be present in Eqs. (3.2a) and (3.2b). If we now
substitute Eqs. (3.2a) and (3.2b) into Eq. (3.1) and carry
out the angular integrations we find

II

I /(E)=1/+ 2 fdk", I / 0
I",(E),

2K E —2Ek + l 6
(3.3)

where, after making the approximation k" dk"=podk",
we can ignore the need for a cutoff in momentum space,
because any dependence of I / on the cutoff will be weak.

For a bound state to exist, I ~ must be attractive. %hen
l

To study the two-roton bound states at zero total
momentum we expand the interactions in a Legendre
series in the scattering angle Okk, which is the angle be-
tween momenta k and k' (or p& and p3). With all of the
momenta on the roton sphere, both 1 (k, k ';K= 0) and
I'(k, k ';K= 0, E) will depend only on the angle Okk, thus

r(k, k';K=0)= y (21+1)r/P/(cos&/k), (3.2a)
l(even)

I (k, k ';K=0, E)= g (21+1)I /(E)P/(cos8kk ) .
l(even)

(3.2b)

I

this happens the second term in Eq. (3.3) becomes much
larger than the first; we can therefore drop the first term,
and determine the binding energy e/ 2b——E —for the 1th
channel from

1 ) 2 " dk"=—2Po
I /

~ 27r e +(k" p )&/1/

The result is

(3.4)

2
Po gPo-"
4p 2-'

2

(3.5)

These results agree with the previous calculations (see Ref.
12, where the notation I '=2g4 is implied). Bound states
of two rotons with relative angular momentum 1 =2 have
been observed by Greytak and Yan.

and

I'(k, k ';K )= g I (K)e'
m(even)

(3.6a)

r(k, k ';K,E)= g I (K,E)e'
m(even)

(3.6b)

For finite K we make a change of variables in Eq. (3.1),
setting

~ p
"

~

=
~

K—k "
~

. By integrating over P we find
an integral equation for each azimuthal channel,

2. &oton pair sta-tes with K+0
Let us turn to the Bethe-Salpeter equation (3.1) in the

case of K&0. The solutions we obtain will be used to cal-
culate the self-energy and the bound states with K&0.

For finite total momentum K we can obtain a solution
for Eq. (3.1) by expanding the vertex in a Fourier series in

(See Fig. 4 for definition of P.) With all momenta on
the roton sphere, Eq. (3.1) reduces to a set of uncoupled
integral equations for each m channel, where m is the pro-
jection of the angular momentum K. Expanding the in-
teractions on the roton sphere (p; =pc for i =1—4) in the
azimuthal channels m we have

I (K,E)=1 (K)+ f dk" f dp" p r (K)
2K po pc 277 po pc 27' E —gp —g +i$k" p"

I ~(K,E), (3.7)

where K =
~

K
~

and p, is a momentum cutoff. The ener-

gy denominator in Eq. (3.7) is given by

2 2E —ek- —e -=g —x —yp

where g=E —260, x =(k"—po) /2/M, and y =(p"

To look for the possible bound states, with binding en-
ergy, e~(K), we can drop the imaginary part of the
denominator (since E Ek e& &—0'). —The solution of Eq.

(3.7) is then

I ~ (K, E =2ho+ g)

=r (K)
2&cr (K)ln

4m.K
(3.8)

which, for the case of negative r~(K), yields a binding en-
ergy
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e~(K) =2x, exp (3.9)

where we have taken into account that
x, =p, /2p»e (K). This result likewise agrees with the
previous calculations (see Ref. 12 and the note that
r =2g4).

B. The roton self-energy

Z(p, E'-) = -r(p, p') =

To determine 5( T ) and r( T ) we must calculate the ro-
ton self-energy X(p,e). The real part of the self-energy
evaluated at

~ p ~
=pa and a=4 will determine A(T).

From the imaginary part we obtain r(T), which also
determines the roton contribution to the transport proper-
ties of superfluid He. Expressions for the roton self-
energy have been derived by a number of au-
thors, ' ' ' who find that it can be expanded in the
number of rotons, where to first order in the number of
rotons we have

d3 I

X(p,co)= I (p, p ';E =co+@,)n(ep ), (3.10)
(2')

where

n(e )= I
e /k~T

8 —1

is the roton distribution function. The diagrammatic
structure of Eq. (3.10) is shown in Fig 7. .

The scattering amplitude in Eq. (3.10) is the limit of
I (k, k', K,E) in Eq. (3.1) with q=p~ —ps ——p4 —p2 ——0.
Here, for convenience, we have introduced the variables

p = p~
——p3 and p '= pz

——p4 with K= p+ p ', so that the
scattering angle /=0; thus I'(p, p';E)= g I (K,E)
[see Eq. (3.6b)j.

We now consider the choice of a cutoff and the energy

dependence of I (K,E). An energy cutoff x, =p, /2p is
introduced in order to separate the integral into terms that
are near po and far from po. A natural choice for this
cutoff is to use the point at which the true quasiparticle
spectrum deviates from the Landau spectrum

ez ——5+(p —po) /2p. Experimentally this occurs at an
energy which is approximately half-way between the roton
momentum po and the maxon momentum p&-1. 1 A

This was the value used by Zawadowski et al. ' in their
study of bound states at finite K. The corresponding
momentum cutoff is p, /po-0. 19 at all pressures. This
choice is consistent with experiment, since Dietrich
et al. find that at all pressures the Landau spectrum
fits the experimental spectrum in the range

~
(p —po)/po ~

&0.17 to within 10% at the end points.
The corresponding energy cutoff is approximately given

by x, =5—5& at all pressures, where 6& is the maxon en-

ergy.
In order to calculate X(p, co) given by Eq. (3.10), we

must solve the Bethe-Salpeter equation (3.7) for g&0. It
is straightforward to integrate Eq. (3.7) to obtain ' '

I (K,E =26,+g) = I (K)

pp ' 2
1+ im. +in I (K)

(3.11)

where x, =p, /2p »g has been used. It should be noted
that the solutions given by Eq. (3.11) are valid only for not
very small K (K »0. lpo). ' However, the important re-
gion of K values is —,pa &K&2po, ' thus we can use

Eq. (3.11) for all K.
We further note that in general I 0(K) must be

corrected to take into account effects associated with hy-
bridization. ' Such corrections will be discussed in Sec.
VI in the context of neutron scattering. Since these
corrections exist only in the channel m =0, these will not
affect our calculations for b, (T) and r(T) in an essential
way.

