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Semiempirical tight-binding band structures of wurtzite semiconductors:
A1N, CdS, CdSe, ZnS, and ZnO
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Semiempirical tight-binding electronic energy band structures of the following wurtzite
materials are reported: A1N, CdS, CdSe, ZnS, and ZnO.

I. INTRODUCTION

Recent studies of the electronic energy levels of
substitutional defects, ' interstitials, and surfaces in
zinc-blende semiconductors have demonstrated the
advantages of having a parametrization of the host
energy bands in terms of a nearest-neighbor empiri-
cal tight-binding theory. In this paper we pro-
duce an sp tight-binding model of the wurtzite
semiconductors A1N, CdS, CdSe, ZnS, and ZnO.

(a /W3, 0,c/2), (a /~3, 0,c/8), and (Q, 0,5c/8),
where a is the length of a hexagonal side and c is the
repeat distance along the z direction. The anions are
at t ~, and tq,' the cations are at t 3, and t~. The
reciprocal lattice, shown in Fig. 1(b), is also hexago-
nal. The direct lattice vectors are defined
as a =((V 3/2)a, ( —1/2)a, Q), b =(O,a, O), and
c =(0,0,c), and the rec~irocal-lattice vectors are
b, =((4m/V 3)/a, 0,0), bb —((2m/V 3)/a, 2m/a, O),
and b, =(0,0, 2m. /c).

II. THEORY

The wurtzite unit cell contains four atoms, two
anions, and two cations, as shown in Fig. 1(a). The
basis vectors t ~, t 2, t 3, and t & are (0,0,0),

A. The Hamiltonian

~e assume an sp basis centered at each of the
four atomic sites per unit cell, (namely, one s orbital
and three p orbitals per site), leading to a 16&X 16N

li I
I

I

(a)
FIG. l. (a) Hexagonal close-packed structure with four basis atoms, where 1 and 2 are anions, 3 and 4 are cations, with

basis vectors t
&

——(0,0,0), t &
——(a/V 3,0,c/2), t 3 ——(a/W3, 0,c/8), and t 4

——(0,0, 5c/8), respectively. (b) The reciprocal
lattice. The symmetry points of the Brillouin zone are I =(0,0,0), E =(2m/a)(1/W3, —,0), M=(2m/a)(l/W3, 0,0),
3 =(2m/c)(0, 0, —), H =(2m/a)(1/V 3, —,a/2c), I. =(2m/a)(1/~3, 0,a/2c).
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Hamiltonian, where N is the number of unit cells.
We limit the number of nonzero tight-binding pa-
rameters to one-center on-site integrals and nearest-
neighbor two-center integrals, as discussed by Slater
and Koster. We treat the four nearest-neighbor
atoms as equivalent, even though the crystal is not
cubic (this has a negligible effect on the energy lev-
els of localized perturbations ). The small crystal-
field splittings which differentiate between the p, or-
bital and the p„and py orbitals are neglected (they
are due to second-nearest neighbors and more dis-
tant neighbors). Thus the model has nine indepen-
dent parameters: the four on-site matrix elements
E(s,a), E(p, a), E(s,c), and:E(p, c) (where s and p
refer to the basis states, and a and c refer to anion
and cation), and five nearest-neighbor transfer ma-
trix elements V(sscr), V(spcr), V(pscr), V(ppm ), and
V(ppo. ), where the orientation of the p orbitals are
denoted by o and ~ (see the Appendix), and the first
(second) index refers to the anion (cation). In the
development that follows, we consider the true C3,
symmetry, so that the simplifications can be easily
relaxed, if desired.

For each wave vector k, we construct the follow-
ing Bloch-type linear combination of localized orbi-
tals

~
n, b, k)=N '/ g exp[ik. (R+ t b)]

~
n, b, R),

where
~
n, b, R) is a localized wave function centered

at the site R+ t b (b =1, 2, 3, or 4 for the four
atoms in a unit cell [Fig. 1(a)], and n =s, p„, p~, or
p, ). The crystal eigenstates are linear combination
of the above Bloch-type basis states,

X(n, b, 0 ~H
~
m, b', R) .

We have taken the overlaps of localized orbitals cen-
tered on different sites to be zero and we will now
assume that only the Hamiltonian matrix elements
between orbitals centered on the same atom or be-
tween nearest-neighbor atoms are nonzero.

