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The interaction potential between two charged particles in a dielectric medium is shown
to have the form U(q, v, )= V(q)/e(q, co=q v, ), where V(q) is the bare Coulomb po-
tential, v, is the center-of-mass velocity, and e(q, co) is the dielectric constant of the medi-
um. An analysis of the dielectric screening is performed, incorporating core electron, lattice
ion, and free-carrier contributions. The random-phase-approximation dielectric constant for
arbitrary degeneracy is employed in calculating the free-carrier component of e(q, cu). It is
found that although screening of the bare potential by lattice ions may sometimes be
evaluated in the static or high-frequency limits, it is virtually always a poor approximation
to treat the free-carrier screening in either of these limits. Dynamic screening processes
have been incorporated into a calculation of relaxation times for electron-hole scattering in
semiconductors for which mq »m, . Sample calculations for GaAs at a wide variety of
temperatures and photoexcited carrier densities show that dynamic screening has a signifi-
cant effect on the relaxation time in most regimes. It is equally important to treat the
screening of electron-electron interactions dynamically when calculating transport properties
which are sensitive to electron-electron scattering.

I. INTRODUCTION

Carrier-carrier collisions have an important effect
on a wide variety of transport processes in semicon-
ductors and metals. For example, electron-electron
scattering significantly influences the energy relaxa-
tion of hot carriers' and the low-temperature elec-
tron mobility in semiconductors, as well as the
low-temperature electron thermal conductivity in
semiconductors and metals. Electron-hole scatter-
ing can affect the electron mobility in narrow-gap
semiconductors at high temperatures. Moreover,
since the advent of the laser there has been consider-
able interest in the properties of optically generated
free-carrier plasmas in semiconductors. In such
plasmas, electron-hole scattering can become the
dominant mechanism limiting the free-carrier mo-
bility at high excitation levels. This effect has been
observed experimentally in several materials.

In each of the above cases, the free carriers in-
teract via a screened Coulomb potential, where the
dielectric screening may include contributions from
core electrons, lattice ions, free electrons and holes,
etc. In this respect, carrier-carrier scattering resem-
bles the scattering of a free carrier by a charged im-
purity. The main difference between the two pro-
cesses is that while the center of mass of the
carrier-ion system may be considered stationary,
that of the carrier-carrier system moves through the

screening medium with a finite velocity. This
difference can profoundly affect the dielectric
screening of the interaction potential. Consequently,
the transport properties of carriers scattered by
mobile charges are expected to differ appreciably
from those of carriers scattered by stationary ions.
In spite of the importance of carrier-carrier interac-
tions in transport processes in solids, no comprehen-
sive theoretical treatment of the dielectric screening
of these interactions has previously been reported.
It has been recognized for some time that the more
slowly responding screening processes, such as the
contributions from lattice ions and free holes, '

may not always be able to respond rapidly enough to
effectively screen a carrier-carrier interaction. How-
ever, the approach that some investigators have
adopted for dealing with this phenomenon has been
to simply ignore the screening by these mechan-
isrns, ' ' i.e., the dielectric response is evaluated
in the high-frequency limit. At the opposite ex-
treme, several investigations of free-carrier transport
properties in semiconductors and metals have ig-
nored the distinction between the screening of
carrier-carrier interactions and carrier-ion interac-
tions. ' ' This is equivalent to evaluating the
dielectric response due to all screening mechanisms
in the low-frequency limit. In this work, we derive a
general dynamically screened interaction potential
which results when the center-of-mass motion of the
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two-particle system is fully taken into account.
Section II presents the two-particle Schrodinger

equation, which has been separated into reduced-
mass and center-of-mass components. The dynami-
cally screened carrier-carrier scattering potential is
then derived in Sec. III. Section IV presents an ex-
plicit formulation of the dynamic dielectric
response, which includes the random-phase-
approximation dielectric constant for screening by
free electrons and holes of arbitrary degeneracy and
damping. In Sec. V the electron-hole relaxation
time is calculated using the Born approximation for
semiconductors in which mi, » m, . Screening by
a system of core electrons, lattice ions, and free car-
riers is incorporated into the calculation. In Sec. VI,
detailed sample calculations are perforrried for the
case of photoexcited GaAs at a variety of tempera-
tures and electron-hole densities, and comparison is
made to results obtained in the static and high-
frequency limits. The significance of the dynamic
effects in treating electron-electron scattering is also
discussed.