The expression (3.10) for the self-energy can be further
simplified if we make Fomin's approximation of replacing
the energy variable E by co+kz T. To justify this approxi-
mation, we note that in the integration over p' in Eq.
(3.10) the important region is (p —po) /2p-ksT. Fo-
min, in his calculation of the transport properties of su-
perfluid He, showed that the approximation introduces
errors of the order pks T/po —1% in the viscosity coeffi-
cient. In order to make the calculations still simpler a
fixed typical value will be used for the temperature T in
Eq. (3.10), such that throughout the temperature range
—,I „(T) «T, where I,(T) is the roton halfwidth, and
b,o

—b, (T) «T, where b,o A(T =0). These ——conditions
are consistent with the expansion to first order in the
number of rotons used in Eq. (3.10). We choose this tem-
perature as T=1.4 K and thus set /=1.4 K in our calcu-
lations for all pressures and all temperatures. The tem-
perature dependence of A(T ) or I „(T) will then come en-
tirely from the number of rotons X„(T).

pl

FIG. 7. Diagrammatic structure of the roton self-energy.
The circle with the line through it is the irreducible roton-roton
interaction.

C. Temperature dependence of 5

The energy ez is defined as the pole of the single-
particle Green's function,

(3.12)ReG '(p, e~) =@~ [e~+ReX(p, e~)]=0 . —

In terms of the moments I (K,E), the temperature
dependence of the roton energy 6 takes a very simple
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form. For b(T) we evaluate Eq. (3.12) at
~ p ~

=pa', we
find

6(T) =b 0+fON„( T),
where

~& 2

N, (T)=fdp' n(ez )
2~2

3/2 2

=2 i' (1+aepT ) v T exp
Po

2' p

(3.13)

(3.14)
0

where the constant +=0.52S A takes into account the cu-
bic corrections to the roton dispersion curve [see Eq. (20)
in Ref. 14]. The parameter fo is just the l =0 moment of
the roton interaction f, introduced by Bedell, Pines,

14
P P

and Fomin. The expression for fo in terms of I will

be given at the end of this section.

normalized vertex functions I taken at some charac-
teristic energy value. We have seen in our calculation of
the self-energy given by Eq. (3.10) that in taking the self-
energy at fixed energy co=A the energy dependence of the
vertex function 1 ~ can be ignored, provided one chooses
the correct characteristic energy to evaluate I . The
choice of the characteristic energy in principle depends on
the temperature, but in the temperature range
1.0& T &1.8 K this dependence is sufficiently weak that
one can take an average value T =1.4 K. This approxi-
mation is the basic ingredient of the roton-liquid theory,
which then shows a strong resemblance to Landau's
Fermi-liquid theory.

For completeness we give the expressions which relate
the roton-liquid parameters of Bedell, Pines, and Fomin'
to the renormalized scattering amplitudes I that we
have obtained from the Bethe-Salpeter equation.

The roton-liquid vertex f, and the diagonal value of
P P

the vertex I are related through

D. Roton lifetime f,=Rel (p, p ';E =26, + T), (3.18)

The imaginary part of I (E,E) determines the roton
lifetime, where

1

2r( T)
=—ImX(po, e~ +i5)

where T is taken to be T= 1.4 K [the vertex I (p, p ',E) is
introduced in Eq. (3.10)]. Because all rotons are assumed
to lie on the roton sphere, f, may be expanded in

P P
Legendre polynomials asf,= g fiPi(x), (3.19)

=N„(T)f g Iml (K, E+i5),
m(even)

(3.15)

where x =(p p ')/po. This can be connected with
Fomin's calculation of the viscosity by first noting that

2

Imr. (rC,E+m)= ""~r.(~,E) ~',E
f,= f dx'PI(x') g Rel (E,E),2l+1

m(even)

where E =2po(1+x').

(3.20)

where fi are the roton-liquid coefficients and
x =(p.p ')/po, (

~ p ~

=
~ p

'
~
=pa). Using Eq. (3.6b) for

I ~ in Eq. (3.18) and combining the inverse of Eq. (3.19)
with Eq. (3.18), one gets

EdE
dx =

Po

so that

1 Pp0

2r(T) 4

Here w is the scattering rate defined by

w=2 I ~ EE
uo

which enters into the viscosity g,

2Po 17I- W
15 p2

with A= l.

(3.16)

(3.17)

E. Connection with roton-liquid theory

The roton-liquid theory proposed by Bedell, Pines, and
Fomin' is based on the idea that thermodynamics of ro-
tons can be expressed by the roton number and by the re-

IV. ROTON-ROTON PSEUDOPOTENTIAL

According to Aldrich and Pines, ' a roton is an excited
quasiparticle of momentum -po, effective mass
-2.1M (M is the mass of a bare He atom) moving in an
attractive self-consistent field (=—2 K) produced by the
other quasiparticles in the liquid. It seems natural there-
fore to attempt a configuration-space description of roton
interaction, f(r), which is similar to the configuration-
space interaction devised by Aldrich and Pines' for the
effective interaction between an excited He atom and one
in the ground state, viz. , a long-range interaction that is
identical to that between bare He atoms, which becomes
repulsive at some radius r„as with the ground-state parti-
cles, we expect the short-range correlations brought about
by the strong short-range repulsive part of the bare in-
teraction will change the latter from its almost hard-core
behavior to a soft-core repulsion, such that the overall po-
tential possesses a well-defined Fourier transform. To the
extent that the transition from attraction to repulsion
occurs over a distance small compared to r„and the exact
form of the repulsion is of little importance, this potential
f(r) may be characterized by two parameters: r, and a, the
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strength of the repulsive interaction at the origin.
A second contribution to the roton-roton pseudopoten-

tial comes from the coupling of rotons to the He back-
ground particles, a process analogous to the phonon-
induced interaction between electrons in a metal or that
between He atoms in a dilute He-"He mixture. If we
write the basic He-roton interaction as

uqp a ap+q p
(4.1)

V,„,(q) = g ! u, ! 'y(q, O),
q

(4.2)

where X(q, O) is the static wave-vector-dependent suscepti-
bility of He. We use deformation-potential theory to ob-
tain the long-wavelength form of uq,

aa
lim uq(q) =
q 0 BN N

ms

mS2
(4.3)

on making use of the appropriate experimental value,
BEIBp=—b, /N. Since limq pX(q, O) = —Nims, we
find

where p is a He density fluctuation excitation, and the

operators a and a - act to destroy a roton of momen-
P a+q

turn p, create one of p+q, then to the extent that we con-
fine our attention to low-frequency processes on or near
the energy shell, the resulting induced interaction between
rotons (depicted in Fig. 8) will take the form

Given a model pseudopotential with Fourier transform

fq ——Jd rf(r)e'q'', (4.5)

we can calculate the irreducible symmetrized vertex,
1(p~, p2, p3, p4), defined through Eq. (3.1). Since rotons
are bosons the irreducible interaction must be symmetric
under exchange of the incoming or outgoing particles.
Thus

