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Large-wave-vector phonons in highly dispersive crystals: Phonon-focusing effects
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The anisotropic propagation or the focusing of large-wave-vector acoustic phonons in highly
dispersive crystalline Ge is studied in detail. Our analysis is entirely based on an elaborate
Born —von Karman model of the lattice dynamics which is constructed so as to reproduce the ob-
served phonon dispersion curves very accurately. Effects of the lattice dispersion upon the phonon
focusing are found to be discernible above 0.3 THz and become drastic at frequencies higher than 1

THz. These observations are made by studying complementarily the frequency dependences of the
following objects: the shape of constant-frequency surfaces, the locations of phonon caustics, the
distributions of phonons in real space, the angular dependences of phonon intensity, and the struc-
ture of group-velocity surfaces. A brief discussion is also given of the effects of isotopes which act
to damp significantly the ballistic phonon intensity at frequencies in the 1-THz range.

I. INTRODUCTION

In recent years there has been considerable activity in
the area of high-frequency phonon propagation in
solids. ' This has been supported by the development of
the techniques for generating and detecting acoustic pho-
nons of frequencies up to several THz. Some important
information to be gained by the experiments utilizing such
high-frequency nonequilibrium phonons may be the ef-
fects of lattice dispersion upon the phonon transport in the
thermal-frequency range. A few years ago, Ulbrich et al.
found in high-purity GaAs that near-zone-edge
transverse-acoustic (TA) phonons propagate in ballistic
fashion over macroscopic distances and reveal several
features characteristic of a dispersive medium. Subse-
quently, Dietsche et al. observed in Ge the ballistic flux
patterns of the TA phonons of frequencies higher than 0.7
THz, which are remarkably different from those obtained
for lower-frequency phonons. The large feature of the
findings by Dietsche et al. is now believed to be interpret-
able, ' based on the idea of phonon focusing"' modi-
fied by acoustic dispersion.

The possible detection of the high-frequency TA pho-
nons at low temperatures is currently understood in terms
of their lifetime due to anharmonic phonon-phonon in-
teractions. The most important three-phonon processes in
the regime co =2mv»k~ T/R are shown to yield a short
lifetime for longitudinal-acoustic (LA) phonons in propor-
tion to co—,but a very long one for the TA phonons as
described by the factor exp(a~/k&T), where a is a con-
stant of the order of unity. ' The former prediction on the
LA phonons has recently been established experimentally
by Baumgartner et al. for a weakly dispersive and quasi-
isotropic CaF2 sample. It should be noted here that
natural Ge and GaAs include isotopes. The scattering of
the phonons by isotopic atoms is highly frequency depen-
dent' and severely restricts the ballistic phonon transport
at THz frequencies. Indeed, owing to the presence of this
scattering mechanism by the isotopes, Dietsche et al. had
to prepare thin Ge samples of 0.5-mm thickness to observe
sharp images of ballistic phonons higher than 0.7 THz

(which are detected by Pb-oxide-Pb tunneling junction
detector).

By a recent theoretical work on the isotope scattering of
dispersive phonons in Ge, ' the scattering rate at frequen-
cies near 1 THz is shown to grow more rapidly than co,
the frequency dependence being valid in the low-frequency
limit. According to the results, the mean free path of the
phonons at 1.5 THz is reduced to 10 pm or less. Hence in
order to detect the unscattered phonons higher than 1

THz, thin-film samples of thickness down to several mi-
crometers are required in principle. When experiments
that observe the ballistic transport of the phonons up to
several THz become feasible, their anisotropic spatial dis-
tributions due to the phonon focusing are expected to be
quite different from those of the low-frequency phonons
by the effects of the dispersion.

The purpose of the present work is to make a
comprehensive study of anisotropic phonon conduction, or
phonon focusing, at dispersive frequencies. To do this, we
should first understand correctly the dynamics of lattice
vibrations of the medium beyond the continuum approxi-
mation. In this paper we shall devote our attentions to
highly dispersive crystalline Ge, for which the nature of
dispersion relations has been well understood by experi-
ments' ' with slow neutrons. The key entity which plays
a fundamental role throughout our investigations is the
so-called dynamical matrix of the lattice. The knowledge
on the various properties of the phonons, such as the fre-
quency, the phase and group velocities, and the curvature
of the constant-frequency surface (co-surface) of the pho-
nons, is derived straightforwardly from the eigenvalues or
by appropriate differentiations of the relevant dynamical
matrix. Hence as a start we try to construct the dynami-
cal matrix which reproduces very accurately the data for
the phonon dispersion curves being obtained by the inelas-
tic neutron scatterings. We make this in the framework of
the lattice dynamics according to the Born —von Karman
scheme, ' which will be described in the next section. The
three-dimensional representations of the co surfaces at typ-
ical frequencies in the 1-THz range are then exhibited for
TA mode phonons. The implications of the shapes of
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these m surfaces to the phonon focusing near zone-
boundary frequencies will also be remarked on in Sec. II.