11. TW~ PARTICI.E SCHRODINGER EQUATIQN

Consider a spatially infinite dielectric "medium"
characterized by a wave-vector- and frequency-
dependent dielectric constant e(q, co). Into this
medium we place two particles, which may or may
not be identical, of masses mi and mz and charges
qie and qze. The time-dependent Schrodinger equa-
tion for the two-particle system may be written

ih'8 fi z
A'

+ V'i + V'z —U(ri —rz)
dt 2m

~ 2mz

'Il(R, r, t ) = 4, (R, t )%RM( r, t ).

One obtains the equations'

(2.4)

i' d fi
V~ 0, (Rt)=0

t
(2.Sa)

iA'8 fi V'„—U(r) VRM(r, t) = 0.
t

ARM(r, t) = AM(r)e
' " "", (2.6)

where ERM is the internal energy of the two-particle
system. Equation (2.5b) then becomes

V„—U(r) QRM(r) = 0. (2.7)

This is the familiar time-independent Schrodinger
equation.

Assuming an interaction where the initial wave
vectors of the two particles are ki and kz while the
final wave vectors are k 'i and k z, we define the
"direct" wave-vector transfer qD = k'& —ki and
the "exchange" wave-vector transfer qE = k z

—ki.
From Eq. (2.7), the elastic scattering amplitude f(q)
can be obtained for scattering of the reduced-mass
particle by the potential U. The differential elastic
scattering cross section for distinguishable particles
is then

(2.5b)

We are primarily interested in the reduced-mass
equation (2.5b), which is further separable if one as-
sumes a solution of the form

X%(r„r„t)= 0, (2.1)
cr( k i ~ k 'i, kz ~ k z ) =

I f( qD )
I

z,

miri + mzrz

m& + m2
(2.2)

where the total and reduced masses are given by
M —= mi + mz and p—:mimz/M, respectively.
In terms of these new coordinates the Schrodinger
equation can be rewritten

where U is the interaction potential. We define the
coordinate of the center of mass R and the relative
coordinate r as follows:

whereas that for identical feriaions of spin —is
2

o(k), kz ~ k', , k z) =
4 I f(qD) + f(qz)

I

z

+ —. If(qD) —f(qE)
I

'.
(2.9)

While a number of approaches can be used to obtain
the scattering cross sections, probably the simplest is
the Born approximation, which gives the scattering
amplitude"

V V —U( ) f(q) = —,U(q), (2.10)

X%(R, r, t) = 0. (2.3)

This equation is separable in that the solution has
the form

where U(q) is the Fourier transform of U(r). Be-
cause the scattering potential obtained below in Secs.
III and IV is complex, there are also inelastic transi-
tions. ' These can occur when energy is exchanged
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with the screening medium. Such exchanges in the
forum of plasmon and phonon emission and absorp-
tion have been discussed by several investigators. '

However, the inelastic cross sections are expected to
be small since the imaginary part of the potential is
usually much smaller than the real part.

III. DERIVATION OF THE SCATTERING
POTENTIAL

and a second transform to frequency space yields

V'(q, co) = ,.f:
4m.q i q2e

2

dte ' 'V'( t)

5(co —q v, ). (35)

In free space the interaction potential would have
its bare form V'(q, co). In the dielectric medium it
is"

In order to obtain cross sections for carrier-carrier
scattering one must first specify the interaction po-
tential U(r). We consider the case of a reduced
mass particle scattered by a central potential'
which moves through the dielectric medium with
the center-of-mass velocity v, = r) ( R) IBt.
Here the brackets represent an expectation value and
v, is a conserved quantity since there are no
external forces to alter the total momentum Mv,
The bare interaction is an unscreened Coulomb po-
tential

U'(q, co) = V'(q, to)

e(q, co)

We now transforrxi back to t space

U'(q, t) = f dre e' ' U'(q, re)

4mq iq2e e

qe(q, co= q v, )

and to r ' space

(3.6)

(3.7)

2

V( )
qlq2

(3.1) U'(r ', t) = 4m.qiqze

3

V'(r ', t) = qiqze 2

fr' —v, t/
(3.2)

A Fourier-transfoirli to momentum space gives

2

V'(q, e)= f d r e'e'
4mq&qze

2
iq ~ v t

e

(3.3)

(3.4)

This potential will be altered by the resulting dielec-
tric polarization. In this section we derive expres-
sions which characterize the screening with the in-
teraction by a medium with dielectric constant
e(q, co).

