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Langevin equation for hot-electron problems
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In this paper, we build a Langevin equation for the macrovariables of an electronic system in con-
tact with a lattice, when the entire system is in the hot-electron regime. A bridge is established be-
tween this equation and earlier ones which give the thermodynamic motion of these microvariables.
Finally, by focusing on the Langevin equation for the electronic momentum of the system, we exam-
ine the causes of the failure of the first fluctuation-dissipation theorem in its usual form in the sta-
tionary (far-from-equilibrium) situation.

I. INTRODUCTION

The hot-electron problem in semiconductor transport is
a classic problem in the area of nonequilibrium statistical
mechanics. This problem has received considerable atten-
tion in the past two decades, ' but the majority of this
work has centered on the long-time limit applicable to the
Boltzmann equation. With the advent of very-small semi-
conductor devices in which the drift length (in a high elec-
tric field) is of the same length as that necessary for
momentum and energy relaxation to occur, it has become
nt,*cessary to examine more fully the short-time limit, one
which has received only limited attention to date. In this
region, it is possible in fact to find and use a Langevin
equation approach to treat the transport problem. The
derivation of a Langevin equation for the problem of hot-
electron transport is twofold: First, for a theoretical basis,
it is required that one understand how fluctuations build
up during the evolution of the carrier system toward the
nonequilibrium steady state (the stationary state), and
second, it is also necessary to examine the structure of the
fluctuating forces themselves once the system reaches this
stationary state.

In addition to the above problems, it is also necessary to
study the resulting Langevin equation itself in the station-
ary state. In particular, this study should yield insight
into the limits of application of the first fluctuation-
dissipation theorem (the so-called Kubo fluctuation-
dissipation theorem) that has previously been discussed in
a somewhat different context by Proccacia et al. Indeed,
it has long been supposed that this theorem is invalid in
the nonequilibrium, hot-carrier regime. The presence, or
lack, of this theorem is crucial, since for practical reasons
it is necessary to be able to predict the noise characteristics
of these very-small semiconductor devices.

From first principles, one can choose either a mechani-
cal approach such as the Langevin equation ' or a ther-
modynamic approach in which the time evolution of the
relevant macroscopic variables (the macrovariables) is
determined. In this work we shall choose the latter ap-
proach and build toward a Langevin equation by using the
general principles described earlier by Zubarev. This is
done in Sec. II. Then, in Sec. III, our derivation of a con-
ceptual framework for the Langevin equation is presented.

This latter approach has several analogies with the earlier
work of Grabeit, although the present point of view and
approach differ from this latter work. Finally, in the
remaining sections, we make the connection to the ther-
modynamic equations for the macrovariables previously
treated by Kalashnikov and Ferry by using the Langevin
equation obtained in Sec. IV. We end by discussing the
problems which come into play with the first fluctuation-
dissipation theorem. We find that this latter approach
cannot be treated in a consistent manner, although the
second fluctuation-dissipation theorem remains valid.

II. THE QUAS IEQUILIBRIUM STATISTICAL
DISTRIBUTION

In the approach to be used here, we treat an electronic
system in a semiconductor lattice. One cannot decouple
this sytem from the lattice if a complete and accurate rep-
resentation is to be achieved. We therefore take the Ham-
iltonian of the system to be

H =H, +H,f+H, I +HI,
where H, is the complete electronic Hamiltonian (includ-
ing the electron-electron interaction), H, L is the electron-
lattice interaction, H, f is the time-independent electric
field term, and HL is the Hamiltonian of the lattice vari-
ables (usually limited to those terms representing the pho-
non field).

Following earlier work in this approach, " we intro-
duce a set of thermodynamically relevant variables (the
macrovariables) of the problem. There is no absolute rule
governing such an approach. Rather, one must be led in
this by physical intuition, and the aim of this approach is
to be able to describe in a deterministic manner all the im-
portant thermodynamic properties of the system. We note
also that the choice of the pertinent macrovariables used is
critical, as this choice and the definition of the entropy
operator for the far-from-equilibrium system are two as-
pects of the same problem.