The traditional description of the phonon focusing is
based on a ray picture of the phonons. In this geometrical
representation for the phonons, there exist certain direc-
tions called caustics along which the phonon flux becomes
singular. ' The caustics are associated with folding edges
in the multivalued ray, or group-velocity surfaces, and
provide important insight into the nature of the focusing.
The sharp amplifications of the phonon intensity have ac-
tually been observed by experiments in the predicted caus-
tic directions. ' ' A further global understanding of the
focusing is gained by plotting the distribution of the pho-
nons in the real space when the phonons are assumed to be
distributed uniformly over the co surface. In Sec. III the
frequency dependences of such configurations as the
phonon-enhancement map and the location of the caustics
will be studied.

A more quantitative understanding of the focusing will
be provided by calculating the enhancement factor of the
phonons introduced originally by Maris' for low-
frequency phonons. The enhancement factor measures an
enhancement of phonon flux in a specified direction rela-
tive to the magnitude it would have in an isotropic medi-
um, and thereby is connected directly to the phonon inten-
sity. In Sec. IV we shall study the angular dependence of
the phonon intensity which is substantially determined by
the enhancement factor. The structures found in the
directional properties of the phonon intensity will also be
discussed with reference to the group-velocity surfaces.

Owing to the presence of highly frequency-dependent
scattering by the isotopes, it will be rather hard, in prac-
tice, to arrange for the phonons of THz frequencies an ex-
perimental situation in which the mean free path of the
phonons may be much longer than the distance between
the phonon source and the detector. In the experiments by
Dietsche et al. , the path lengths of the phonons are com-
parable to, or shorter than, their mean Free path. In these
cases, the production of diffusive phonons which yield
predominant background signals should act to interrupt
the observation of anisotropic, ballistic flux patterns due
to the phonon focusing. We shall briefly describe in Sec.
V the effects of the isotope scattering upon the propaga-
tion of near 1-THz phonons.

Throughout this work we shall concentrate our analyses
mainly upon the TA phonons, and the LA phonons will be
touched upon only briefly. This is bemuse the focusing of
the LA phonons is rather moderate up to the frequency of
about 3 THz and does not give rise to any sharp feature in
the phonon intensity to be observed vividly. In addition,
the strong anharmonic interaction and isotope scattering
act to prevent severely the detection of the otherwise ob-
servable sharp focusing patterns of high-frequency near-
zone-boundary LA phonons.

II. LATTICE 0YNAMICS

Here we briefly describe the lattice dynamics of Ge we
have employed. In the harmonic approximation the prop-
erties of the lattice vibrations in a crystal, or of the pho-
nons throughout the Brillouin zone, are deduced on the
basis of the equations

g [ro 5 p5 —G p(cr, o'
~

q)]ep(o') =0

(a = 1,2, 3; cr = 1,2, . . . , r), (1)

where o. and a.' specify I" atoms which consist of a unit cell
and e stands for the polarization vector of the lattice
which is normalized according to

~

e
~

=1. The 3r X3r
Hermitian matrix G is called a dynamical matrix which
can be expressed in terms of interatomic force constants
4's as

G p(o, a.'
~

q)=(m m ~ )

(( .I») —i q [ x (I)—x (I')]~p, O, ,O e
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where m is the atomic mass and x(l) is the position vec-
tor of the lth unit cell. In the Born —von Karman model
of the lattice dynamics, the interatomic force constants are
regarded as adjustable parameters whose values are to be
determined from a comparison of the predictions of the
theory with experimental data.

With respect to developing quantitative discussions of
the phonon focusing at THz frequencies, we need to know
correct dispersive characters of the phonons in Ge. In the
present work we have employed the Born —von Karman
scheme and then tried to construct a dynamical matrix
which may reproduce as accurately as possible the data of
the dispersion obtained by the inelastic neutron scatter-
ings, ' ' as well as the data of elastic constants. In this
formal force-constant model, by adding interactions ex-
tending to the atoms at a distance, we can obtain, in prin-
ciple, the dynamical matrix which may yield the phonon
dispersion relations fitted to any degree of accuracy to
those measured by the experiments, provided that the
crystal is intrinsically regarded to be harmonic. In fact,
Herman showed a long time ago that the interatomic
forces at least up to fifth-nearest neighbors are required to
reproduce qualitatively the notable flattening of the
dispersion curves in the TA branches of Ge. More re-
cently, Zdetsis and Wong extended this scheme including
the interatomic force constants up to eighth neighbors.
Their results fit considerably the dispersion curves along
the principal 6-, X-, and A-symmetry directions. Howev-
er, two force constants in the seventh neighbor have been
overlooked.