We first point out that the calculation of the
dielectric response must be perforixied in the rest
frame of the screening medium rather than in the
center-of-mass frame. This distinction leads to im-
portant differences between the screening of a
carrier-carrier interaction and that of a stationary
potential. Since the center of mass moves with ve-
locity v, relative to the medium's rest frame, the
position of the reduced-mass "particle" and the
center of mass in that frame are given by
r ' = r + v, t and R = v, t, respectively,
where we have defined the origin to be the location
of the center of mass at t = 0. The bare potential
in the coordinate system of the rest frame is then

X fdqe
qe(q, co= q. v, )

(3.8)

d3q e i q r—

q &(qe to = q ' Vc.m. )
(3.9)

Finally the potential in q space, expressed in the
center-of-mass frame, can be obtained by a simple
identification of U(r) in Eq. (3.9} as the Fourier
transform rri of

U(') = ~qiqze

qe(q, co= q v, )
(3.10)

The scattering problem can now be treated either in
general using Eq. (2.7} or in the Born approximation
using Eqs. (2.8)—(2.10).

In Eq. (3.10) we have obtained the strikingly sim-
ple result that the screened potential in q space due
to a charge moving at a constant velocity v, is the
same as that due to a stationary charge except that
the dielectric constant of the medium e(q, co) is
evaluated at the frequency co = q v, instead of
at t0 = 0. The physical meaning of this result is
easily interpreted as follows. Consider the time

We finally convert back to the center-of-mass frame,
since the potential U(r) which appears in Eq. (2.7)
must be given in r coordinates:

r 3
1U(r) = 4mqiqze
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ro/U, required for the center of mass to
traverse a typical interaction distance ro T. his can
be thought of as the time scale for the charge distur-
bance in the medium set up by the moving potential.
One can show from the properties of the Fourier
transform that interactions with the potential at dis-
tances on the order of ro are dominated by wave-
vector transfers on the ordel' of qo ip . If oiie

—1

defines a frequency oi = ~ ' for the charge distur-
bance then co = qou, , which is roughly compar-
able to the frequency co = qo . v, which appears
when U(qo) is evaluated using Eq. (3.10). For an
interaction with a stationary center of mass, such as
that between an electron and an ionized impurity in
a solid, this frequency vanishes and the dielectric
response of the medium has its static form, i.e.,
e(q, ro = 0). However, for an interaction with a
rapidly moving center of mass, the frequency
co = q . v, can be quite high and the dynamic
nature of the medium's dielectric response must be
properly accounted for. It will be seen below that
for cases involving electron-hole and electron-
electron scattering in solids, these considerations are
almost always important.

IV. DIELECTRIC CONSTANT
FOR A SEMICONDUCTOR

WITH ARBITRARY DEGENERACY

In order to further investigate the consequences of
the results obtained in the previous sections, we con-

I

sider below a semiconductor having a total dielectric
constant e(q, co) of the form:

e(q, ro) = e + ei„(co) + e, (q, co) + ei, (q, co),

(4.1)

(eo —e„)~,2
ei„(~o) =

+ ill t
(4.2)

For simplicity, we have assumed a single TO pho-
non mode of frequency ro, and damping I, . Note
that the static limit can be used only for frequencies
much less than co, . In the remainder of this section
we discuss the random phase approximation '

(RPA) for the free-carrier components e, and e&.
Although eR@A(q, m) has been used extensively in
treating the dielectric properties of degenerate elec-
tron populations, particularly in metals, it has rarely
been employed in cases involving nondegenerate
statistics. ' ' Because we wish to treat carrier-
carrier scattering in semiconductors, we will discuss
the most general form of the RPA result for arbi-
trary degeneracy.

For carriers of type i one obtains the expression'

where e — 1 is the core electron contribution,
e;(q, co) is the contribution due to free carriers of
type i (see below), and the lattice ion contribution e&„
is taken to have the form

e;(q, co) = 4rre' fo(k) —fo(k + q)

E;(k + q) —E;(k) —fico —,i' I;— (4.3)

where fo is the Fermi distribution function and I;
may be interpreted as a damping constant. In order
to be consistent with previous work ' in the limit
of large ro and small but finite damping, we define
I; = e/I;p. That is, I'; is the inverse of the aver-
age momentum relaxation time, which has been set
to a positive infinitesimal in most previous applica-
tions to screening. ' For simplicity, nonparabolicity
effects, wave-function admixture, and coupling be-
tween the various electron and hole bands have been

ignored in Eq. (4.3). These effects usually give
corrections of second order, and are outside the
scope of the present work.