In the problem at hand, we choose to use the electronic
energy H„ the total momentum of the electronic system
P„ the energy of the lattice system HL, and the momen-
tum of the lattice system (which is identically zero). In
order to maintain a grand canonical framework, we add to
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the previous set the number operator X, for the electrons.
Many people approach the treatment of this system by

the introduction. of a "drifted Maxwellian" distribution
function, in which the density matrix of the system is as-
sumed to be not too far from'

pL o=exp —$0—gF (t)P

where the time to which pL, and F refer has been
«opped. Here the notation P L means the time variation
introduced by i [H, t. ,P~ j. We first note that the property
(5) is trivial if P =H, t . To demonstrate (5) for the other
four macrovariables, we note that

[pt. H, L ]= [p—L P.H—, +P,VDP. +P,p'&, Pt. H—t. ] .

where the individual P s are the previously defined ma-
crovariables and the F 's are the thermodynamically con-
jugate forces associated with the macrovaaables. In addi-
tion, the quantity $0——ln(Trpt o) assures the proper nor-
malization of the system by introducing a quantity similar
to a partition function.

However, the above choice of pL o is not convenient, pri-
marily because it does not give the proper equilibrium
density matrix when F=O ((P, ) =0 as well) and when

P, =PL, (P, and Pt. are the inverse temperatures of the
electronic and lattice systems, respectively). In other
words, if we write the Liouville operator equation with the
total Hamiltonian of (1), but without the electric field, we
would like any irreversibility to arise only from the fact
that the trial density matrix does not obey the Liouville
equation when the system is not in equilibrium. If we
write the density matrix in the linear-response form
p=pL +Ap, the Liouville equation for the deviation term
is (A=1)

i ——[H, b,p] = [H,pt] —i. Bkp . ~pL

Bt Bt

Thus in order to fit the above requirements, we must in-
troduce terms in H, L into pL, o.

To accomplish the above goals, we introduce the term
as a thermodynamic variable as well. To be con-

sistent, however, we assign it the conjugate force PL. We
can then define the quasiequilibrium statistical distribu-
tion (QESD) as

The result (6) arises from the evident commutation of pt
and g F P

We pointed out earlier that the rnacrovariables are de-
fined through the averaging process (P ) =Tr(pP )

=Tr(pt P ). It is therefore evident that

6(P ) = —g (P~;P„)'5F„ (7a)

&P. ) = —g (P.;P„)'F„, {7b)

Now, by writing (P~ t ) =i Tr(P~[pL, H]) and using the
above expression for [pt,H, t ], it becomes easy to demon-
strate (5) by recognizing that the first four macrovariables
mutually commute. The property (5) implies that we can
prepare our system in a state defined by the QESD (4) so
that the physical irreversibility which arises from 0, L has
no effect on the motion, at least during the time in which
the system resides in a stationary state. We will see below
that (5) is essential for the derivation of a Langevin equa-
tion describing the motion of the first four macrovari-
ables.

We can also easily establish (6). We first write the aver-
age of the time variation of the quantity

g(P ) F =i +F Tr(H[P, pL])
m PB

=i Tr H gF P~pL

pt ——exp —P —g F (t)P

where

IP I
= IP„H„1V„Ht,H, I ]

(4)
where the correlation function (P;P„)' is defined by

1(P;P„)'= I drTr[P e ' '"(P —(P )')
(~—i)o(t)~X&

IF I =I f3, VD 13~ p~(P——2mVD) pL 13L, ] .

The values of the F 's are such as to make
(P ) =Tr[pLP ] for the first four of the macrovariables.
In the following, we shall use the reduced chemical poten-
tial p' for the quantity p —mVD/2. We further define
o(t) as

tT(t)=p+ QP F„(t) .