In the present work we have tried to search the best-
fitted force-constant parameters also up to eighth-nearest
neighbors. The values of these 31 force constants we have
found are given in Table I with the notations of Herman.
The searching procedure of the parameters we adopted is
the same as that in Ref. 25; that is, the experimental data
used in fitting process are 70 evenly distributed points on
the phonon dispersion curves along three principal direc-
tions in addition to the Raman frequency and three elastic
constants. With the use of the force constants in Table I,
we have diagonalized the dynamical matrix and found

v
0 74%

where n =71 i.s the total number of fitted frequencies. The
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TABLE I. Fitted force constants for Ge (10 dyn/cm).

a")
p() )

(2)

g(2)

v(2)

g(2)

(3)

g(3)

v(3)

g(3)

4.2533
3.7007

0.3317
—0.7210

0.2019
0.1686

—0.0696
—0.2547
—0.2035
—0.1377

(6)

g(6)

v(6)
(6)

(6)

a(7)
p(7)

(7)

g(7)
v(7)

g(7)

—0.0084
0.0670

—0.0945
0.0359
0.0539

—0.0591
0.1068
0.1560

—0.0209
0.1128

—0.0262

(4)

X(4)

(5)

g(5)

v(5)

g(5)

0.1699
—0.2556

0.1484
0.5472
0.1057
0.1728

(8)

v(8)

g(8)

0.0161
—0.1565

0.0133
—0.0490

value of Eq. (3) is in accordance with the estimated uncer-
tainties of the measured phonon frequencies ranging from
0.3%—0.5% for optical branches and 0.3%—1% for
acoustic branches. '

The comparison of the calculated frequencies with the
experimental ones is shown in Fig. 1. The coincidence of
our calculations with the experiments is quite satisfac-
tory except for the LA phonons on the Brillouin-zone
boundaries L —K. This close coincidence tells us that the
effects of isotopes and anharmonicity upon phonon fre-
quency are rather small in Ge. The slight deviations
recognized for the LA phonons at the zone boundaries
may be remedied by adding interactions of atoms beyond
the eighth neighbors, or by including the anharmonic ef-
fects.

In Fig. 2 we have displayed the computer plot of the
one-phonon density of states together with the contribu-
tion of each branch. Comparing it with the results for
the density of states by Nelin and Nilsson' who employed
the extended sampling method with experimental data,
our results are much more smooth and exhibit numerous

critical points more distinctly.
Plotted in Figs. 3(a)—3(c) are the sections by the (110)

plane of the u surfaces in the wave-vector space which are
obtained for three acoustic branches. {We refer to the
phonons in the lower and higher TA branches as T1 and
T2 phonons, respectively. ) In these maps we immediately
recognize conspicuous deformations of the m surfaces at
dispersive frequencies. Since the focusing properties of
the phonon are closely connected with the shape of the cu

surface through the definition of the group-velocity vec-
tor, it is such that the deformations of the co surfaces
should lead to drastic alterations of the focusing behaviors
of the large-wave-vector phonons. For instance, the
strong magnification of the T2 phonon focusing in the
[110]axis and also in the direction rotated about 25' away
from the [001] axis are expected at near-zone-boundary
frequencies. In addition, the sharp focusings of the LA
phonons in the [001] as well as [111]directions are expect-
ed at frequencies much higher than 1 THz in spite of the
fact that the former direction is the defocusing one in the
low-frequency limit. These situations for the LA phonons
have already been described in Ref. 9.

Here we remark that the correct understanding of the
phonon focusing even in the {110)plane in the real space
spanned by the group-velocity vector requires the
knowledge on the whole three-dimensional shapes of the ~
surfaces. This is because there exists, in general, more
than one direction of the wave vectors for which the group
velocities of the phonons point in the same direction,
though they may be different in magnitude. In Figs.
4{a)—4{d) we have illustrated the first octants of the m sur-
faces for the TA phonons at 0.3 and 1.5 THz. In these
figures the regions of both the negative curvature {saddle
areas) and positive curvature {concave and convex areas)
are indicated explicitly. (The determination of the curva-
ture of the co surface will be described in Sec. III.) Now it
should be noted that the former frequency can be viewed
as a typical one in the weak dispersive region because the
shapes of the co surfaces at this frequency are nearly iden-
tical to those in the low-frequency limit. ' In contrast,
the latter one may be regarded as the frequency in the
highly dispersive region because of marked deformations
of the ~ surfaces.

The effects of the acoustic dispersion upon the shape of

0
L L K W

FIG. 1. Phonon dispersion curves for Ge. Solid lines show our calculations. Experimental values (closed circles) are from Refs. 16
and 17.
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FIG. 2. Computer plot of one-phonon density of states calcu-
lated for Ge.
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the co surfaces are qualitatively understood by making
reference to Fig. 4. For the T1 mode, by increasing the
frequency the saddle areas which extend from the three-
fold [ill] direction toward the [100] direction become
narrow and the fourfold concave areas which are confined
to exist in the proximity of the [100] direction shrink gra-
dually. The latter areas are checked to disappear at a fre-
quency close to 1.2 THz. On the other hand, for the T2
mode, the saddle areas which spread on either side of the
(100) plane broaden by increasing the frequency. These
changes in the co surfaces make us conceive the reduction
(magnification) of the Tl (T2) phonon focusing in the
directions existing in the vicinity of the (110) [(100)]plane.
However, for much more detailed understanding of the
focusing characteristics beyond those described hitherto
we need to examine the directional properties of the pho-
nons in the real space. This requires extensive numerical
calculations based on the force-constant model described
in this section and will be carried out in the following sec-
tions.