1(P& P2~P3 P4)=fq+fq' (4.6)

where q = p &

—p 3 and q
' = p &

—p4.
In calculating f(r) and fq we have used for the long-

range part of f(r) (r &r, ) a simple analytic potential
which has been constructed to fit the potential of Aziz
et al. ' shown in Fig. 9 within 3% accuracy

T ' 12 (6
roro

V(r) = '6
roa2, r) 3.4
r

0 0

(r in units of A) where, r0=2. 646 A, a& ——42.98 K, and
a2 ——33.4309 K. This was chosen for its simplicity and
ease in obtaining a Fourier transform. (For our calcula-
tions a more accurate potential is not needed. ) For the
repulsive part of the potential we use the same form of the
potential as that adopted by Aldrich and Pines' for He
and 4He,

8
rf(r)=a 1—

t'

PlS
lim V;„d(q)=——
q~O

(4.4)
At I' =0.0 the parameters a and r, of the pseudopoten-

At SVP, NV;„d(0)- —2.7 K; it is still smaller
( ——0.82 K) at melting pressure. As we shall see below,
these values are to be compared with the long-wavelength
result for the direct interaction between rotons, which is

N fd rf(r)=Nfo= —25 K

at all pressures. We therefore do not attempt to
parametrize explicitly the phonon-roton induced interac-
tion, (4.2), but instead take the view that in parametrizing
the direct interaction, f(r), we can include to sufficient ac-
curacy any effects of the induced interaction.

~ -20—

~ -40—

5.0 5.5 QQ
i ki s i I i i i i f

! r(A)

-8.0—

- t2.0—

FIG. 8. Diagrammatic representation of that part of the
roton-roton interaction, g4, which is mediated by a single excita-
tion. g3 indicates the interaction in which the roton emits or ab-
sorbs another excitation.

FIG. 9. Hehum potential used in the calculation. The poten-
tial used was a fit to the Aziz potential (Ref. 41), values for the
Aziz potential are shown as open circles. The fit is within a few
percent for r ~ 2.8 A.
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tial f(r) are chosen so as to yield the following.

(i) The experimentally determined binding energy of
the l =2 bound state for E =0, e~ 2 ——0.27+0.04 K.

(ii) The roton-liquid parameter fo determined by
Bedell, Pines, and Fomin' from fits to both specific heat
measurements and neutron scattering experiments on the
roton energy, Nfo ———9.7 K.

IO.O— P = 25.0 bars
I'

I

l.5 i2.0 (q/p )

In the course of choosing the best values of r, and a, we g
found that binding in the I =2 channel occurs for only a
limited range of r„ -Io.o

(in units of A), no matter what the choice of a. Within
this range of a given value of r„one can find a value of a
which yields the l =2 bound state. However, the require-
ment that one also obtain fo in agreement with experi-
ment uniquely determines both r, and a. Our best fit to
fo was obtained with r, =3.3 A and a=1.48 K. If, in-
stead, one takes r, =3.4 A and a= 1 48 K, one finds a fit
to the l =2 bound state, but Nfo is some 10% larger, be-
ing —10.7 K. The potential f(r) and its Fourier
transform fq are shown in Figs. 10 and 11, respectively.

In the He and He systems it can be argued that the ex-
act shape of the core used in Ref. 18 is not important
since the momenta studied, up to 2 A, do not signifi-

-20.0

-50.0—

FIG. 11. Fourier transform of the roton pseudopotential for
two pressures p =0.0 and p =25.0 bars. The q =0 value of the

potentials multip1ied by the density, Xfp, is the same for all

pressures above 5 bars, i.e., 1Vfq = —28.0K.

l.5

P= 25.0 bars

pP = O.o

I

2.5

50
40
30
20
IO

-IO—

p= 0.0

a o~is.o r (A)

I -0
45 r(A)

cantly probe the structure of the core. In the present
problem however, we are interested in momenta up to
2po-4 A '. These momenta certainly begin to probe the
structure of f (r) at short distances. However, the contri-
bution to the core to the Fourier transform f(q) is much
smaller than that of the region outside the core. For
P=0.0 the core region at

~ q ~

=0 is 12% of the tail re-
gion and is negligible for

~ qJ =0.5po. At melting pres-
sures it is about 30% when q =0 and becomes markedly
smaller for

~ q ~

=0.5po. It is plausible then to assume
that only the qualitative feature of a soft-core potential is
necessary and that the detailed structure of the potential
for r & r, is not significant.

-I.G— V. BOUND STATES AND
TRANSPORT PROPERTIES

-2.0—

-IG 0—

-l2.0—

FIG. 10. Roton pseudopotential f(r) for two pressures

p =0.0 and p =25.0 bars. The qualitative feature of decreasing

core radius and increasing core height with increasing pressure

is similar to that found in the He system. V(r) is the potential

shown in Fig. 9. The inset is given to compare the roton-roton

potential at p =0.0 bar with the polarization potential ( He) pro-

posed by Aldrich and Pines (Ref. 16) for the phonon-maxon-

roton spectrum of He.

Given f(r) and its Fourier transform fq, it is straight-
forward to use the expressions given in the Appendix to
calculate the moments of the irreducible interaction I,
scattering amplitude I, bound-state energies for various I
channels, roton-liquid parameters, and the roton lifetiIne
(or what is equivalent, the viscosity). Our principal results
are given in four tables and in different figures; we corn-
rnent on these briefly.

In Table I we present our results for the pseudopotential
parameter and bound-state energies at K =0. Inspection
of Eq. (3.5) shows that for a channel in which I—:2g4 is
negative, the binding energy depends on only the parame-
ters g4 (given in Table II), which characterize the expan-
sion of the pseudopotential in spherical harmonics (A6).
The pseudopotential was chosen so as to yield the experi-
mental bound state in the l =2 channel. Maximum bind-
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CoI'c radius
(A)

3.307

Core height
(K)

TABLE I. Pseudopotential parameters and bound-state energies in

cssUrc %f0
bars) (K.)

different angulaI HloHlentUQ1 channels Rt vanous pIcssulcs.