In the
~
n, b, k) basis, the perfect-crystal Ham-

iltonian, using the C3„point-group symmetry of
each site, is the 16X 16 matrix

bib'
1

1 2 3 4

E 0 Hi3H4
2 0 E H)4 Hz4;.
3 H(3 H)g E 0

4 H)4 H24 0 E~

Each element of this matrix is a 4X4 matrix.
The on-site matrix for the anions (atoms 1 and 2) is

~
k, A, ) = g ~

n, b, k)(n, b, k
~
k, A, ) .

n, b

The corresponding Schrodinger equation in a
Bloch-type basis can be written as

g [(n,b, k ~H
~

m, b', k)
m, b'

—e(k, A)5~, ,~5b, b ](m, b', k
I
k, k) =0,

where we have

(n, b, k ~H
~
m, b', k)= gexp[ik (R+ t b

—t b)]

TABLE I. Nearest-neighbor tight-binding parameters (in eV) of AIN, CdS, CdSe, ZnS, and
ZnO. The off-site matrix elements (U's) are related to the zinc-blende V's of Ref. 6 as fol-
lows: 4U(s, s) = V(s, s), (4/3)[U(z, z)+2U(x, x)]= V(x,x), (4/3)[ U(z, z) —U(x, x)]=V(x,y),
( —4/V 3)U(s, z) = V(sa, pc), (4/V 3)U(z, s) = V(pa, sc). The relationships among the notation
used here for the wurtzite structure ( U 's and U"s), the zinc-blende notation, and the standard
notation for the two-center Slater-Koster (Ref. 5) approximation can be found in the Appen-
dlX.

A1N ZnS ZnO

E(s,a)
E(p, a)
E(s,c)
E(p, c)
V(s, s)
V(x, x)
V(x,y)
V(sa,pc)
V(pa, sc)

—12.104
3.581

—0.096
9.419

—10.735
5.808
8.486
8.092
9.755

—11.133
1.327
2.243
6.673

—2.214
2.976
4.512
0.936
4.516

—10.782
1.309
1.682
6.091

—2.016
2.824
4.324
1.101
3.988

—10.634
1.574
2.134
6.626

—4.904
3.229
5.168
0.357
6.240

—19.046
4.142
1.666

12.368
—6.043

7.157
10.578
4.703
8.634
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(s, 1
l

(p. I
I

(p. I
I

l
s, I)

E(s,a)

E(s,p„a)
0

0

E(s,p„a)
E(p„a)

0

0

Q

0

E(p„,a)

0

lpga I)
Q

0

0

E(p„,a )

where E(s,p„a) is taken to be zero and E(p„a)=E(p„,a) =E(p, a), in the approximation that the local envi-
ronment is tetrahedral ( Td instead of C3„see the Appendix).

The on-site matrix E for cation atoms 3 and 4 is the same in form as the above matrix E, except that c re-
places a everywhere.

The off-site matrices are H& 4,
——g3(k )M~ 4, H2 q ——g2( k)M2 4 and H~ 3

——g&( k)M& 3 where we have

TABLE II. Energies of band structures (in eV) at symmetry points.

ZnO CdS CdSe ZnS
Symmetry

points Present Others Present Others Present Others Present Others Present Others

L i3c

L24.

16.51
7.39
3.30
0.0

—1.52
—5.85

—20.68

15.53
9.05

—2.34
—2.44
—5.78

16.51'
7 39'
3 30'
0.0

—1.52'
—5.85'

—20.68'

12.89'
7 78'

—1.70'
—1.70'
—4.89'

13.0
8.92
6.2
0.0

—1.22
—7.10

—18.40

13.53
9.99

—1.87
—1.97
—7.52

13.0 '
8.92b, c

6 2b, c

0.0
—1.22
—7.10

—18.40

11.93 '
782'

—0.46
—1.65
—5.34b

8.0
4.5
2.6
0.0

—0.6
—2.7

—11.49

7.75
5.19

—0.93
—0.98
—2.70

8.0
4.5d

2.6'
0.0

—0.6d

27d
—11.49'

73d
5.2d

—0.9
—0.9
—2.7d

7.4
3.8
2.0
0.0

—0.6
—2.5

—11.1

7.10
4.48

—0.93
—0.98
—2.48

7.4d

3.8d

2.0d

0.0
—0.6d

—2.5
—11.1

6 7d

4.6d

—0.7
—0.7
—2.5

8.2
5.1

3.8
0.0

—0.8
—3.9

—12.3

8.71
5.80

—1.24
—1.31
—4.09

8.2
5.1

3.8
0.0

—0.8
—3.9

—12.3

70
5.3d

—1.1

—1.1

—3.9d

A)3,
256,
A)3,
~ 56v

A)3,

H3,
H3„
H~2

H3,

17.01

6.11
—0.79
—3.63

9.74
—2.30
—3.13
—5.82

14.0'

6.15'
—0.44'
—4.3'