05-

6
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III. CAUSTICS AND DISTRIBUTIONS
OF PHONONS IN THE REAL SPACE

Owing to the presence of crystal anisotropy, the ~ sur-
face of the phonons consists, in general, of areas of both
the positive and negative curvatures which are separated
from each other by the zero-curvature parabolic points.
The direction of the group velocity is, by its definition,
given by the outward normal of the m surface. According-
ly, an infinity of the wave vectors is mapped into a single
direction in the real space which is parallel to the surface
normal at the parabolic point. In other words, in such a
direction, which is called a caustic, the phonon flux ex-
plodes. Thus the caustic provides a singularity in the pho-
non intensity which characterizes the phonon focusing. In
this section we shall investigate the effects of the lattice
dispersion upon the locations of the caustic and also upon
the phonon distributions in the real space.

0.5
q (2n/a}

I I I I

1.0
6.37+ 0.03

FIG. 3. Sections by (110) plane of calculated co surfaces of (a)
T1 mode, (b) T2 mode, and (c) LA mode. (Frequencies indicated
are in units of THz. ) Frequencies at zone-boundary points X, L,
and K are shown in parentheses; the calculated value is in the
upper row and the experimental value is in the lower row.

A. Caustics

To begin, let us denote by d Q(q, j) an infinitesimal solid
angle occupied by j-mode phonons in the wave-vector
space, and by d Q( v( q,j)) the corresponding solid angle in
the real space spanned by ihe group-velocity vector v.
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~ ~ (q~j) C(2)iap(q'j J)
9a VP

where

=gee*(o ~qj)
a, P a, o'

O'"'6 p(o, o'
~
q)

X
~9'pl ' ' ~9'pn

Xe&(o'
~
q, j')

and the summation over j' extends over the optical as well
as acoustic branches. We have obtained the curvature and
then the caustics of the TA phonons at the dispersive fre-
quencies by deriving analytical expressions for both the
first and second derivatives of the dynamical matrix,

which includes the interatomic forces up to eighth neigh-
bors.

The locations of calculated caustics of the TA phonons
are shown in Figs. 5(a)—5(d) for 0.3, 0.7, 1.0, and 1.5 THz,
respectively. The diagrams are the polar projections of the
irreducible 4, th sector of the section of the caustic sur-
faces by unit sphere in the real space. The effects of the
acoustic dispersion upon the locus of the T2 phonon caus-
tics are rather simple, that is, with increasing the frequen-
cy the caustics shift rapidly away from the (100) plane.
This behavior has been supported by experiments. The
theoretical frequency dependence of the locus of T2 caus-
tics is given in Fig. 6. According to this figure, the experi-
mental value of the opening angle of the T2 caustics ob-
tained with the tunneling junction detector corresponds to
the frequency of 0.8 THz.

In contrast, the change of the singularity patterns for
the T1 phonons is more complex. We see that there are
two sets of the caustics near the [100] directions. Firstly,
the inner structure of the caustics in the proximity of the
[100] axes contracts with increasing the frequency and
then disappears at a frequency close to 1.2 THz (see Fig.
6). (This structure of the caustics is originated from the
fourfold closed curves of the parabolic points encircling
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FIG. 5. Polar plots for the sections of caustic surfaces by the fundamental 48 th sector of a unit sphere in the real space. Frequen-
cies selected are (a) 0.3 THz, (b) 0.7 THz, (c) 1.0 THz, and (d) 1.5 THz. Solid lines indicate the T1 mode and dashed lines represent
the T2 mode.
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FIG. 6. Calculated locations of the caustic directions vs fre-
quencies. in the (110) plane. Solid line represents the locus of the
inner structure of the Tl caustics in the proximity of the [001]
direction. The angle shows the value measured from the [001]
direction. Dashed line represents the locus of the T2 caustics
measured from the [110]direction.

the concave regions on the co surface. ) At the same time,
the caustics situated outside those mentioned above can
also be seen to deform considerably. The departure from
the (110) planes of the caustics which extend from the
[100] toward [111]directions is remarkable.