Bound-state energy for K =0 (&)
1=2 I=4 l=6 I=

0.27
ExpcrImcntal
0.27+0.04
No bound
state
No bound
StatC

No bound
stRtc

ing is achieved in the l =6 channel because it is this spher-
ical 11RI'IIlonlc wlllcll ls 111ost oUt of pllasc wltll f», lfl sUcll
a way as to minimize the contribution Inade by the repul-
sive part of f» (in momentum space) and to take max-
imum advantage of the attractive portion of this pseudo-
potential, as shown in Fig. 12. TheI'e is no binding in the
I =0 channel because the moment of f» that contributes
to g4 is positive. That there must exist substantial binding
in partial waves higher than l ~4 was known already
from the work of Fomin, Pitaevskii, and Tutto and
zawado%'ski; wc scc thRt QUI pscUdopotcnt1al has this
desired property. Our results are consistent with the
kinematic sum rule, (A9), which relates the spatial average
of the roton pseudopotential to a sum over g4. We find
that partial waves higher than 1=2 contribute a substan-
tial fraction (-97%) of this sum rule (which has contri-
butions from both even and odd spherical harmonics).

Given the quantities g4, it is straightforward to calcu-
late the azimuthal moments of the pseudopotential,
g4 (K)—:I (K)/2, from Eq. (Al 1). A given moment
g4 (K) contains contribution from both even and odd gI' s.
%c list in Table II moments up to m =8. We call the at-
tention of the reader to the very considerable amount of
palf momcntuHl structure pI'cscnt 1n each I channel~ as
displayed in Figs. 13(a)—(13d) for moments up to m =6.
The structure again refiects the structure present in our
pseudopotential. Thc major contributions to the viscosity
(or what is equivalent, the roton lifetime) come from the
various m channels for po &K &2po. * " It is interesting
to compare our calculated values of g» with Tiitto's esti-
mates of the channels and coupling required to obtain

RgfccITlcnt with experiment; thc lattcI' RI'c displayed Rs thc
shadowed region of Fig. 2. The m =0 channel is of par-
ticular importance because it determines the upper branch
1n ncutfon scattcflng cxpcfiIncnts. Wc dlscUss 1t below;
here we note only that in the immediate vicinity of
%=2+0, g4 chRngcs by Rn ordcI of IIlagnltudc, s1ncc Re-

cording to Eqs. (A9) and (A12a), g4(2po ) =fo
=—2g~10 3s ergcm 1, while g4(1.95po)= —2.0
~10 38 ergcm3. Th1s rap1d variation may be traced to
the way in which the various Pl(cos811) contribute to g4 in
the vicinity of Zpo. It comes about, in part, because we
have put all rotons on the roton sphere; if this restriction
1s abandoned, we cxpcct this stfUctUfc to bc SInoothed Qut.

%C note as well that our values for g4 are almost an or-I

der of magnitude smaller than those of g» (K), including

g» (K=O). Thus the coupling measured in the light
scattering experiments is almost an order of magnitude
smaller than that which plays a significant role in deter-
mining the roton energy shift and lifetime. The quantity

g~ (K =0) corresponds to an average of the roton pseudo-
potential in the equatorial region of the roton sphere (see
Fig. 3), while the quantity g4 contains contributions from
tllls pscudopotcnt1al which covcl tllc cIltlrc I'oto11 spllclc;
the latter is therefore smaller than the former, because the
"roton-sphere" contributions are, on average, both repul-
slvc Rnd Rttractlvc, RIld R considerable allloUIlf, of cancella-
tion takes place. For low pair momenta (K«po), the
latter average furnishes a more reliable estimate of the
coupling strengths, because in practice rotons occupy a re-
gion Ago-0. 2po afoUnd thc I'otoIl sphc1c, RIld coIlsc-
qUcntly thc equatorial avcragc docs not plovldc an accu-

g4
(10 erg cm )

+ 0.077
—0.106
—0.165
—0.247
—0.094

—0.75
—0.94
—0.99
—0.96
—0.40

TABLE II. Calculated roton-roton coupling parameters at zero pressure. Results are presented both
foI diffcrcnt angular ITlomcnta Rt E =0, Rnd for d1ffclcIlt RziITluthal quantuIQ QUIDbcrs %+0.

g4 (K =0.0) g4. (E =0.5po) gg (A = 1.5+0)I ori (10 erg cm ) (10 erg cm ) (10 erg cm

0 —0.68 —1.34
2 —0.89 —1.26

—1.08 —1.31
6 —0.93 —0.37
8 —0.36 —0.04
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Nfi (K),
P=O.O bars

Nfi (K),
P=5.0 bars

Nf, (K),
P=15.0 bars

Nft (K),
P=25.0 bars

0
1

2
3

3

Q Nfr
1=0

Approximate
sum rule

—9.78
—0.81
+ 9.5
—0.93

—2.02

2.73

—9.67
—0.7
+ 9.83
—0.35

—0.89

3.17

—9.18
—1.05

+ 12.47
+ 2.31

+ 4.55

3.78

—9.45
—1.48

+ 13.52
+ 4.35

+ 6.94

4.28
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FIG. 13. Roton-roton interaction g4 (E) as a function of the total momentum K for different m channels at (a) p =0.0 bars, (b)

p =5.0 bars, (c) p =15.0 bars, and (d) p =25 bars. The strength in the channel m =0 can be compared with the neutron scattering
data (see Sec. VI). The plots are not continued to the vicinity of X =2po, because the changes are very sharp. At K =2po, g4

=
fo, ——

which has a value fo ——26 K and g4 (2po) =0 for m &0.

fi is derived in the Appendix [cf. Eq. (A17)]; we see on
comparing the sum of the first four moments with l (2po)
that significant contributions to the approximate sum rule
must come from higher-order moments.

In Table IV we compare with experiment our calculated

values of the roton-liquid parameters, fo and f~, and the
viscosity, rl. The most recent measurement of the roton
contribution to the viscosity is that of Len and Fozooni,
who obtain good agreement with the results of previous
workers. Our pseudopotential f(r) was chosen so as to
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FIG. 14. Two-roton binding energy as a function of the total
momentum in different m channels. The plotted values for
E) 1.5 A ' are calculated from Eq. (3.9) with the cutoff de-
fined in the text x, =b, i —h. The splitting at small E is calcu-
lated using the formula of Pitaevskii and Fomin (Ref. 27), which
contains a single parameter, the roton mass p. In the
intermediate-momentum region (shadowed area) no analytic ex-
pression is available; therefore the curves of small and large E
are connected with smooth lines.

obtain good agreement with fp, which in turn determines
the shift with temperature of the roton energy. On the
other hand, fi and i) are "derived" quantities. The agree-
ment between theory and experiment for fi, which mea-
sures "roton-liquid" corrections to the normal fluid densi-

ty, and with the viscosity is seen to be quite good.
In Figs. 15(a) and 15(b) we present our results for the

roton energy and lifetime as a function of temperature.
The solid lines represent our theoretical calculations,
which use the roton number given by Eq. (3.14), our
adopted values of fp, and our calculated value of the con-
tribution made by our scattering amplitude to I,. Analyt-
ic expressions for these quantities are