8.3'
—1.48'
—2.37'
—4.59'

13.64
8.13

—0.64
—3.86

10.38
—1.84
—2.50
—7.88

13.36 '
9.06b, c

—0.69b
—4.12

9.96 '
0.15

—4.47
—4.54

8.31
3.86

—0.31
—1.63

5.49
—0.92
—1.26
—2.74

83
43

—0.3
—1.7

6.4d

—0.3d

—1.7
—2.5

7.71
3.20

—0.31
—1.53

4.76
—0.92
—1.26
—2.50

7 7d

3 7d

—0.2
—1.6

S.7'
—0.3
—1.5"
—2.3'

8.62
4.75

—0.42
—2.18

6.04
—1.22
—1.67
—4.25

8.5
5.3d

—0.3
—2.3d

6.6
—0.8

23d
—3.3d

K3,
E2„
E3„
E)„
K3„

1O.S5
—2.30
—2.63
—3.90
—5.63

9.29'
—2.10'
—2.10'
—2.74'
—4.30'

—1.84
—2.11
—3.11
—7.67

—3.Osb

—1.75

—3.22b

—0.92
—1.05
—1.58
—2.66

ld

—1.1
—2.Od

—2.O"

—0.92
—1.05
—1.57
—2.42

—1.1d

—0.9d

7d

1d

—1.22
—1.40
—2.09
—4.15

—1.7"
—1.7d

—3.0
—2.8

'Pseudopotential calculation of Ref. 10.
Orthogonalized-plane-wave calculations of Ref. 11.

'Optical-absorption data of Ref. 12.
dPseudopotential calculations of Ref. 13.
'Orthogonalized-plane-wave calculations of Ref. 14.
Orthogonalized-plane-wave calculations for cubic ZnS of Ref. 15.
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(s, 1
l

(p„1
l

M)4 ——

V. ll

V, ll 0 0 U(x, x)

ls 4) 1~.,4) ls. 4) l~, 4)

U(ss) U(sz) 0 0
U(z s) U(z z) 0 0

0 U(x x) 0

(s, 2
I

(p.» i

Ã2, 4 ——(px» I

I s, 4)

f0 U'(s, s)

f0U'(z, s)
—f 1 U'(x, s)

I
p„4)

f() U'(s, z)

f() U'(z, z)

—f 1 U'(x, z)

(ps, 2
I

(—~3/2)f' U'(x, s) (—~3/2)f" U'(x, z)

—f 1
U'(s, x)

—f 1 U'(z, x)

f 1
U'(x, x)
+(3/4)f' f U'(x, x)+ U'(y, y)]

( —~3/4)f [U'(x, x) —U'(y, y)]

I p„4)
( —~3/2)f' U'(s,~)
( —~3/2)f' U'(z, x)

( —~3/4)f [U'(x, x)—U'(y, y) ],

f 1 U'(y»y)

+ (3/4)f'
[U'(x, x)+ U'(y, y }]

Zno

IO

Limy

"ic

A56y Hgy K

I 5 V 5V

~v
IV

5V 5V

5V

IV

R L U M Z I'DA S HP K

WAVE VECTOR
FIG. 2. Band structure of ZnO in the present tight-binding model (solid lines) compared with pseudopotential band

structure (dashed lines) of Ref. 10.



28 SEMIEMPIRICAL TIGHT-BINDING BAND STRUCTURES OF. . . 939

(s, 1
1

(p. 11

M, , = (p. , 11

1
s, 3)

f()U'(s, s)

f,U'(z, s)

f]U'(x, s)

f() U'(s, z)

f0 U'(z, z)

f] U'(x, z)

(p„, 1
1

(V 3/2)f U'(x, s) (~3/2)f U'(x, z)

f1 U'(s, x)

f] U'(z, x)

f] U'(x, x)
+(3/4)f+[U'(x, x)+ U'(y, y)

( —v 3/4)f [ U'(x, x) —U'(y, y)]

lps 3)

(v 3/2)f U'(s, x)

(v 3/2)f U'(z, x)

( v3/—4)f [U'(x, x)—U'(y, y)],

f]U'0»X)

+(3/4) f+[U'(x, x)+ U'(y, y)),

g1( k) =exp[i ( —k1/3+ k2/3+k3/8)],

g2(k) =exp[1 (k1/3 —k, /3+k, /8)],
g3( k ) =exp( i 3k—3/8),

f o( k ) =exp(ik1 ) + 1+exp( —ik2 ),
f1 ( k ) =exp(ik1) ——, —( —, )exp( —ik2),

f+(k) =1+exp( —ik, ),
and

15

15c

rlc

A
Kzv

l2V

I BV 3V

—15— 5V

A R L U M

IV

[ Q A S H P K

WAVE VECTOR k

T I"