It should be noted that the caustics which give rise to a
threefold-symmetric cusp structure around the [111]
directions remain to exist almost unchanged in all these
figures. The presence of this structure at higher frequen-
cies has made the interpretation of the image of the pho-
nons higher than 0.7 THz obtained by the Pb-oxide-Pb
tunneling junction detector somewhat difficult. This is be-
cause in the image the focusing structures of the T1 pho-
nons, which develop from the [100] to [111]directions, are

missing, including the cusp structures, though they can be
seen vividly in the low-frequency image. Then we have
examined more closely the origins of these structures by
referring to the geometrical structure of the co surfaces.
For illustration, the details of the lines of parabolic points
on the m surfaces at 0.3 and 1.5 THz are displayed in Figs.
7(a) and 7(b), respectively. Also indicated in these figures
by dotted lines are the directions of the wave vectors
which lie out of the (110) planes but are accompanied by
the group-velocity vector of the T1 phonons oriented
parallel to the same plane. Note that the various points
marked A,B, . . . , are mapped onto A, B, . . . , respective-
ly, in Figs. 5(a) and 5(b). It can be shown that the cusps
on the caustic lines arise when the direction of vanishing
Gaussian curvature touches the parabolic line on the co

surface. ' The points on the co surface which yield the
cuspidal edges on the caustics are C and H in Fig. 7(a),
and C and F in Fig. 7(b).

[oo~l I

lo
I

20 30
e (deg )

From Fig. 7(b) we know that at 1.5 THz the points on
the comparatively short portion of the parabolic lines be-
tween E and F, which extend over b,8,b,g = 1.5', 0.3' on~q 0 ~q

the co surface, are mapped onto the corresponding long
section E to F along the caustics which extend over
b, 8. ,5$ =6.5', 8' in the real space. This suggests that
the phonon intensity along the caustics E to F should be
reduced considerably as compared with that along the
caustics 6 to H at 0.3 THz.

B. Phonon-enhancement maps

More explicit information on the accumulation of the
phonons on the caustics may be gained by plotting the
directions of the group-velocity vectors [which are deriv-
able from Eq. (6)] onto the polar plane of the real space.
In Figs. 8(a)—8(d), the distributions of the TA mode pho-
nons in the real space can be viewed. In these plots we im-
mediately recognize the presence of heavy accumulation

FIG. 7. Parabolic lines on the co surfaces at (a) 0.3 and (b) 1.5
THz. Solid lines indicate T1 mode and dashed lines represent
the T2 mode. Dotted lines show the directions out of the (110)
plane of the wave vectors whose corresponding group-velocity
vectors of T1 phonons point the directions in the (110) plane in
the real space. The positions marked by A, B, . . . , are mapped
onto A, B, . . . , respectively, in the real space sho~n in Figs. 5(a)
and 5(d).
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IV. PHONON INTENSITY

Id3 q I

v( q, j)f[ n

N(q, j;d'q)u(q, j)6
co, co( q,g) '

(9)

A. Energy flux of the phonons

Clearly, a quantity which may be obtained directly by
experimental measurements is the phonon intensity, or the
energy flux of the phonons. This implies that the study
on the phonon intensity should provide more direct infor-
mation for the dispersive effects on the phonon focusing
to be tested by the experiments.

Here let us consider the phonons with frequencies in the
range ~-m+d~. Then the energy flux I of those pho-
nons of mode j, which may be emitted into an infini-
tesimal solid angle d0(n) around the unit vector n
(

~

n
~

= 1) in the real space, is given by

I(co,j;n)dQ(n)dco

where f is a distribution function of the phonons which is
assumed here to depend on both the frequency and a tern-
perature T of the local source of the phonons. The expli-
cit expression of f, however, relies deeply upon the details
of the excitation mechanisms of nonequilibrium phonons
though it may be replaced essentially by the Planck distri-
bution at low excitation levels of the phonons. On the
other hand, assuming that the excited phonons are distri-
buted uniformly in the wave-vector space of the crystal,
the local phonon density of states dD takes the following
form

dco(q, j)
dqz ——

v(q, j)
(13)

dD ( q, j)dco=,dS ( q,j)dq),
(2m. )'

where V is the volume of the excitation region, dS is an
element of area on the surface of the selected constant fre-
quency co =co( q,j) in the wave-vector space, and dq)
denotes the perpendicular distance between the surfaces ~
constant and co+de constant, i.e.,

where the summation should be taken over possible
volume element d q in the wave-vector space of the pho-
nons for which the group-velocity vector may be parallel
to n, or

(10)

Accordingly, it is derived that

I (co,j;n ) = ficof (co, T) gy dS„(q,j)
(2~)' dn(n)

(14)

u(q, j)
and N represents the number of the phonons which take
part in this flux. This number can be written as

N(q,j;d q)5
( )

f(co, T)dD„(q,j. ——)dco,

where the sum is taken over possible surface elements for
which the surface normal becomes collinear with the vec-
tor n. Introducing further the phase velocity c and mak-
ing use of the angle 0 between q and v, Eq. (14) may also
be written as

(
.

)
V ~3f ( T) I rom( q, j) , dQ( q,j) ~p v(q, j) d~(~ .