The dielectric constant given by Eq. (4.3) may be
divided into real and imaginary parts: e;(q, ro)—:e;z(q, ro) + ie;I(q, ro). Each part can be evaluat-
ed analytically in the case of extreme degeneracy,
but can be reduced only to a onefold integral which
must be evaluated numerically for arbitrary degen-
eracy. One obtains

e;ii(q, ro) =
(2z'"x,'"—x; —y)'+ —,

'
y,
'
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dz fo(z) tan
4m'/ x; Wi/p(g; )

2 Xl

2z x. —x
+ tan

+ tan-'
—2z' x' —x +y

Vl

+ tan
—2z' x +x; —y

1

2

(4.4b)

where we have introduced the dimensionless variables: y = i'italo/k&T, y;:—fil;/k&T, z; = E;/kiiT, rl;
EF;/k&T—, x; = fPq /2m;k&T, and xp; = A'cop;/kiiT. The plasma frequency is given by cop; = 4rrn;e /m;

and WJ(m ) is a Fernii integral of order j.&7 Equations (4.4a) and (4.4b) can be simplified considerably in the
limit of low damping (i.e., y; ~ 0+ ). The imaginary part of e;(q, co) can be evaluated analytically to give

er(q ro)

1/2 2
p/

ln
+ 4Xi ~1/2

exp [—(x; + y) /4x; + g;] + 1

exp [y —(x; + y) /4x; + g;] + 1
(4.5)

(4.6)~ ~ ~

It is easily seen from Eq. (4.5) that e;I vanishes in both the low-frequency (y ~ 0) and high-frequency
(y ~ oo ) limits. In the low-frequency limit, the real part can be expanded as

2
eoqsi 1 ~—3/2 1 2 ~ —5/2

Egg(q~Q)~0) ~
2

1 — xg + x;y;~+ q 6 W i/2 60

where

2
7$l

4~&)e ~—1/2
2

&oka T ~i/2
(4.7)

I.O—

If the expansion in Eq. (4.6) is teiininated after the
first teriri (i.e., the small-q limit), one obtains the
usual Dingle-Mansfield result for the static screen-
ing of a point change by a free-carrier plasma.
When the contributions due to the different types of
carriers are summed, the screening length is given

&iR

0.2-

—1

s =9$
i =e, h

—1/2
(4.8)

In the opposite limit of high frequencies, it is easy to
show that Eq. (4.3) gives

2 2
shiit - ropi /~o —

~

y.~+
For the small-damping limit (y =0+), Fig. 1 il-

lustrates the behavior of e;it as a function of fre-
quency (y) for several values of the wave vector (x;).
The result, obtained for nondegenerate statistics, is
noi inalized to the Dingle-Mansfield value eDM
=(xp/2x;)~ i/2/~ i/2. Also shown as the dashed

2

curves are results calculated in the high-frequency
limit using egin /eDM ~ —(2x;/y )Wi/2/M
The figure shows that while Dingle-Mansfield

-0.4-

QOI IO

FICx. 1. RPA dielectric constant normalized to the
Dingle-Mansfield (static) result. The dashed curves
represent the high-frequency form 6RpA + cop /6)

2 2
Xp /g
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screening is usually a fairly good approximation at
y =0, it begins to break down above some frequency
which depends on x;. From Eq. (4.3) we see that the
frequency dependence becomes important when the
fico in the denominator becomes comparable to or
larger than r)i k;q/2m;, where k; is a typical wave
vector for the particles of type r'. After substituting
co = q . v, one finds that the frequency depen-
dence is important when u, ~ u;, where u;
=rrr'k;/m;. This result is quite reasonable in that if
v; && v, , the scattering center appears to be near-
ly stationary and can be screened as if it were a stat-
ic potential. On the other hand, if v; & v, the
free carriers cannot screen as effectively because
they are unable to keep up with the "moving" poten-
tial. In any interaction between two particles of
types i and j where mj & m;, one has u, = u;.
That is, the assumption of static screening is virtual-
ly always poor for at least one of the two types of
carriers. Figure 1 illustrates that the RPA static
limit can be used up to higher frequencies when x; is
large (i.e., large q).

Figure 2 shows both real and imaginary parts of
ERp~ for both low and high damping cases at xp
=1 and xo = 0.1. While e tends to be mostly real
at low and high frequencies,

~
el

~

is often larger
than

~
err

~

at intermediate frequencies. This is sig-
nificant in that it prevents the quantity (err + el )

which appears below in Eq. (5.5) from diverging in
the region where err crosses zero.