Q(T)=24 72(1+0.0603Tii2)7 ii2

I„=41.6(1+0.0603T' )T' e
2

(5.1)

(5.2)

The good agreement with experiment for the roton energy
is to be expected, since we have chosen our pseudopoten-
tial in such a way as to mimic the value of fp used to
determine this shift. On the other hand, like the viscosity,
the agreement between theory and experiment for the ro-
ton lifetime below 1.4 K and above 1.8 K is a clear mea-

b,(T)) bp —T, (5.3)

where hp ——b, ( T =0). The upper limit for b, ( 1) is
represented by dashed lines in Figs. 15(a) and 17(a). The
results of Dietrich et aI. at high temperatures may be
seen to violate this stability condition both for p =0 and
for p =24.26 bars; further determination of 6 in this diffi-

sure of the success of the present theory. (Between 1.4
and 1.8 K, the viscosity is independent of temperature, so
that by calculating the viscosity accurately in this tem-
perature regime, we are guaranteed success in our calcula-
tion of the roton lifetime. )

We turn now to the results of our calculations at finite
pressures. Because light scattering experiments to deter-
mine the l =2 bound-state energy (if any) have not been
carried out, we cannot use the I =2 bound-state energy as
an input to our choice of pseudopotential. We therefore
choose our pseudopotential parameters in such a way as to
obtain agreement between our theoretical calculations and
the experimental values of the viscosity and fp as a func-
tion of pressure.

%'e permit both the range r, and the core height to
vary; we expect that as the pressure increases, the distance
at which the roton pseudopotential becomes repulsive will
likewise decrease, because the underlying quasiparticles
have a larger effective mass and hence less zero-point en-

ergy. Moreover, we expect the core height a to increase as
the radius r, decreases, because the rotons must then sam-
ple more of the underlying short-range repulsion between
He atoms. Our calculated pseudopotential at 25 atm is

shown in Fig. 10, while the core height and radius we
adopt at four different pressures, and the @=0 bound-
state energies are given in Table I.

Our results for g4 as a function of density are given in
Fig. 16. We predict that no I =2 bound state exists at
pressures greater than approximately 5 bars, while the
I =4, I =6, and I =8 bound states persist up to 25 bars.
The l =4 state possesses marginally greater binding than
the l =6 pair state at 15 atm. We expect the E depen-
dence of these bound-state energies to be qualitatively
similar to that depicted in Fig. 16.

In Figs. 17(a) and 17(b) the calculated temperature
dependence of the roton energy and of roton lifetime is
presented for @=24.26 bars. The experimental points of
Dietrich et al. are above the calculated curves. By using
roton liquid theory, Bedell, Pines, and Fomin' derived a
stability condition for the normal fluid density, which
provides the inequality

TABLE IV. Comparison of calculated and measured roton-liquid parameters and viscosity at different pressures.

Pressure
(bars) Theory

Nfp (K)
Experiment

Nfi/3 (K)
Theory Experiment

Viscosity (p poise)
Theory Experiment

0.0
5.0

15.0
25.0

—9.78
—9.67
—9.18
—9.45

—9.7
—9.7
—9.0
—9.5

—0.27
—0.23
—0.35
—0.49

—0.4
—0.33
—0.33
—0.8

12.7
14.3
17.1
19.1

12.5+0.4
13.8+0.4
16.5+0.4
18.7+0.4
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VI. ROLE OF T%'O-ROTON STATES

IN NEUTRON SCATTERING

As we have remarked earlier, neutron scattering experi-
ments provide a measure, through the dynamic factor, of
the strength of the m =0 component of the interaction of
a pair of rotons of momentum K. To the extent that the
two-roton contribution can be regarded as distinct in ener-

gy from the other parts of the multiparticle branch, or
from the single-particle branch, it may be written
schematically in the form9

O. l
S' '(K, co) Im

l g4 (K,co)F(K,c—o)
(6.l)

O.OI
I.O I.2

I I I

l.6 l.8 2.0 2.2
T(K)

where F(K,co) describes the propagation of two nonin-
teracting rotons, and g4 (K,co) includes not only the direct
roton-roton coupling we have considered in the preceding
section, but an indirect term associated with the coupling
of two-roton states to other components of the density-
fluctuation excitation spectrum. These latter, hybridiza-
tion, terms take the form, in second-order perturbation
theory,

FIG. 15. Calculated roton parameters as a function of tem-
perature at SVP p =0.0 bars. (a) The calculated roton energy
shift 60—h(T), where h(T =0)=hp. The experimental points
are taken from Refs. 13, 40, 45, and 46, respectively. The dotted
line represents the stability condition derived by Bedell, Pines,
and Fomin (Ref. 14), above which the roton liquid is unstable.
(b) Calculated roton halfwidth. The experimental points are tak-
en from Refs. 13, 8, 40, 45, and 46, respectively.

22g3
25 E(K)— (6.2)

where g3 is the strength of the vertex which couples the
two-roton states to other excitations of momentum K.
The physical processes responsible for this indirect in-
teraction are illustrated in Fig. 18. For low pair moinenta,
the excitations that couple most significantly to the two



PSEUDGPGTENTIAL THEGRY QF INTERACTING RQTQN PAIRS. . .

IO.O
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& Dietrich et al.

g4 f((K)=

I.O

FIG. 18. Diagrammatic representation of the roton-roton
coupling in the azimuthal channel I =0. The first term is the
direct coupling between rotons and the second one is the cou-
pling induced by an intermediate excitation of momentum K.
The two-roton single-excitation coupling is labeled by g3. It may
be noted that the phonon-mediated coupling shown in Fig. 8 is
incorporated in the direct coupling g4.

O. l

very short lifetime against decay into yet more multiparti-
cle excitations.

Thus we write

g4"(K) =gg ='(K)+g4" (K), (6.3)

O.ol
I.o

IO.O

I.O

O. l

I I

l.2 l.4

P = 24.26 bars
& Dietrich et al.

(b)

I I I I

l.6 1.8 2.0 2.2
T(K)

where g& ="(K) is the m =0 component of our previously
calculated direct interaction between rotons. We note that
the g3(q), depicted in Fig. 14 as the vertex for the scatter-
ing of a roton from state po to po+ q, accompanied by
absorption of an excitation of momentum q is identical to
g3 considered above; however, the interaction g4" (K) is
not the phonon-induced interaction considered at the
outset of Sec. IV (see Fig. 8) and which has already been
incorporated into g4

=
(K); in the present "indirect" in-

teraction, the intermediate states contain only a single ex-
citation of momentum K, energy Ez, while in th.e former,
intermediate states contain three excitations. We further
note that the additional coupling described by Eq. (6.2) is
present only in the m =0 channel; consequently, our cal-
culations of transport properties and energy shift would
require only slight modification, since these latter proper-
ties depend on a large number of m channels, many of
which, in fact, turn out to be large compared to the m =0
component.