We will find it useful in the following first to derive two
important properties of the mean values that are calculat-
ed with the help of pL, the QESD. These are {h=1)

In the following, we will use this correlation function ex-
tensively, and will employ the same formal definition even
if P and P„are time-dependent quantities.

Finally to conclude this section, we note one more in-
teresting property. If P„and P~ are two of the macro-
variables in the hot-electron problem, we obtain

(P„L,'P )'=0 .

This relation is readily obtained from (5), which we can
apply both for pL (associated with the near-equilibrium
force F ) and for pL +5pL (associated with the modified
force F +5F ). Using this combination, we then obtain

(P I )p i Tr(pt [H„P j——)=—0,

g(P &„F =i+F Tr(p, [H,P ])=0,
m m

&P ~)„g,=&P,L&„+g(P, c P.»F.

from which (9) is an obvious result.
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III. THE l3ISSIPATIONI. ESS MOTION

The Langevin equation describes the relaxation of
mechanical variables of a given system that is near equili-
brium. This result was first formally derived with the
help of the projection operator technique by Mori. Such
an approach yields'

&ILtD LA +.e(1—D)jLt( l

ds e' " "Dt'Lei(' —D'Ls(1 D)iLA (10)
0

where A is taken to mean "the set of coupled mechanical
variables of the system, "L is the Liouville operator, and D
is a projection operator.

Usually one constructs the operator D so that terms
such as the second one on the right-hand side (rhs) of (10)
represent the fluctuating force in the system. We would
like at this point to emphasize a physical principle that
leads one to also consider the first term on the rhs of (10)
when constructing D. We consider this technique by ap-
plying the following treatment to our particular problem.

In the framework of the derivation of the Langevin
equation (10), the system is generally assumed to be in
equilibrium at the initial time t=O. Any initial value of 3
at this time is assumed to arise from a static field applied
in the far distant past. Moreover, this field is turned off
at t=O. At time t=O, the "speed' of the variables A is
given only by the first and second terms on the right of
(1O). Since the second term is a fluctuation term by con-
struction, the average speed of 3 is

(A ) (0)= (iDLA )(0),
and there is no dissipation associated with this particular
motion. This simple, but physical, fact is clear if we recall
that at t=O, when the applied field is switched off, the
system still has time reversal symmetry and the fluctua-
tions cannot, by themselves, induce any dissipation.

We now want to turn to the construction of the projec-
tion operator D. We first write

(A )(O) =Tr[p(t =O)A],

dP
=Tr(p, P )+ gn„„(P„—(P„&),

dt DL

where the matrix Q is given by

Q =(P;P)(P;P)

(14)

As before, the correlation functions are given by (8). The
thermodynamical parameters which enter these correlation
functions are given by our initial condition pL, (t =0).
From (14), it is easy to see that the difference between
dP /dt and (dP /dt)

~ DL is just a fluctuation term.
We are now in a position to define the relevant projec-

tion operator, at least at t=O. This becomes

II(0)X =Tr[pL(t =0)X]

+ g (X;P/)(P;P)~k'(Pk —(Pp ) ),

carried out here.
To construct the Langevin equation for the P 's, and

more precisely the projection operator to be utilized in our
hot-electron problem, we are going to use mainly the
above arguments. However, we introduce some slight
differences due to the existence of the far-from-
equilibrium stationary state in the present problem. We
begin by preparing our system at t=O in a thermodynamic
state in which the density matrix is given by pL (t =0), i.e.,
p(t =0)=pL (t =0). We know from (5) that the source of
the irreversibility in the system does not induce any dissi-
pation into the motion of (P ) at this initial time t=o.
Further, a given P can be written ((P ) is assumed to
be(P ) )

P =(P.&+(P.—(P &).