V. ELECTRON-HOLE SCATTERING
RELAXATION TIME

Electron-hole scattering can be most generally in-
corporated into a free carrier transport theory using
Kohler's variational method. Such calculations
have been perforated by McLean and Paige, ' who
assumed a bare Coulomb interaction with a finite
cut-off radius, by Appel, ' who employed a screened
Coulomb interaction, and by Meyer and Glicks-
man, who used a static RPA potential. However,
unless a particularly simple scattering potential is
employed or other simplifying assumptions are
made, the variational formalism yields expressions
containing fivefold integrals which cannot be per-
forined analytically. Unfortunately, no such simpli-
fications are possible if one employs the rather coin-
plicated potential represented by Eqs. (3.10) and
(4.1).

Accurate transport results for electron-hole
I

ATE

-4
O.OI

I

O.l

FIG. 2. Real and imaginary parts of the RPA dielectric
constant for cases of high (y = 1) and low (y = 0) damp-
ing at fixed values of x~ (= 1.0) and xo (=0.1).

r '(k, ) = N, u, oT(k, ), . (5.1)

where N, is the density of scattering centers, u,
=rrik, /m, is the electron velocity, and oT is the
momentum-transfer scattering cross section

scattering can be obtained from a much simpler
relaxation-time calculation in cases where the effec-
tive mass of the heavy holes is much larger than
that of the electrons. We perforin such a calculation
below, ignoring the relatively infrequent collisions of
electrons with light holes. Consider a free-carrier
plasma consisting of n, electrons and nr, holes with
isotropic effective masses m, and ml„respectively.
When mr, && m, and the electron degeneracy is not
too great, the collisions involve little transfer of
energy between the electron and hole and the relaxa-
tion time approximation may be employed. Since
the electron mobility in such a semiconductor is
usually much larger than the hole mobility, the elec-
trical conductivity is governed by the electron relax-
ation time, r. For a system in which all of the
scattering centers are equivalent, one obtains

cT(k, ) = f dP f c(k, k,')() —coc())cin8 d(). (5.2)
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In Eq. (5.2), 0 and P are the polar and azimuthal angles between the initial state k, and the final state k,',
where

~
k,

~

=
~
k,'

~

for elastic interactions.
To obtain the differential scattering cross section cr, we will employ the Born approximation. From Eqs.

(2.8), (2.10), and (3.10) one obtains

cr(k, ~ k,', ki, ~ k g) = 4m.e

eg(q, co) + ei(q, ro)
(5.3)

where q = k, —k,' = k z —ki„co = q ~ v, , and(u, ~ m, . Since the center of mass of a system consist-
ing of a hole and a much lighter electron may be taken to travel with the hole, we set v, equal to vi, .

In order to obtain the relaxation time for electron-hole scattering in a real semiconductor with a Feiini dis-
tribution of hole scattering centers, Eq. (5.1) must be integrated over hole velocities. One obtains

3
Vl

~i, (k, ) = u, 2
2

Vg 0 Vg — 0 Vg

2& —+

X dp f rr(k, k,', kz k), )() —cos())sin8 d() (5.4)

The factor fa(vi, )[1 —fa(ui', )] comes from the requirement that the initial hole state be occupied and the final
hole state be unoccupied, where for elastic interactions: vi', = vi, . Were the differential cross section in Eq.
(5.4) independent of the velocity of the scattering center u~, the electron relaxation time would reduce to the
forrri of Eqs. (5.1)—(5.2) with the effective density of scattering centers X, given by n/,
=ni, ~ i~z(gq)I~ i~q(ili, ). For a nondegenerate hole PoPulation nh is simPly the hole density nq, whereas for
degenerate holes nt, is much less than ni, because of the unavailability of final states. Since the electron-hole
scattering cross section does depend on vi„we must in practice employ the more general result Eq. (5.4).

Three of the five integrals in Eq. (5.4) can be perforixied analytically to yield

memi)kBTke '))' (1 —cos g)
2

00 dco~ i, (k, ) = sin8d0
[e (q, co) + e (q, rv)](e " "" + 1)

(5.5)

where q = 2k, (1 —cos8). If the lattice contribu-
tion to the dielectric constant is evaluated in the
low-frequency limit and the screening is taken to
have the Dingle-Mansfield form given by Eq. (4.4)
[i.e., e(q, co) ~ e0(1 + q, /q )], Eq. (5.5) reduces to
the familiar static result

2mn„'e'm, -

(ph)-i =
3 3 2

'
g(b),

&3k,3&o
(5.6)

VI. SAMPLE CALCULATIONS

A. Electron-hole scattering

Electron-hole scattering can be important when-
ever significant densities of electrons and holes are

where b:— 4k, A,, and g(b) = ln(b + 1) bi-
(b + 1). It will be shown in the following section
that it is rarely a good approximation to evaluate the
dielectric constant which appears in the general re-
sult Eq. (5.5) in either the low- or high-frequency
limits.