As is evident from the above discussion, the sign of
g4" (K) depends on whether the excitations Ez of impor-
tance possess an energy that is greater or less than 2A.
We consider the two possibilities separately, and further
confine our remarks to these momenta which have been
studied in some detail experimentally.

O. OI
I.O

I I I

l.8 2.0 2.2
I

l.4
I

I.2
I

l.6
T(K)

FIG. 17. Calculated roton parameters as a function of tem-
perature at pressure p =24.26 bars. The plots are similar to Fig.
15. The experimental points are taken from Ref. 40.

roton state are the phonons of energy much less than 26;
for large pair momenta (K &3po/2) the continuation of
single-particle (phonon-maxon-roton) branch of the spec-
trum has negligible weight, ' and it is the multiparticle
excitations of energy Ez substantially higher than 26,
which couple most significantly to the two-roton state.
The latter have an average energy close to X /2M, and a

A. 2.7&X &3.3 A-'

Here, as we have remarked, E (K)» 2b, so that
g4" (0. As Tutto and Zawadowski have emphasized,
one cannot determine g4" and gz

=
(K) separately from

neutron scattering; however, from a fit to experiment
based on (6.1), it is possible to deduce g4 . Then, to the
extent one has an independent knowledge of gz

=
(K), one

can infer g4", and hence g3 from experiment. We give in
Table V values of g4 (K) that we have calculated from the
fit made by Smith et al. to their experimental results.
[Smith et al. did not, in fact, fit g& (K) directly, but list
values of g3, g&

=
(K), and Ez which fit their data, from
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Prcssure
(barS)

TABLE V. COUPHQg coQstRQts Rs R fUQct10Q of PMI IQomeQtUI 3Qd pI'cssUre. g4 ls obtMQcd from
neutron scattering experiments of Smith et al. (Rcf. 28) [wc have used the results given in A. J. Smith,
Ph.D. tllcsls, Unlvcrs1ty of Edlllbllrgh, 1977 (ullpllbllshcd)], as dcscrlbcd 111 tllc text. g4 ls takcll from
Fig. 13; the difference g~' =g4

' —g4
='

may originate in coupling induced by hybridization.

Pais' momcnta
COUPhQgS (A ')

1

1

1

15
15
15

24,2
24.2
24.2

eff
g4
m=0

ind
g4

eff
g4
m=0

ind
g4

eff
g4
m=0

lAd
g4

—1.75
—1.4
—0.35
—1.3

90
—0.40
—1.15
—0.7
—0.45

—1.5
—1.5

0
—0.86
—1.05
+ 0.19
—1.16
—0.90
—0.26

—1.75
—1.56
—0.19

—1.39
—0.90
—0.49

Error bM's ~0.4 1QdlcRtcd 1Q Rcf. 28

which values we computed g4 (E) using Eq. (6.3).] We
also list in Table V our values of g&™=0(E) calculated us-

ing our pseudopotential, and the value of g& which we
are able thereby to infer fmm Eq. (6.3).

We note that the values we obtain for g4" in this way
are negative (except for E=3.1 A ' at 15 atm) as is re-
quired since Ex & 26 throughout this regime. Thus
within the rather substantial uncertainties in the coupling
strengths given in Ref. 28 (hg-+0. 4), our calculated
values of g4™=0(E)are consistent with the results of the
neutron scattering experiments We .further remark that
the deduced decrease of gz" (found at all pressures) with
increasing pair momentum is likewise in accord with our
theoretical expectations; as E increases from 2.7 to 3.3
A ' the mean multipair energy (with which we may ex-
pect Ex to scale) increases by a factor of 2; thus if
E&-4h at E=2.7 A '.Rn.d -86 at E-3.3 A ', one
would have a change in g4" (E) of the correct order of
magnitude.

B. X=0.3 A '

Woods et al. have measured the neutron spectrum at
E=0.3 A ' with great accuracy; they find it exhibits two
mell-separated peaks corresponding to the single-excitation
spectrum at cnclgy 5 K Rnd thc two-roton Icsonancc at
—26. Thc spcctrUIn has been flttcd by Ruvalds Rnd
Zawadowski, using the formalism of Ruvalds ct al. '
From their results we extract a value of
gdf = =0.06+0.03+ 10 crg c111, 8 rcsUlt which ls Rn
order of magnitude sIDRllcr than thc cffcctlvc coUpllngs
foUnd Rt tbc laI'gcI' HloIYlcnta considered above. Wc fUI'-

ther note that in this momentum region, 26 —E~ ~ 0, and
hence g4 must be positive; hence the diIect interaction,
gq

= (E) must be negative, and
~ g4

=
~

& ~g,ff ~.
Gur theoretical calculations (see Fig. 13) do not, howev-

er, provide a reliable guide to the magnitude of gq
= (E)

fo E:—0.3 A . Thc I'cason ls that discussed ln the

preceding section, namely, that for small momenta one
wishes to average the pseudopotcntial over the equatorial
region rather than the entire roton sphere; our theoretical
calculations of g4

= (E) at finite IC, however, involve the
1RttcI' avclaglng ploccss and hence likely field 8 consldcl-
able overestimate of gq™=0. We anticipate that more accu-
rate calculations will yield results for both g4

=
and g~""

which are an order of magnitude smaller than their higher
K coUntcrparts, l.c., results which typicRHy Rrc —10
erg cm rather than 10 erg cm . In other words, we an-
ticipate that these quantities wiH be of the same order of
magnitude as our calculated values of gI. We also note
that according to Fig. 14, for small values of K, several
different bound states, each characterized by the same az-
Imuthal quantum I, are to be expected. The conse-
quences of this degeneracy for a neutron scattering experi-
ment remain to bc explored.

In conclusion we n,ote that our calculations predict a
two-roton I =0 bound state (arISIng solely as a conse-
quence of the direct interaction) for the pair momentum
region 1.5&E&3 A ', as of this writing it has not
proved possible to separate such a state from the broad
rnultiparticle continuum. Indeed, for E & 2.7 A
although experimental measurements exist, ' no theoret-
ical fit to the data which takes into account both the two-
roton component of the multiparticle branch of the excita-
tion spectrum Rnd thc slIlglc-cxcltatlon branch has been
carried out, apart from the fit made by Smith cr al. for
E= 1.1 A ' at pressures of 19 and 25 atm. We further
call the attention of the reader (and the experimental com-
munity) to the prediction of our theory that, in contrast to
our SVP results, at 25 atm the direct coupling, gq™ 0(E) is
posltlvc foI I KE &2.3 A, so that no two-roton bound
states RI'c to bc expected. The above-mentioned fits Rt
E=1.1 A ' in Ref. 28 for pressures of 19 and 25 atm
yield 8 repulsive coupling g4 —$.6&10 ergcrn,
which is larger than the value calculated by Us, A more
careful analysis of the data is required to draw a final con-
cluslo11, concernIng t11c slzc of gy
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VII. DISCUSSION AND CONCI. USIONS provide a definitive answer to this question.