FIG. 3. Band structure of A1N in the present tight-binding model (solid lines) compared with orthgonalized-plane-wave
(OPW) band structure (dashed lines) of Ref. 11 with the band gap corrected in accord with that determined by optical ab-
sorption (Ref. 12).
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Cds

rlc

lV ~6V
56V

Kpv

C9
Q
QJ

LLI

I 5V 3V 3V

lg

PIV

-2 LUM Z

5V
IV

I' K A s
WAVE VECTOR k

Fl~. 4. Band structure of Cds in the present tight-binding model (solid lines) compared with pseudopotential band

structure (dashed lines) of Ref. 1&.

f ( k ) = 1 —exp( ik g ) . —

Here we have k=k&b&+kzbz+k3b3, b&, bz, and
b3 are the reciprocal-lattice vectors divided by 2m. ,
namely, ((2/V 3)/a, 0,0), ((1/M3)/a, 1/a, 0), and
(0,0, 1/c), respectively.

The parameters used above are matrix elements of
H between localized orbitals

I
n, b, R). For example,

we have

E(s,a)=(s, 1,R
I
H

I
s, 1,R)

=(s,2,R IXX
I
s, 2,R),

E(s,p„c)=(s,3,R
I
II

I
p„3,R)

=(s,4,R
I
a

I p„4,R),
U(x x)=(p 1 R IH Ip 4 (R—c)),

U(z, z)=(p„l,RIa Ip„3,R) .

Following Vogl et al. we take the difference be-
tween the anion and cation s and p on-site matrix
elements of the Hamiltonian to be proportional to
the difference in neutral free-atom Hartree-Fock or-
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CdSe

I'V~ 6V
A K2Y

I
IPlV', 3V 5V

R L U M

3 V

IV

Z I'QA S
I/AVE VECTOR k

H P K T I"

FIG 5. Ban. d structure of CdSe in the present tight-binding model (solid lines) compared with pseudopotential band
structure {dashed lines) of Ref. 13.

bital energies w(s, a), w(s, c), w(p, a), and w(p, c):

E(s,a) —E (s,c)=P, [w (s,a) —w (s,c)]

E (p, a ) E(p, c)=P~ [w—(p, a) w(p, c)], —
where w(s, a), w(s, c), w(p, a), and w(p, c) can be ob-
tained from atomic energy tables. The s (p) propor-
tionality constant, P, =0.8 (P~ =0.6), of Vogl et al.
is also used here and found to give nearly the best fit
to the band structures.

B. The matrix elements

The matrix elements of the Hamiltonian are ob-
tained empirically by fitting to band-structure calcu-
lations and available data. ' ' The band structures
are fitted at only the I points (k =0), which corre-
spond roughly to fitting the I and l. points of the
zinc-blende band structure; Birir~an has shown that
these points roughly map into one another in materi-
als undergoing zinc-blende —wurtzite phase transi-
tions. ' Thus by fitting known band structures at
k=0 (while paying attention to chemical trends in
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ZnS

3 C

~- —
i'C,6C S6C

/

Hpc

IBC

'i'y "6v

y

24V

I 5V
5V

3 V

3'V

IV

L U MA R Z 1 K A S H P K T I

WAVE VECTOR k

FIG. 6. Band structure of ZnS in the present tight-binding model (solid lines) compared with pseudopotential band
structure (dashed lines) of Ref. 13.

the parameters) we have determined the tight-
binding parameters of Table I. Hence the Hamil-
tonian H of the host is completely determined. The
band-structure energies at high-symmetry points are
listed in Table II, where the present tight-binding fit
is compared with previously reported band struc-
tures.

Figure 2 shows the Zno tight-binding band struc-
ture obtained by our fitting procedure, in compar-
ison with Chelikowsky's pseudopotential band struc-
ture (Ref. 10). As in nearly all tight-binding models,
the valence bands are reproduced quite accurately.

The narrow lowest valence band near —20 eV corre-
sponds to an atomiclike oxygen 2s state, and the
upper valence bands are mainly derived from the ox-
ygen 2p state with a sizable mixture of Zn 4s and 4p
states. The lowest conduction band is also well
reproduced and is composed primarily of the Zn4s
state. The uppermost conduction bands are primari-
ly of Zn4p character and are the least accurately
reproduced. Fortunately these are also the least im-
portant bands in problems concerning the electronic
energy levels of defects or other localized perturba-
tions. (The most likely levels to lie in the gap are
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50—

40—

AIN ZnO ZnS CdS CdSe

the cation s-like levels pulled down from the lowest
conduction band or the anion p-like levels pushed up
from the upper valence bands. ) Corresponding re-
sults hold for A1N, CdS, CdSe, and ZnS. (See Figs.
3—6.)