present. For example, this situation exists in semi-
conductors at high temperatures where the intrinsic
carrier density is large. However, the effects of
electron-hole scattering on the semiconductor trans-
port properties are generally greater at low tempera-
tures when nonequilibrium carriers are generated in
the material through either electrical or optical in-
jection. In order to illustrate the consequences of
the results obtained in the previous section, we con-
sider in this section the example of electron-hole
scattering in photoexcited, high-purity CxaAs. The
most general forra of the theory is employed to fully
treat dynamic dielectric screening of the electron-
hole interactions. Inverse relaxation times are ob-
tained from Eq. (5.5) as a function of carrier density
for a wide range of temperatures and hole damping
coefficients. While the material parameters em-
ployed are appropriate for CxaAs (see Table I), it can
be shown that the main qualitative features are quite
similar if the calculations are perforraed for any of
the other common direct-gap semiconductors.

Of the three frequency-dependent components in
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TABLE I. GaAs material parameters.

m, 0.068 a
Ply 0.45 a
Kp 12.53 a
K~ 10.9 a
Ace, 0.0324 eV a
fi I ) Ace, /100 Estimated

'M. Neuberger, Handbook of Electronic Materials
(IFI/Plenum, New York, 1970), Vol. 2.

the total dielectric constant given by Eq. (4.1), the co

dependence of the free-electron contribution is rela-
tively unimportant. On the other hand, the slower
response by the lattice ions and free holes has a sig-
nificant effect on the relaxation time for electron-
hole scattering. Before we discuss the most general
form of the calculation, it is useful to isolate the ef-
fects observed when the frequency dependences of
these two components are considered separately.

The term "dielectric constant" is often used to
designate the quantity e'(ro) —= e + e~„(co), which
reduces to eo in the static limit and e in the high-
frequency limit. We now define e,'tf to be the single,
frequency-independent real value of e' which yields
the same relaxation time as one obtains by integrat-
ing over dco in the more general expression Eq. (5.5).
One may approximate

jeff &0 [+eh jreh (~t ~ ~ ))

since reh in Eq. (5.5) goes as eo if ei„(co) is
evaluated in its static limit and (i.e., if ro, ~ oo) as
e if ei„(co) is evaluated in its high-frequency limit
(ro, ~ 0). (This expression for e,'ft is not exact be-
cause the removal of the factor e' from the relaxa-
tion time does not account for the dependence of the
free-carrier screening on e'. ) For high-purity pho-
toexcited GaAs, Fig. 3 shows e,'rf as a function of
carrier density and temperature in the limit of large
electron and hole mobilities (y, h ~ 0+). We have
evaluated r,h(k, ) in Eq. (5.5) at the "typical" wave
vector kz where fi kT j2me—:ET =

2 king T
XW]/2(ri, )!M $/2(r/e). That is, ET ——Ey for de-
generate statistics, while for nondegenerate statistics
ET ———, kit T.

As the carrier density is varied in Fig. 3, e,'tt ex-
hibits features which result from the frequency
dependence of ei„(ro) [see Eq. (4.2)j. This occurs be-
cause increasing the reduced hole Fermi level rih
serves to increase the frequencies emphasized in Eq.
(5.5). The behavior shown in Fig. 3 is determined
primarily by the real part of ei„(ro), since the imag-
inary part is important only near co = ro, where it
prevents (ez + el) ' from diverging. Recall that
foi' ro (( rot, E'i~tie ~ Eo —Eand that as co in-'
creases, ei„z slowly increases before passing through

a sharp peak near ro, . It then becomes negative for
ro & co„and approaches zero from the negative side
in the limit of high frequencies. This frequency
spectruin is roughly echoed in the 4-K curve of Fig.
3, with e,'tt approaching eo at low n and e„at high
n R. aising the temperature from 4 to 30 K has the
effect of broadening the range of frequencies which
contribute at any given rih, thus leading to a smear-
ing out of the features. For T ~ 150 K, not only
does one obtain broadening, but also the emphasized
frequencies become comparable to co, . Consequent-
ly, even at low carrier densities the dominant fre-
quencies correspond to those on the descending por-
tion of the 4-K curve. It is evident that only under
very limited circumstances may ei„(ro) be evaluated
in either the high- or low-frequency limit.

We now consider a similar analysis of the effec-
tiveness of the screening by free holes. If the hole
screening is treated statically, one obtains a contri-
bution to the dielectric constant of the form
e'h ~ eo(q,h jq) . For carrier-ion interactions one
would employ the Dingle-Mansfield screening

(qsh ) given by Eq. (4.7). For electron-hole scatter-
ing, one can obtain an "effective" static screening
term (q,'h ) which yields the same relaxation time
one would obtain rigorously using Eq. (5.5).