The pseudopotential we have proposed for the roton-
roton interaction is a combination of a realistic He-He in-
teraction at large distances and a short-range repulsive
part. As a consequence it exhibits a relatively sharp at-
tractive peak at a distance just beyond the onset, at r„of
the repulsive part (see Fig. 10). It therefore resembles the

30phenomenological potential of Carballo and Ruvalds,
which was made up of two square wells, one repulsive,
another attractive. They correctly realized that the attrac-
tive part must be comparatively long range in configura-
tion space. The difference between their choice and ours
comes primarily from the fact that our attractive poten-
tial, although long range, varies rapidly with increasing r
for r ~ r„and hence exhibits sufficient structure to yield a
considerable number of bound states with different sym-
metry.

Let us summarize briefly the main results of our calcu-
lations based on this pseudopotential:

(i) A substantial number of bound two-roton states
of varying symmetry are found to exist for pair momenta
up to E-3 A

(ii) The observed I =2 bound state at K =0 is correctly
I'cpI'oduccd.

(iii) The effective roton coupling parameters at large
momenta (E-po) are an order of magnitude larger than
those for IC «po.

(iv) The calculated roton hfetime, roton contribution to
the viscosity, and the temperature variation of the roton
cnclgy Rlc 1Q good Rgrccmcnt w1th cxpcr1mcnt.

(v) The calculated roton-liquid parameters agree with
those deduced from experiment by Bedell, Pines, and Fo-
In1Q.

(Ul) By combining olli' tllcol'ctlcal results for thc I'otoll
scattcr1ng Rmpl1tude at X )po w1th tlM coupling paraIIlc-
ters deduced from neutron scattering experiments, we ob-
tain results for the phonon-mediated roton-roton interac-
tion (in the m =0 state) that are consistent with previous
estimates based on mode-mode coup11ng theor1es.

Fuithcr experimental work which would test specific
predictions of oui' theory Include the following:

(I) A Raman scattering search for the predicted disap-
pearance of the I =2, +=0 bound pair state at higher
pressure (cf. Fig. 16).

(11) Morc accurate higher pressure neutmn scattering
measurements of tllc energy and lifetime of rotons at tem-
peratures greater than approximately 1.8 K, in order to
resolve the present discrepancy between existing experi-
ments and the limits on b, (T) placed by stability condition
of roton-liquid theory on the one hand, and roton-
lifetirne measurements on the other.

(iii) Careful neutron scattering measurements of the
upper multiparticle branch of the spectrum for momenta
-po/2 to confirm our prediction that at pressures greater
than approximately 15 bars the roton-roton coupling in
this region will become repulsive. We note that the exist-
ing available data of Graf et al." have not yet been
analyzed from this point of view in sufficient detail to

Moreover, more detailed neutron scattering experiments
on the lifetime and shift with energy of the phonon-
m axon-roton branch for mom enta in the region
po/3 & q (po, to study the interaction of these excitations
with rotons, would provide insight into the extent to
which our pseudopotential theory of interacting rotons
can usefully be generalized to describe the interaction of
phonoQs Rnd maxons with I'otoQs.

In the course of choosing our pseudopotential, and the
cRlculat1ons made w1th 1t, wc have made ccrtR1Q RppI'oxl-
mations, the validity of which deserves further study:

(i) The repulsive part of our pseudopotential has been
assumed to be independent of the pair moment um„E.
Since it reflects a short-range scattering amplitude there is
no a priori reason why this approximation, which led to a
substantial reduction in the number of phenomenological
parameters we need to introduce, is so successful.

(ii) We have ignored, or incorporated into our pseudo-
potential, via the short-range screening of the bare interac-
tion, the interactions that are mediated by the exchange of
other excitations. While we have been able to justify this
approximation for small momentum transfers, the extent
to which it is appropriate for large momentum transfers is
less clear. The development of a better theory of hybridi-
zation, which should make possible a reliable estimate of
the "three-excitation" vertex gI, will be helpful in this
connection.

(111) Ill tllc dcllslty Rpploacll of Bogolillbov Rild Zll-
barev ' vertex corrections occur which modify the
roton-roton interaction by a factor which also depends
only on the momentum transfer. Our attitude toward
these corrections is that to the extent they play a role in
ouI' Rpp1oach, they have likewise bccn 1ncorpoIatcd 1n thc
short-range repulsive part of our pseudopotcntial.

(iv) We have used a momentum cutoff to restrict our
treatment to excitations of momenta sufficiently near pothat their dispersion can be described by a sum of qua-
dratic Rnd cub1c terms.

(v) In order to simplify the treatment of thc Bethe-
Salpeter equation for finite pair momentum K, such infor-
mation about the two-roton scattering amplitude along the
ring region shown in Figs. 3 and 4 was incorporated in the
irreducible interaction I . Thus j. was assumed to depend
only on the angle P also shown in Fig. 4. We have seen
that this appI'oximation is not appropriate for the momen-
turn region 0.5 ~E ~ 1.5 A. Fortunately, this region car-
ries a relatively small weight in our calculation of roton
transport properties.

Future theoretical work which leads to a better solution
of thc Bethe-Salpctcr cquat1on fo1 thc two-roton scattering
amplitude foI' pairs in the intermediate-momentum region
(0.3 (E& 1.5 A ') would be highly desirable. It would
also seem useful to develop a better theory of hybridiza-
tion of the two-roton bound or resonant states with excita-
tion of both lower and higher energy. We have begun
such calculations using the polarization potential theory
of Aldrich and Pines, ' in which mode-mode coupling ef-
fects may be explicitly calculated, given a physical model
fo«he coupled modes. Our goal is to calculate the
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APPENDIX

We here show how the unrenormalized symmetrized
vertex I (p Ip2, p3p4), which describes the roton-roton
scattering, can be expressed in terms of various moments
of the roton-roton pseudopotential f(r). In addition we
derive an approximate sum rule for the roton liqui-d pa-
rameters fI.