If we seek the particular evolution of P, for which there
is no dissipation at t=O, we suppose that the evolution of
the fluctuation (P —(P ) ) is the same as that for
(5P ) induced by some generalized force 6F (t=o).
(This is a form of an Onsager hypothesis and is consistent
with the fact that 5P should be given by 5pL at t=O to
ensure dissipationless motion. ) We therefore introduce a
dissipationless motion at t=O as

and it now is easy to show that, in the framework of
linear-response theory, we have and at t=O

j,k

(A )(0)=Q(A )(0),
where Q=(A;A)(A;A) '. The correlation functions
which appear in Q correspond to the equilibrium situa-
tion, (A ) =0. These formal expressions are the same as
those given in (8), where o is now recognized as the entro-

py of the equilibrium case. From the above, we can now
define D through

DB =(8;A )(A;A )

At the initial time t=O, the meaning of the first term of
(9) is clear. It is this term that yields the mechanical state
of the system that is being defined by the macrovariables
3 at time t, and these in turn represent the nondissipative
components of the "speed" of these variables. If we use
(12) to define D, we still must check to be sure that the
second term on the right of (10) does indeed represent a
fjkuctuation force. This, in fact, is trivial and will not be

=n(O)iL, P .
DL

(17)

IV. THE LANOEVIN EQUI~ION

Let us now turn to the t&0 case. With the previous
considerations in mind, we will assume that the dissipa-
tionless motion of the P is given by an expression analo-
gous to (14), as

dP

dt
=Tr[p, (t)P ]+gn „[P„(t)—(P„)'],

Here, and in the following, we shall take P to be the
column matrix whose elements are the individual P~'s.
Thus all equations involving P (without an index) must be
interpreted as having matrix products and sums.
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where the matrix Q has the definition (15), in which the
correlation functions are calculated with the appropriate
thermodynamical parameters at time t. By defining H(t)
as

II(t)X =Tr[pt (t)X]

+ y (X;PJ )(P;P) (P —(P )'),
jik

we can write

(19)

=e' 'II(t)Lr
dt

It is obvious from (19) that II(t) is a projection operator.
This operator corresponds to one introduced in a some-
what different manner by Grabert. In Appendix A, we
list several important properties of this operator. The
derivation of a Langevin equation, with the help of (20), is
now just a matter of technical algebra. We first write

=e' 'iII(t)LP+e' 'i [1—II(t)]LP .
dt

(21)

(22a)

dG(s, t)
ds

= —iL [1—H(s)]6(s, t), (22b)

it is easy to establish the following identity:

G(s t) eiL[t —sj

~

~
ds'e ' ' ' 'iLII(s')6(s', t) .

s
(23)

The property given by (23) can now be used to express
the operator e' ' in the second term of (21) within the
framework usually utilized for the derivation of a
Langevin equation, and' '

Introducing the operator G (s, t) as a two-time Green's
function given by '

t6 (s, t) =Tr exp i J du L [1—II(u)]

and satisfying the differential equations

where the first term on the right is a fluctuating force for
our initial condition, as is pointed out in Appendix A.

The second term on the right of (24) is now integrated
by parts, and the first term of (24) is replaced using (25),
so that we arrive at

P(t) =e'~'H(t)P

ds'e' ' H(s')iL [1—H(s')]6(s', t)P
0

+ [1—II(0)]6(O, t)P

+ J, ds'e' ' H(s')6(s', t)[l —II(t)]P,

where the first term gives the dissipationless motion
(which may be compared to the t=O situation). The
second term on the right of (26) can now be divided into
two parts, one of which characterizes the dissipation and
the other of which leads to a fluctuating force caused by
the nonequilibrium nature of the system (we return to the
latter term in Sec. VI below). The third and fourth terms
are two additional fluctuating forces, the former of which
is Mori-type in nature and the latter characterizes the
fluctuations induced by the "speed" of macrovariables
during the transient regime.