Figure 4 shows the ratio of the effective hole
screening (q,'h ) to the full Dingle-Mansfield value
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FIG. 3. "Effective" value of the dielectric constant due
to core electron and lattice ions (see text for definition).
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FIG. 4. Effectiveness of the screening by free holes
compared to the static case (see text for definitions).

(q,i, ) for various values of pi, . The ratio is plotted
as a function of carrier density at 4 K, with k,
= kT. If the damping of the hole screening is negli-
gible (pl, ~ oo) the screening effectiveness is ap-
proximately 50% of the static value over the entire
range of n Thi.s is because the average hole velocity
is approximately the same as the average center-of-
mass velocity. That is, the holes are always margin-
ally able to screen the electron-hole interactions, but
are never able to do so with complete effectiveness.
For hole mobilities less than =4000 cm /V sec,
the effectiveness of the free hole screening can be
greatly reduced by damping at low carrier densities
[see Eq. (4.4)]. As is apparent from Fig. 4, the
damping is much less important at high carrier den-
sities where higher frequencies are emphasized.

The reduced effectiveness of the hole screening
can have a significant effect on the calculated relax-
ation time. To illustrate this, we consider the case
where the lattice-ion and free-electron contributions
to the dielectric constant are treated statically. For
GaAs at 4 K and pI, = 1000 cm /V sec, Fig. 5
shows the inverse relaxation time (r,'I, )

' for two
cases: (1) the hole screening is treated dynamically
(solid curve) and (2) the holes are assumed not to
screen at all (dashed curve). In the figure, both
quantities are normalized to the result (r,I, )

' which
is obtained when all screening is treated statically
[see Eq. (5.6)]. The inverse relaxation time is found
to be larger by a factor of between 1.4 and 5.2 when
the hole screening is treated dynamically. One also
finds that it is rarely a good approximation to ignore
the hole screening, as some previous authors have
suggested. '" The peak near 10' cm corresponds
to a minimum in the parameter b, which is defined

I
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IOI 6
I

IOl8
I

IOI9 ?0

FIG. 5. r,q/r, i, vs n for hole screening treated dynami-
cally (solid curve) and hole screening ignored (dashed
curve). Screening by lattice ions and electrons treated
statically.

following Eq. (5.6). The reason is that the calculat-
ed relaxation time (5.5) is much more sensitive to
changes in the screening length when b is small.

We have discussed above the effects introduced
when the frequency dependences of the screening by
lattice ions and free holes are taken into account
separately. We now calculate the inverse relaxation
time (r,I, )

' for the more general case in which the
contributions by lattice ions, free electrons, and free
holes are all treated dynamically at the same time.
Shown in Fig. 6 is a plot of the ratio
(r,i, ) '/(r, ~ )

' as a function of n at 4 K for several
values of pi„where (r,I, )

' and (v,I, )
' are given by

Eqs. (5.5) and (5.6), respectively. As should be ex-
pected from a comparison with Fig. 4,
(r,I, ) '/(r, '~) ' depends much more strongly on pl,
at low carrier densities than at high densities. A
broad peak is obtained as in Fig. 5, but superim-
posed on this is a smaller dip near n = 10' cm
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FIG. 6. Hl, /r, q vs n for GaAs at 4 K with all screening
treated dynamicaHy.

This is related to the frequency dependence of the
lattice dielectric constant, and corresponds to the
peak in e,'rf observed in Fig. 3 near n = 10' cm

Figure 7 shows (~,q) '/(Hl, )
' vs n at 4, 30, and

300 K, for the case of undamped screening (the 4-
K curve is identical to the pl, —+ oo curve in Fig. 6).
At sufficiently high carrier densities the electrons
and holes are degenerate at all of the temperatures
shown. The relaxation times therefore have little
dependence on T at high n, whereas they depend
strongly on T for n & 10' cm . For low carrier
densities, i.e., n & 10' cm, (r,q) '/(Hq) ' does
not vary monotonically with T because of competing
processes. Figure 3 indicated that when only the
screening by lattice ions is treated dynamically, the
greatest reduction in the effective dielectric constant
is obtained at high temperatures, i.e., the 300-K
curve would be the highest in Fig. 7 if only e&„(co) is
allowed to depend on frequency. However, it was
pointed out in connection with Fig. 5 that due to

dynamic hole screening (r,I, ) '/(7, I, )
' is greatest

when b(kT) is smallest, which occurs at moderate
carrier densities and lower temperatures. The differ-
ing temperature and carrier density dependences of
these two effects are responsible for the crossover at
low carrier densities of the 30- and 300-K curves in
Fig. 7. As in Fig. 6, one finds that the structure due
to the frequency dependence of ei„ is superimposed
on the broader features of the curve for T & 30 K.