)
c (q,j)coso(q, j) dQ(n) v(q, j)

(15)

with the definition

a' n —'q'I) dn(q, j)=1.
u(q, j)

Hence identifying d0(n) with dQ{ v(q, j)), we have

(16)

I(co,j;n ) = fico f (co, T) W (co,j;n ),
(2ir)'

where

~..(- )W(co,j;n)= I ' ' &(q,j)
c (q,j)cos8(q,j)

t

xS' ——'q'I' dn( )-
v(q, j)

Thus it can be seen that the enhancement factor 2 of the
phonon flux plays the central role in determining the pho-
non intensity. Incidentally, cosO( q,j)=c ( q,j)/v ( q,j)
holds for nondispersive phonons, and in this case Eq. (15)
is similar to the expression derived by Rosch and leis for

the phonon flux in thermal equilibrium. "
Now plotted in Figs. 9(a) and 9(b) are the angular distri-

butions of W's and their sum in the (110) plane of the TA
phonons at frequencies 0.3 and 1.5 THz, respectively.
Note that the angular dependence of the phonon intensity
is exclusively included in 8', and its sharp features stem
essentially from the phonon-enhancement factor A. This
is because the factor c2coso in Eq. (18) depends rather
moderately upon the direction and acts only to reduce the
phonon intensity of the T2 mode relative to the T1 mode,
and also to reduce the overall magnitude of 8' at lower
frequencies.

Taking these factors into account, the structures at 0.3
THz are found to be nearly identical to that of the phonon
intensity in the low-frequency limit. ' Comparing with
the results at 0.3 THz, the reduction of the phonon inten-
sity in the neighborhood of the [111]direction is indeed
remarkable in the figure at 1.5 THz. The directions
marked by arrows in these figures are those at which the
caustics intersect with the (110) plane [see Figs. 5(a) and
5(d)]. The positions of the arrows coincide well with the
directions along which the phonon intensity is amplified
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FIG. 9. Angular dependences of TA phonon intensities in the
(110) plane integrated over 0.25 and 2.5 within and perpendicu-
lar to the plane, respectively. Frequencies are (a) 0.3 and (b) 1,5
THz. Dotted and dashed lines represent the contributions of Tl
and T2 phonons, respectively. Solid lines are their sum. Posi-
tions indicated by arrows show the directions at which the caus-
tic surfaces intersect with the (110) plane [cf. Figs. S(a) and
S(d)].

B. Cxroup-velocity surfaces

Further insight into the origins of various singular
behaviors of the phonon flux including the one mentioned

strongly. Slight deviations of H and 6 at 0.3 THz and of
I' and F at 1.5 THz from the peak locations are the effects
of finite magnitude of dQ(n) assumed in the calculations.
When we postulate a finer angular resolution of the pho-
non detection perpendicular to the (110) plane, more satis-
factory coincidences are obtained. Another characteristic
feature observed in the phonon intensity at 1.5 THz is the
present of the sharp hump in the T2 mode which is locat-
ed at 6.5 measured from the [001] axis. The origin of this
structure cannot be attributed to the caustics in the (110)
plane and will be discussed below.

above may be provided by considering the group-velocity
surfaces. In Fig. 10 the (110) sections of the group-
velocity surfaces of the TA phonons are plotted for 0.3
and 1.5 THz. This figure is obtained by selecting a set of
group-velocity vectors which lie within +0.1' of the (110)
plane. Hence the density of the plotted points represents
again the concentration of the phonons in the real space.

Apparently these surfaces are considerably complex in
comparison with the m surfaces in the wave-vector space.
It is, on one hand, due to the fact that the transitions of
the phonon modes from T1 to T2 and vice versa happen.
At lower frequencies these transitions turn up, owing to
the intersection of the co surfaces of two TA modes in the
[111]direction. At higher frequencies, e.g. , 1.5 THz, ad-
ditional intersections take place due to large deformations
of the co surfaces. At 0.3 THz the directions along which
the T2 phonons cannot propagate in the (110) plane are
those within +14.3' on either side of the [111] axis,
whereas at 1.S THz they become 10.0' to 15.0' rotated
away from the [001] axis, in addition to those within
+ 10.6 on either side of the [111]axis.

The more substantial complexity stems from the mul-
tivaluedness of the surfaces, reflecting the fact that the
phonon flux of a TA mode in a given direction consists
generally of more than one phonon traveling with group
velocities different in magnitude. (They should, in princi-
ple, be observed separately by the high-resolution time-of-
flight experiments. ) In particular, certain phonons in the
T1 branch whose wave vectors lie outside the (110}plane
can still have group velocities in this plane. The locations
of the corresponding wave vectors on the cu surfaces have
already been depicted in Figs. 7(a) and 7{b). The group-
velocity surfaces which are constructed by these phonons
are those branches in which no transition points to the T2
phonons exist in Fig. 10.

Now the comparison of these traces at different fre-
quencies enables us to identify some characteristic changes
of the group-velocity surface other than the overall shrink-
age at the higher frequencies (which is evidently due to the
dispersion). One of the observations may be the remark-
able growth at the higher frequency of the sectioned fold
of the T2 mode in the vicinity of the [110] direction,
which results from the development of the negative curva-
ture region of the co surface near the [110] direction [see
Fig. 3(b)]. It has been well established that the sectioned
fold edges of the group-velocity surfaces are originated
from the parabolic points on the associated co surfaces and
thereupon indicate the caustic directions. The positions of
the caustics in the (110) plane shown in Figs. 5(a) and 5(b)
are really in one-to-one correspondence with the fold edges
marked in Fig. 10. Here we remark that at the points H
of 0.3 THz and I' of 1.5 THz, the complete surface ter-
minates making a cuspidal edge, though it cannot be seen
so obviously due to an overlap with the surface of another
branch.