Equation (26) is now a Langevin equation for the ma-
crovariables, and its derivation does not include any ap-
proximations. In the next section we focus our attention
on the first two terms on the rhs of (26) and establish that
the evolution of the (P ) given by (26) is the same as that
obtained by beginning with the framework introduced by
Zubarev for nonequilibrium thermodynamics (and used
subsequently for the hot-electron problem by Kalashni-
kovs and Ferry ). For this we use an expansion to second
order in H, z, which is the relevant approximation level of
the electron-phonon interaction in the Kalashnikov-Ferry
results.

Later, we focus attention on (26) as a Langevin equation
for the electronic momentum P, . In so doing, we will
neglect the coupling between the other macrovariables. '

However, we will examine the reason for the failure of the
so-called fluctuation-dissipation theorem in its usual
form.

e'~'[ I —H(t) ]LP =G (0, t)[1—II(t)]LP

+ iLs' ~ I

0

V. THE THERMODYNAMICAI. MOTION
ds e iLH(s )

From the form of (26), it is easy to determine the aver-
&& 6(s' t)[1 H(t)]LP (24) age motion of the macrovariables. This can be written as

In order to exanune the characteristic features of (24), we
have to define precisely our initial condition. For this, we
take p(t =0)=po, where po is the density matrix corre-
sponding to the equilibrium situation where the field is
zero. We therefore assume that the field is applied at t=O
(when P, =Pt. , (V, ) =0). This initial condition corre-
sponds to a particular pz. Now it appears that the first
term of (24) is not a fluctuating force for this particular
initial condition. Nevertheless, we can always write it as

6 (O, t) [1—II(t)]LP = [1—II(0)]6(O, t) [1—II(t)]LP

+ II(0)6 (0,t)[1—II(t) ]LP,

(P(t) ) = (e"'H(t)P &

+ ds'e' 'Il s')iL 1 —II s') G s', t P

(27)

(X)=Tr(poX) .

Equation (27), in which (P(t)) is given by (7b), gives a
closed set of equations describing the evolution of the pa-
rameters F„. Up to second order in the interaction term
M, z, the Zubarev form has been shown earlier to yield
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(P (h))=pa „(P.(t))

+ g f Ck'(P L;P„L(—t))'F„(t t'),—

where P L was defined in Sec. II and corresponds to the
effect of H, L on the time derivative of P . In (28), the
a „arise from the fact that the individual macrovariables
are coupled in the hot-electron case. Here, the Liouville
equation

P =pa „P„.
n

(29)

More precisely, if H, I ——0, the definition of e „ is given
by

Pm =&L0Pm

where L0 is the Liouville operator in the absence of the in-
teraction between the electrons and the phonons, can be
written

To prove the equivalence of (27} and (28), we first look
at the first two terms. The equality of these terms is easi-
ly established through (5). Let us now turn to the dissipa-
tion terms, which we shall examine only up to second or-
der in the interaction H, L. As a starting point, we take
the term from (27) as

T= ds'e' 'H s' I'L 1 —H s' G s', t P

= f ds'Tr[pL(s')iL [1—II(s')]G(s', t}P), (31)

where the last equality comes from Appendix A. To es-
tablish the connection with the equivalent form in (28), we
proceed in three steps. We first show that

T = y f 'ds'F„(s')([1 —11(s')]G(s',t)P;P„}' . (32)

This can be established by recognizing that the properties
of the operator L under a trace operation allow us to write
(31) as

P, =eX,F, 1V, =0 T = f ds'TrI [ tLp (s')—][1—II(s')]G(s', t)P)

H, = P„HL ——0.

Here F is the applied electric field.
Using the Kubo formula for the commutator, T takes the
form

g 1

T = g f ds'F„(s') f da Tr exp —a QFJ(s')P& P„exp a QF. k(s'}Pk . .pL(s')[1 —Il(s')]G(s', t}P
n

0 0

which can be written as (32) by using (6) and the definition (8) for the correlation functions.
For the second part of the proof, we want to show that (32) can be written in the form

T = y f 'ds F„(s )(G(s,h)[1 —11(h)]P;[I—11(s )]P„)' . (35)

This can be established from (32) by recognizing that the
operator G (s', t) has the general property (which can be es-

tablished by its expansion and the properties of Appendix
A)

[I—11(s')]G(s', t)P =[ I —II(s')]6 (s', t)[1—II(t)]P .