It is apparent from Figs. 5—7 that in most re-
gimes, accounting for the dynamic dielectric
response has a significant effect on the calculated
electron-hole scattering relaxation time. Both the
static and high-frequency limits used in previous
theories are usually inappropriate in the case of
GaAs, and similar corrections are obtained if appli-
cation is made to other direct-gap semiconductors
for which m, « ml, . Dynamic dielectric screening
is expected to have a qualitatively similar effect on
carrier transport when m, = mi„even though the
relaxation time formulation used here is not appli-
cable to that case.
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Unfortunately data on GaAs are not available for
comparison to the theoretical transport results
shown in Figs. 5—7 which incorporate dynamic
dielectric screening. However, the importance of the
above effects has been verified experimentally in a
recent study of low-temperature electron mobilities
in photoexcited Hgi „Cd„Te (x = 0.2). At high
excitation levels where electron-hole scattering dom-
inates, the calculated mobility is too high if the
screening is treated statically and too low if the
screening by photoexcited holes is ignored. Howev-
er, theory and experiment are in good agreement
when the more general dynamic screening fornial-
ism is employed.

B. Electron-electron interactions

It is well known that, although conservation of
momentum implies conservation of current in any
given electron-electron scattering event, e-e scatter-
ing can have a significant second-order effect on the
mobility. This is because e-e scattering affects the
energy distribution of the electron population. Ap-
pel has solved the Boltzmann equation for nonde-
generate electrons taking both ionized impurity
scattering and e-e scattering into account. If one
assumes the densities of impurities and free elec-
trons to be equal, the electron mobility is decreased
by as much as a factor of 1.7 [depending on the
parameter b(kT) discussed in the previous section].
Use of the more general dynamic potential will in-
crease this factor. Since the typical center-of-mass
velocity U, of the two-electron system is much
higher than that of the electron-hole system con-
sidered above (i.e., for mi, » m, ), the free electron
screening of the e-e interaction will now be much
less effective than in the static case.

Other transport properties, such as the electron
theriual conductivity, depend on e-e scattering in
first order. The neglect of dynamic screening effects
may partly account for why e-e scattering thermal
resistances calculated for simple metals using a stati-
cally screened Coulomb potential ' are much lower
than experimental values. Appel employed Kohler's
variational method to solve the Boltzmann equa-
tion including e-e scattering for the case of static

screening. The mobility and the thernial conduc-
tivity of the electrons obtained from this formalism
can be easily generalized to incorporate the more
general scattering potential represented by Eqs.
(3.10) and (4.1). However, since this would involve
rather complicated multifold integrals which must
be evaluated numerically, we do not attempt such a
calculation here.

VII. CONCLUSIONS

We have shown that the screening of an interac-
tion between two charged particles moving in a
dielectric medium may be treated in the static limit
only if the center of mass of the two-particle system
is at rest with respect to the medium. For a moving
system the dielectric constant e(q, co) must be
evaluated at the frequency co = q v, , where
v, is the center-of-mass velocity. We have con-
sidered a semiconductor system in which the total
dielectric constant has core electron, lattice ion, and
free-carrier contributions. The free-carrier screening
is treated using the most general forrii of the RPA
dielectric constant, which accounts for arbitrary de-
generacy and damping. Dynamic screening has been
incorporated into a detailed treatment of electron-
hole scattering relaxation times in a semiconductor
for which mi, » m, . The importance of these ef-
fects has been demonstrated in electron-hole scatter-
ing calculations for photoexcited GaAs. The
dynamic foiiriulation often yields inverse relaxation
times which are higher than the static values by a
factor of 2 or more. In general, it is rarely appropri-
ate to treat either the lattice ion contribution to the
dielectric constant or the free carrier screening in ei-
ther the static or high-frequency limits.

It should be emphasized that the dynamic screen-
ing effects discussed in this work should affect most
semiconductor and inetal transport properties which
are sensitive to the dielectric screening of the
carrier-carrier interactions. This holds quite gen-
erally because the screening by at least one of the
two types of carriers involved in such interactions is
always considerably less effective than it would be in
the static limit. Except in the limit of high damp-
ing, it is also usually a poor approximation to ignore
the screening due to either type of carrier.
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