Another outstanding feature observed in Fig. 10 may be
the presence of a sharp extremum {equal to 2.85X10
cm/s) in the trace of 1.5 THz situating at 7.0 measured
from the [001] direction. The appearance of this local ex-
tremum of the group velocity stems from the fact that for
the T2 mode, the contour lines of constant frequency in
the wave-vector space [Fig. 3(b)] are in close order around
the corresponding direction, i.e., about 25.5 to the [001]
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FIG. 10. Sections by the (110) plane of group-velocity surfaces of TA phonons at 0.3 and 1.S THz. Wave vectors on each co sur-
face distributed with a separation 50-,5$ =0.1',0. 1' have been used to generate a set of group-velocity vectors. Each point
represents one of these vectors which lie within 0.1 of the (110) plane. The open triangles indicate the positions at which the transi-
tions from T1 to T2 and vice versa happen. These surfaces fold at points marked by A, B, . . . , and their directions coincide with the
locations of the corresponding points A, B, . . . , in Figs. S(a) and S(d).

axis as well as around the [110] direction. Incidentally,
note that at the same frequency the sectioned co surface of
the T2 phonons possesses a portion which is regarded to
be approximately flat over a finite range of directions, e.g.,
19' to 23' rotated away from the [001] axis. The existence
of this portion of the co surface gives rise to the strong
enhancement of the phonon intensity to be observed in the
T2 phonons near the [001] direction, which cannot be at-
tributed to the caustics. However, at frequencies higher
than 1.5 THz, this hump of the T2 phonons will be re-
placed by the sharp ridges of the phonon intensity charac-
teristic to the caustics because the curvature of the corre-
sponding sections of the co surfaces changes its sign at a
frequency near 1.5 THz.

V. ISOTOPE EFFECTS

The effects of the phonon-isotope interaction upon the
ballistic transmission of near 1-THz phonons are now dis-
cussed. (Owing to the presence of the scattering by the iso-

topes, the ballistic component of the phonon intensity in
Ge is attenuated. The lifetime of the phonons limited by
the isotope scattering is described by the relaxation time
which is spatially isotropic and indeoendent of the polari-
zations of the phonons, i.e., '

'(co) =—Vpg~ &(co),
6

(19)

where Vp is the volume per atom and & denotes the one-
phonon density of states shown in Fig. 2. The constant g
is defined by

g = g y;(I —m;/m) (20)

where y; and rn; are the relative fraction and mass of the
ith isotope, and m is the average mass of all atoms. For
Ge, g takes a value of 5.87&(10 . In the low-frequency
limit, &(co) o. co and then ~ '~~ . However, near 1-
THz frequencies &(co ) grow more rapidly than co (see
Fig. 2). The effects of the dispersion upon ~ ' amount to
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FIG. 11. Theoretical rates of ballistically transmitted pho-
nons under the presence of the isotope scattering in the experi-
mental configuration by Dietsche et al. (Ref. 3};solid line, [100]
propagation (q~ [100], both Tl and T2) with a path length
0.5(V 2) mm; dashed line, [111]propagation [with q parallel to
the (110) plane, Tl] with path length 0.5(V 3/2) mm; dotted
line, [110]propagation (q

~ ~
[110],T2) with a path length 0.5 mm.

&,h, h ——0.7 THz is the lowest frequency for which the Pb-oxide-
Pb tunneling junction detector can respond.

about 20%%uo at 1 THz and become severe at zone-boundary
frequencies.

In the presence of the isotopes, the expression for the
phonon intensity (18) should be modified as

3 (q,j)~A {q,j)exp[ t (q—,j)/r(co)],

where t{q,j)=dl U(q, j) with v(q, j) ~n is the ballistic
time of flight of the relevant phonons that traverse the
distance d between the phonon source and the detector.

We have displayed in Fig. 11 the transmission rate of
the ballistic phonons which travel along three principal
directions of the cubic crystals and then arrive at the
detector without being subject to the scattering. The con-
figurations of the phonon detection assumed in the evalua-
tion of t are just those employed in the experiments by
Dietsche et al; that is, the phonon source is assumed to
be scanned across a (110) surface of a Ge crystal and the
arrival of the phonons is observed with a fixed detector on
the opposite face at a distance of 0.5 mm. As we have
pointed out repeatedly, the TA phonons which can pro-
pagate in one direction consist, in general, of several
branches. The results shown in this figure are those of the
phonons for which q becomes collinear with v for the
[100] and [110] propagations (i.e., pure mode phonons),
and q lies in the {110)plane for the [111] propagation.
For the propagation in the [110]direction, the only results
of the T2 phonons which focus strongly in this direction
are represented.