[1—II(s')]P„=P„,L
which is easily stated with the help of (9), so that

T= g f ds'F„(s')(G(s', t)P L',P„L )'

(38)

(39)

(36)

We then note that since II(s') is a projection operator as-
sociated with the scalar product (A;8)', defined by (8),
the result (35) follows immediately.

We now show that

T= g f Ck'(PL, ;P„h.( t))'F„(t t')—, —

where P I is a general notation for the P I's. The value
of T given by (37) is the expected result that ensures the
equivalent of (27} and (28). This final result can be estab-
lished by making use of an expansion in H, I up to second
order, an approximation not made up to now. We start by
noticing that

In order to determine T up to second order in H, L, it is

adequate to obtain the expansion of G(s', t)P L only up to
zero order in H, I . This follows from the examination of
the form of (39}. In Appendix B we establish that this
may be achieved by writing

G(s', t)P L PL(t —s') . ——
It therefore turns out that T can now be written as

T= g f ds'(P L(t s'};P„t )'F„(s'), —

which is not exactly the form (37). This is because the
correlation functions are not evaluated at the same time.
However, we can write t —s'=u, so that the correlation
function we must evaluate is
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(P L(u);P„L )'

da Tr[P ~(u)e ~" "'P„~e " "'p~(t —u)],0 t t

p ( t ) e fHQp ( t u )e IHQ (41a)

e acr(t) e
—gaue acr(t —u)eiHu (41b)

where the product (P L ) (P„L ) has been omitted since it
is of fourth order in the interaction. The evaluation of
(40) to second order in the interaction requires that our
knowledge of pL and e only has to be up to zero order.
Up to this order, we can write (here u is always limited to
a characteristic time}

We can now write (40) as

(P L(u};P„t )' "=(PI, ,'P„L(—u))',
which gives (37) for T.

Having shown the equivalence of the two formulations
(namely, the Langevin equation and the Zubarev approach
of nonequilibrium thermodynamics), at least for the
evaluation of the average motion of the macrovariables,
we would like to now look more carefully at the fluctua-
tion forces. To do so, we will neglect the cross-correlation
functions in the dissipation terms of (26) [which has been
shown earlier to be an acceptable procedure if
mV, «(H, ) (Ref. 8)]. We will also neglect these cross
correlations in the fluctuating forces in order to be con-
sistent. Finally, we will limit our study to the Langevin
equation of the momentum P, of the carriers.

VI. DIFFICULTIES WITH THE FIRST FI.UCTUATION-DISSIPATION THEOREM

To proceed, let us now write the equation for the carrier momentum, noting that we are interested only in that com-
ponent P, along the electric field. By using the results of Sec. V, and the definition of the parameter that is thermo-
dynamically conjugate to P„ i.e., —P, VD, we can write the equation as

dP, t—' =eFN, —f p, (r t')VD(t t'—)(P, L,.P, ~—( t')}'dt'—

+ f ds'[P, (s') mN, VD(s')](i—L [1—II(s')]G(s', t)P„P, )' ((P, ;P, )' )

+[1—H(0)]G(0, t)P, + f ds'[P, (s') mN, VD(s')]V—D(s')Tr (s')G(s', t)[1—II(t)]P, (42)

At this time, we wish to group the terms which represent random forces into two groups:

P(s', t) =(iL [1—H(s')]G(s', t)P, ;P, )' [(P,;P, )' ] (43)

Vn(s'} 8 pL4'( 'st) = Tr
2

(s')G(s', t)[1—H(t)]P,
N, m g yD2

(44)