C. Chemical trends

lO—a)

-IQ—

-20—

V(s,s) d

Empirical tight-binding Hamiltonians such as this
are especially useful if their matrix elements exhibit
manifest chemical trends. In the present model, the
differences of diagonal matrix elements are required
to satisfy the rule deduced by Vogl et al. for zinc-
blende semiconductors: that they be proportional to
the corresponding differences in atomic orbital ener-
gleS,

E (l, a) E(l,c) =—13I[w (l,a) —tv (l,c)],

-40
l.8 l.9

I I ! I I 1 I

2.0 2. l 2.2 2.5 2.4 2.5 2.6
d (Aj

FIQ. 7. Interatomic matrix elements V(s, s) {open tri-

angles), V(x,x) (open circles), and V(x,y) (full circles) of
Table I (in eV) multiplied by the square of the bond length
vs the bond length d (in A), where the zinc-blende nota-
tion (V's here) is related to the wurtzite notation (U's
and U"s) as in Table III. Average values are denoted by
solid straight lines.

where 1 specifies s or p orbitals.
The remaining off-diagonal matrix elements U

and U' are then expected to be nearly independent of
the chemical elements in the semiconductor and to
scale with bond length d according to Harrison's
d rule, ' U~d . The expected scaling is indeed
found for the principal matrix elements (Fig. 7).

III. CONCLUSION

The parametrization of the bands of these wurt-
zite semiconductors provide an accurate representa-

TABLE III. Relationships among parameters of the present model, zinc-blende notation (Ref. 6), and two-center
Slater-Koster notation (Ref. 5).

Wurtzite Zinc blende
Two-center Slater-

Koster approximation

4U(s, s)
(

~
)[U(z,z)+2U(x, x)]

( —, )[U(z,z) —U(x, x)]
( —4/~3) U(s, z)
(4/V 3)U(z, s)
U'(s, s) —U(s, s)

( —, ) [U'(x, x)+ U'(y, y)+ U'(z, z)]
—( —, )[2U(x,x)+ U(z, z)]

( —) [U'(x, x)+ U'(y, y) —2U'(z, z)]
—( —)[U(z, z) —U(x, x)]

( —[ U'(x, x) —U'(y, y)]
—( —)[U(z,z) —U(x, x)]

V 3 U' (s,z}+{I /W3 }U(s, z)

V(s, s)

V(x, x)

V(x,y)

V(sa,pc)
V(pa, sc)
0

4V(sso )

(4/3)( V(pp a )+2V(pp~) )

(4/3)( V(ppo ) —V(pp~) )

(4/W3) V(spa )

(4/~3) V(pscr)

0
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TABLE III. (Continued ).

Wurtzite Zinc blende
Two-center Slater-

Koster approximation

—V3U'(z, s) —(1/V 3)U(z, s)
(V 6/4)U'(s, x)+(I/V3)U(s, z)

( —V 6/4) U'(x, s) —(1/V 3)U(z, s)
(3V 2/4) U'(z, x)

—( —, )[U(z,z) —U(x, x)]
(3V 2/4) U'(x, z)

—( 3 )[U(z,z) —U(x, x)]

tion of the valence bands and an adequate descrip-
tion of the lowest and most important conduction
band. The fact that the matrix elements exhibit
trends makes the empirical tight-binding Hamiltoni-
an especially useful for theories of localized pertur-
bations in wurtzites. Soon we shall be reporting
studies of deep impurity levels and surface states
based on this empirical tight-binding theory.

and p„and p„orbitals; hence the local symmetry is
taken to be tetrahedral (T~) rather than C3„, and the
on-site matrix elements can be simplified as follows:

E(s,p„a)=0, E(s,p„c)=0,

E(p„,a) =E(p„a)=E(p,a),
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APPENDIX: NOTATION

In this work we neglect the small crystal-field
splittings which differentiate between the p, orbital

and

E(p„,c)=E(p„c)=E(p,c) .

Furthern|ore, applying the approximation that the
environment is locally tetrahedral (two-center ap-
proximation ) to the off-diagonal matrix elements
corresponds to treating the four nearest-neighbor
atoms as equivalent; therefore, the U's in Hi 4 and
the U"s in H2 4 and Hi 3 are not independent. The
relationships among the off-diagonal matrix ele-
ments of wurtzite (U's and U"s), those of zinc
blende, and the standard notation of Slater and
Koster are given in Table III.
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