Now the ballistic components of the phonons can be
seen to decrease very rapidly at v&0.3 THz. At the

threshold frequency, i.e., 0.7 THz, of the Pb-oxide-Pb tun-
neling junction detector, the rate of the unscattered pho-
nons which may be detected is 26% for the [110]propaga-
tion but it amounts to 14% and 12.5% for the [100] and
[ill] propagations, respectively. The scattering of the
phonons traveling in the [111]direction is more frequent
than those in the [100] and [110] directions, owing to the
smallness of the group velocity, e.g., Ui-&]~~

——2.76&(10,
U~ ~oo~

——3.36 X 10, and U~ »oj ——3.48 & 10 in units of
cm s ', and also owing to a relatively long path length of
d =0.5(~3/2) mm for this propagation of the assumed
configuration (incidentally, d=0.5(v 2) mm for the [100]
propagation). Accordingly, in the experimental arrange-
ments by Dietsche et al. , the scattering of the phonons
by naturally occurring isotopes in Ge results in signifi-
cantly reducing the ballistic phonon intensities which are
observed in the [100] and [111]directions. As remarked
in Sec. III, the experimental value of an opening angle of
the T2 phonon caustics obtained by the tunneling junction
detector corresponds to the phonon frequency of 0.8 THz.
At this frequency, the isotope scattering of the phonons
renders the rate of the ballistic transmission of the T2
phonon intensity to be 9% in the [110) direction. These
observations convince us that the detection of quasimono-
chromatic phonons in a narrow band of frequencies
0.7—0.8 THz is really intelligible.

We further comment on the absence of the threefold
cusp structures of the focusing in the image of the pho-
nons higher than 0.7 THz. This has partly been explained
before by the dispersive effects on the phonon focusing.
However, as we can understand from Fig. 8, it may be
rather hard to account for quantitatively the reason based
only on the dispersion. This is bemuse the theoretical
phonon distribution pattern near the cusp of 0.7-THz pho-
nons is not so drastically modified from the corresponding
pattern of 0.3-THz phonons which may be observed by the
Al bolometer. In this connection the scattering of the
phonons by isotopic disorder in Ge should again play an
important role. Indeed, due to the presence of this scatter-
ing mechanism, it is only 12.5% of 0.7-THz phonons
emanated in the [111] direction that can respond to the
detector as unscattered ballistic phonons, whereas they
amount to 94% at 0.3 THz. A more complete analysis of
the phonon intensity, including the effects of the phonon
scattering, requires further knowledge on the distribution
function f (to, T) together with the value of T which de-
scribes the local temperature of the phonon source.

To conclude, in order to verify experimentally the
predicted focusing structure near the [111] direction,
much thinner samples, or the configurations in which the
path length of the phonons for the [111]propagation be-
comes much shorter, should be prepared.

In this paper we have given a detailed theoretical
analysis for the focusing of the TA phonons in Ge with
frequencies ranging 0.3—1.5 THz. Our calculations are
based on a lattice-dynamical model which very accurately
describes the phonon dispersion relations. A complemen-
tary study of various quantities which account for the
directional characteristics of the phonons, such as the
caustics, phonon distributions in the real space, and angu-
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lar dependence of the phonon intensity, reveals consider-
able alterations of the focusing properties of the phonons
at frequencies higher than 0.3 THz. If we appropriately
take into consideration the isotope effects upon phonon
conduction which become significant at frequencies near
the 1-THz range, our results are in good accordance with
the experimental findings by Dietsche et al'. , including
the absence of the structure near the [111]directions.

The results exhibited extensively in the present work are
those on Ge. However, the same kinds of behaviors of the
phonon focusing at dispersive frequencies are expected as
well for GaAs and Si. This is because their dispersion
curves are very similar to those of Ge characterized by
marked flattening of the TA branches in the [111] and
[100] directions. Especially, for GaAs, even the magni-
tudes of the frequencies lying on the dispersion curves of
acoustic branches are very close to those of Ge, while Si is

much harder than Ge.
In contrast, the isotope effects upon the phonon conduc-

tion in GaAs is expected to be much weaker than those in
Ge. This relies deeply on the fact that the element As is
isotopically pure and that Ga consists of only two isotopic
atoms even though Ge is a mixture of five isotopes. The
quantity g for GaAs is 1.97X10 ", which is nearly one-
third of the corresponding value for Ge. Furthermore, it
has been shown that the lattice vibrations of As do not
contribute to the scattering, and the effective one-phonon
density of states available for the final states of the scat-
tered phonons is also reduced to about one-half or less in
comparison with that of Ge. Accordingly, the effects of
the isotopes for the phonons in GaAs are estimated to be 1

order of magnitude smaller than those in Ge. This implies
that the detection of the ballistic propagation of the
dispersive phonons is more feasible in GaAs that in Ge.
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