The last kernel, (44), is only different from zero in the case of a nonstationary situation. The first kernel, (43), can be ex-
amined by expanding the terms up to second order in the interaction, as

j 1

P(s', t)=,f da TrIpt (s')[H, [I—II(s')]G(s', t)P, ]e ~ " 'P, e~ ' 'I .
(P, ;P, )'

Now if H commutes with pt (s') (and hence with e "),then ({}(s-',t) reduces to

P(s', t)=,([I—H(s')]G(s', t)P, ;P, )'
(P, ;P, )'

, (P, t;P, L( —t'))',
(P„P,)'

where the last equality is valid up to second order in the interaction.
However, because irreversibility is involved in the p~oblem at hand, pL does not commute with the Hamiltonian H, and

we must write

, [ (P, ,;P, ,{ t') }'+—4(s', t}], —
(P„'P, )'

where I~ can be evaluated in the classical limit (in which quantum fluctuations are ignored) up to second order as

Ig (s', t) = t Tr([pL, (s'),H] I [1—H(s')]P. (t —s') ]P.) . (46)
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The correlation function (P, ;P, }' in (45) can be evaluated with (7a) and we get

(P„'P, )' =Nmg, '(s') .

Our Langevin equation for P, is now

=eFN, — f dt'P, (t t')—P, (t t')(—P, ;P, ( —t'))'+[1—II(0}]G(0,t)P,
t m

+ f dt'[P, (t —t') N,—mVD(t —t')][I~(t —t', t)+g(t —t', t)] . (47)

The first terms in (47) are the expected ones in view of
Scx:. V. The third term is a Mori-type fluctuating force,
and the fourth term comes from the irreversibility and the
nonstationary part of the dynamics. This last random
force term still bears some memory of the past states of
the system. From (47), we can show that the second
fluctuation-dissipation theorem holds for the kernel of the
dissipation term, at least up to second order in the
electron-phonon interaction H, L, which appears to be the
correlation function of the random force.

We would now like to examine the situation for the first
fluctuation-dissipation theorem in the stationary state.
The general form of (47) is then

dP, (t)
dt

=F f dt'K(—t t')P, (t')—+R (t) . (48)

Since we consider the stationary situation, the time t=0
has to be such that p(t =0)=pL (steady state). In (48),
R (t} is the random force.

If we add to F a small field 5F(t), the resulting {5P (t) )
is given by

=5F(t)—f dt'K(t —t')( 5P(t')),

(49)

where the effect of 5F(t) on K(t t') has been negle—cted
(this may be a questionable assumption for far-from-
equilibrium systems, ' but adding this effect would cause
large deviations). The resulting differential mobility is
given by

p(~)= .
l

i to+ K (co)
(50)

The aim of the first fluctuation-dissipation theorem is to
obtain p(to) from the correlation function of P, .

We now define a correlation function C(P, ;P,(r)), such
that C(P„P,(r))=0 if r & 0. From (48},we can write

C(P, ;P,(r))
d

d7

=5(r)C(P„'P, ) —f K(r r')C(P, ;P,(r'))—

+C(P, ;R(r)) .

The second term in (51) has this simple form essentially
because the onset of the correlation function corresponds
to the initial time in (48). If C(P„R (r)) =0, we can ob-
tain the quantity

1

ico+K(co)

[

from (51), and hence the first fluctuation-dissipation
theorem becomes

C(P„'P,(r))(~)
C(P, ;P, )

(52)

In the framework of the approximations of this section,
the critical point in deriving such a fluctuation-dissipation
theorem from (48} is in being able to find a correlation
function which satisfies

VII. CONCLUSIONS

In this paper we have derived a Langevin equation for
the relevant variables of an electronic system that is cou-
pled to a phonon bath in a semiconductor for the case of a
high electric field. The presence of this high electric field

C(P, ;R (r)) =0 .