It is convenient to introduce relative momenta

k =—,(pI —p2) and k '= —,(p3 —p4); the momentum
transfers in the interaction mediated by pseudopotentials
are then

q '=k+4 ',
while Eq. (4.6) takes the form

I'(p&, p2,'p3, p4) =I (k, k ';K )

(A 1)=f--, +f--,l~ —k
l l]+k l

If we further restrict ourselves to the case of physical in-
terest in which all four excitations are close to the roton
sphere, i.e.,

~ p; ~
=pa, for all four roton momenta, then

1(p„p2 p3 p4) depends only on the angles 8I3 and 814 be-

dynamic form factor measured in neutron scattering in-
stead of the single-particle Green's function studied by
Ruvalds et al. ' Previous studies of the density-density
correlation function' ' have not placed sufficient em-
phasis on roton-roton interactions to make possible a de-
tailed comparison of theory and experiment for momen-
tum regions in which its consequences are significant.

Finally we believe it will be fruitful to study maxon-
maxon and maxon-roton interactions using the approach
developed in this paper, by describing these interactions
with a configuration-space pseudopotential of the same
general character (but with a somewhat altered range and
strength of the repulsive part) as that introduced here for
roton-roton interactions and to extend our present ap-
proach to describe as well the interaction between phonons
(i.e., excitations with momenta less than approximately
0.9 A ') and thermally excited rotons. Work is underway
along these lines as well.

tween (p I, p3) and (p3, p4), respectively, or what is
equivalent, on the angles 8 and P shown in Fig. 4. We
thus have

I (k, k ';K )=I (8,$)

=g (2l + 1)g4[PI(cos813)+PI(cos8I4)],
I

(A2)

1
g4 ——— cosOPI cos8 (A3)

and

=2p 0 ( 1 —cos813 )

=2p 0( 1 —cos8I 4) .

(A4)

The relationship between the variables L9&3 and 0&4, 0 and

P is given by

cos8I3 ———,
' (1+cos8) + —,(1—cos8)cosp,

cos8I4 ———,'(1 +cos8) ——,'(1—cos8)cosp,

(ASa)

(ASb)

or what is equivalent,

cos813 ——(K/2po) + [1—(E/2po)2]cosp,

cos814=(K/2po) —[1—(K/2po) ]cosg,

(ASc)

(ASd)

since the square of roton pair momentum,
K =

~ pI+p2~ =2po(1+cos8). Under exchange p~p
+ IT and cos813~os814 Eq. (A2) is even.

The quantities g4 depend only on angular averages of
the pseudopotential, which describe roton-roton interac-
tion and provide the basic input into expressions for the
roton-roton scattering amplitude and the physical quanti-
ties which depend upon it. We can rewrite our expression
(A3) as

2 2
q

g4 ——
2 dq qfqPI 1—

0 270
(A6)

in which form one sees that the l dependence of g4 arises
from different weightings of the pseudopotential fq in q
space via the geometric factor qPI(1 —q /2po). (See Fig.
12 for the q dependence of these weight factors. )

As discussed in Sec. II, light scattering experiments
provide information on the IC =0 limit of the irreducible
vertex, Eq. (A2). In this limit, one sees from Fig. 4 or Eq.
(A5c) that 813~$. Hence on comparing the E =0 limit
of Eq. (A2) with our earlier result, Eq. (3.2a), we obtain

I I=2g4 (for even l) .I

In other words, in this limit the moments g4 are
equivalent to the moments of the previously defined ir-
reducible roton vertex, and thus determine the binding en-
ergy eI of the two-roton bound state given in Eq. (3.5).

We can likewise obtain a simple expression for the spa-
tial average of the roton pseudopotential fo by taking the
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inverse of Eq. (A3),

fq
——g (2l + 1)g4Pt(cos8~3),

and passing to the q =0 limit. Since in this limit 0j3——0,
Eq. (AS) then reduces to

where Eqs. (3.1S) and (3.19) have been also taken into ac-
count. On the other hand, in the case of 8=0, p=p',
E=2po, the scattering amplitude is independent of P;
thus in expansion (3.6b) only the m =0 component is dif-
ferent from zero, and Eq. (A13) takes the simple form

gft=ReI o(E=2po, E=2b+T) .
fo =g(21 +1)g4 ~ (A9)

On making use of Eq. (3.11),we obtain
For finite E we expand I in the azimuthal angle [com-

pare Eq. (3.6a)],

I (E,P)= g I" (E)e' i'.
eg (even)

(A10)

If we compare the inverse of this equation with Eq. (A2),
we obtain (for even m),

I (E)= g(21 + l)g4 f cos(m(t )

Rel o(E =2po & =2b, +T)

8m
yo(2po) 1+ln

PPo

rr yo(2po)+ I+»

2x~
yo(2po)

2x~
yo(2po)

(A15)

X [&t(cos8ts)+Pi(cos8tq)]

=2+{2l+1)g4I cos(mtt )P&(cos8&3) . (All)
2nd/'

0
PPo — PPo-

yo(2po) = I"o(2po) = fo
8m 4m

(A16)

In the limit
~

K
~
~2po, which may be seen from Eq.

(A5c) to correspond to cos8&3——1, we find

I"o(2po) =2+ (2l +1)gq (A12a)

I' (2po)=0 for m~0.
For arbitrary values of E, the moment I (E) will have
contributions from all of the moments g4 with l )m. In
general we shall see that for smaller values of m there will
bemorestructurein I' (E). [See Figs. 13(a) and 13(b).]

Finally we derive a sum rule for the parameters intro-
dUccd bp Bcclc11, Pines, aI1d Fomin in thc1I' I'Oton-liqUid
theory. From the expansion of the renormalized vertex
function I given by Eq. {3.6b) we find for the vertex
I"(p, p ',E) in Eq. (3.10)

R Ie{p, p ';E =26+ T) = g Re[I (E,E =26+ T)]
m (even)

=&fioat
O'P

I Po

alld T= 1.4 K as dlscUsscd 1n Scc. III.
If now we combine Eqs. (A14) and (A15), we obtain the

SUIIl 1U1C

2
Sg t 2x~X yo (2po)+ln

ppo

graft=

2

2 —I 2x~
m + yo (2po)+ln

It should be emphasized that Eq. (3.11) is not exact for
E =2po, because in deriving it the expression popo/4mE
has been used for the two-roton density of states. As ro

becomes larger than 2b. the correct density of state devi-
ates from this result (see case C in the Appendix of
Zawadowski et al. ) Consequently our result (A17) is
slightly modified at E =2po, and the exact sum rule given
by Eq. (A14) is only approximated by (A17). To the ex-
tent that (A17) is valid, we find in Sec. V that the roton-
liquid parameters do not obey the sum rule (see Table III)
because the convergence of g&Xf~ is very slow.
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