By considering the R(r) that arises from (47), it appears
that it will be extremely difficult to cancel the two com-
ponents of the random force at the same time. In fact, the
trivial definition

C(P„'R (r) ) =6(r)(P„'R (r)),
where e(r) is the Heavyside step function, succeeds in
canceling the Mori-type fluctuating force but does not
give a zero result for the fluctuating force coming from
the irreversible features of the steady state. In fact, our in-
itial state evolves toward the steady state even though the
thermodynamic parameters stay constant and this irrever-
sible evolution creates the second fluctuating force.

Nevertheless, to overcome this difficulty we can try a
correlation function such as C(P, ( T);P, ( T +r) ), with
~&0, and where T is such that the steady state is well es-
tablished. This would correspond to the fluctuation dissi-
pation in its usual form. However, this definition creates
a further difficulty at the level of the convolution integral
of (51} which does not retain its simple form. Further-
more, there remains little hope to obtain a zero correlation
between P, (T) and the two components of the random
force.

It appears, therefore, that because of the breaking of the
time-reversal symmetry, the correlation between P, and
the random force is always different from zero and it is
therefore not possible to obtain a fluctuation-dissipation
theorem in the usual form for systems which are in a far-
from-equilibrium, stationary situation. The failure of the
usual form of the fluctuation-dissipation theorem was al-
ready recognized by Price and by Procaccia et al. How-
ever, our method of approaching the Langevin equation
gives new insight into this physical phenomenon.
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case leads to a far-from-equilibrium situation. By limiting
our investigations to the Langevin equation for the
momentum in the system, we have shown that it contains
three sources of random forces, two of which have
memory of the past due to irreversibility and nonstation-
ary behavior. In fact, it is the presence of these terms
which causes a failure in the existence of the first
fluctuation-dissipation theorem.

Tr IpL {t)[1—II(t)]X]=0,
(X;Il(r) Y)'=(II(t)X;Y)' .

APPENDIX 8

We want to show that the equality

6 (s, t)P„L Pn I——(t —s)

(A4c)
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is valid to first order in H, I, and the higher orders are in-
significant in the present context. From the definition
(22), we can write

G(s, &)P„= 1+ g J . I I. [1—11(r, )]
rn =1

APPENDIX A: PROPERTIES OF II(t)

The definition of H(t) is as follows:

II(t)X =Tr[pL(t)X]+ g (X;P, )'[(P;P)'],&'

x(Pk —(Pk)') .

X L[1—II(r )]dr, . dr P„i,
(82)

where t] . . t are time ordered so that ti ~t2 &
&r . If we want to evaluate G(s, t)P„L to first order in
H, r, we need to replace L by Lo in (82). We notice that

Properties of 11(t):

Bpl (t)
Il(t)X =Tr[pL (t)X]+ g Tr X

x (Pk —(Pk )'), (A 1}

& pL, (r)
II(t)X = g Tr X (P ) (P —(P ) '),a P„a P,

(A2)

—1)]LOPn, L LOPn, L {B3)

This proof can be extended to all orders in L, o so that

[1—II(t )]P„L =P„I,
thanks to (38). We have now to study the terms
[1—II(r i)]LOP I, in order to evaluate G(s, t)P„L from
(82). It appears that II(t)LOP„L is of second order in
H, L, because [pl. ,HO] is of first order in H, ~ and also
(P„,L,'LOP ) can be shown to be zero, by {30) and (9).
Therefore

II(r)II(t') = II(r'), (A3a) [1 II{rj )—]LoPnL=L oP, ., L

[ 1 —II(r)][1 —II(r')] = [ 1 —tl(r)],

Tr[p(t) II(t)X]=Tr[pL (t)X],

Tr[pL(t)II(t)X] =Tr[pl (t)X],

(A4a)
6 {s,t)I'„ I ——e ' I'„L, (B5)

from which (81) is a natural extension if only the first or-
{A4b) der in H, L is considered.

to first order in H, L. Consequently, up to this same or-
(A3b) der, it is trivial to write
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