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Vibrational spectra of a-Si:H, a-Si:F, and a-Ge:F: Bethe-lattice calculations
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The local densities of vibrational states around Si-H and Si-F bands in a-Si are obtained by means
of a cluster-Bethe-lattice calculation. Nearest-neighbor bond-stretching and -bending constants are
included. The calculations reproduce the peaks observed in the ir spectra of both a-Si:H and a-Si:F
near the upper edge of the TA band ( -210 cm '). As a result of the calculation, these peaks, how-

ever, are seen to have a different origin in the case of a-Si:H and a-Si:F. In the former, the peak is a
resonance vibrating longitudinally to the bond with the H atom rigidly attached to the Si neighbor.
For the a-Si:F case the resonance has transverse character and corresponds to a mixture of wagging
modes of the Si—F bond and TA modes of the a-Si matrix. Published ir spectra of a-Si:H must be
correspondingly interpreted. A calculation of the ir spectrum of a-Si:F, in which the absorption
strength is not an adjustable parameter, is presented and compared with experiment. The calcula-
tions for a-Si:F are extended to a-Ge:F.

I. INTRODUCTION

The ir and Raman spectra of a-Ge and a-Si have been
very useful for the characterization of these materials and
their hydrogenated and fluorinated versions [a-Si:(H,F);
a-Ge:(H, F)].' Local modes of the Si—H, Ge—H, Si—F,
and Ge—F bonds, with the self-explanatory labels of
stretching, bending, and wagging, are usually found next
to a broad, continuous spectrum due to the Si (Ge) matrix.
The continuous spectrum shows four peaks or shoulders
which correspond to the TA, LA, LO, and TO branches
of the crystalline materials. This spectrum, strictly for-
bidden in the pure crystals for these nonpolar materials,
becomes allowed in the amorphous counterparts due to
disorder. The presence of the strongly electronegative
fluorine impurities have been seen to enhance this ir ab-
sorption.

Recently, a sharp resonance or quasilocal mode has been
observed near the top of the TA bands of a-Si:H,
a-Ge:H, ' and a-Si:F. They were recognized in Ref. 4 as
being related to the singularity of the density of states
which exists near the 8' point of the Brillouin zone in
c-Si. The details of this correlation, which —as will be
seen below —seems to be basically correct, are, however,
somewhat obscure. In Ref. 4 the correlation was obtained
by means of a mass-defect local-mode calculation using, as
the mass defect, four hydrogen atoms. While this pro-
cedure may be meaningful for hydrogen, it certainly does
not apply to fluorine because of its heavier mass.

Another attempt to explain these quasilocal modes for
Si-H was made in Ref. 6 with a Bethe-lattice technique. It
was concluded in this paper that the local mode appears if
several hydrogen atoms are clustered together on a plane
to form an incipient [111]surface. However, some diffi-
culties arose in the evaluation of the oscillator strength for
such a model.

In this paper we calculate the local densities of vibra-
tional states for the Si and H (F) of a Si—H (Si—F) bond
with the silicon tied to three other Si atoms connected to a
Bethe lattice (cluster-Bethe-lattice method ' ). Calcula-
tions are also performed for a-Ge:F. In the Si case, a

peak, corresponding to the quasilocal mode discussed
above, can be obtained in the density of states (DOS) for
the longitudinal component of the —Si—H vibration (Si
and H move almost together) for reasonable parameters of
the force constants. In the a-Si:F case the corresponding
vibration is actually transverse polarized and the Si and H
atoms do not move rigidly. The nature of the vibration is
thus completely different from the one above although the
peak in the DOS is similar. Because of this difference we
are able to perform a quantitative calculation of the ab-
sorption spectrum of a-Si:F using for the effective changes
molecular data for SiF4. The calculated spectra agree
rather well with experimental data. Similar calculations
are performed for a-Ge:F. No experimental data are
available in this case for comparison.

II. CALCULATIONS

In the following sections we calculate the local phonon
density of states for the defects in a-Si sketched in Fig. 1,
in which atom X can be either an F or an H atom, or just
nothing for the case of a vacancy. Since we deal mainly
with in-band resonance states, it is necessary that the three
Si atoms connected to the amorphous Si network can vi-

FIG. 1. Diagram of the force constants of the simple model
of Table I used for the calculation of vibrational frequencies in
bulk Si, Si surfaces, a-Si:H, and a-Si:F.
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brate in a bulk environment to reproduce suitably the in-
teraction with the continuous spectrum of the bulk. This
is achieved using the cluster-Bethe-lattice method, ' in
which every dangling bond of the Si atoms in the boun-
dary of the cluster of interest is saturated with an infinite
Si Bethe lattice. We use a valence-force-field model Ham-
iltonian for which the potential energy of deformation of
the system is given by
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vacancy

Si (total)
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+ g R,JR;kKe(j, ~', k)(50,;k)'
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N~(ro) = — lim lm[TrG;;(ro +ig)],y~0
(2)

where 5r,j. and 50j,k are the variation of the distance be-
tween atoms i and j and the angle formed by atoms j, i,
and k, respectively. R,J is the equilibrium bond length.
The index i runs over all atoms of the system and j and k
run over the first nearest neighbors of atom i. This Ham-
iltonian includes two types of interactions: the
stretching-stretching force constants K, (i,j) for the i j-
bonds and the bond bending-bending force constants
K~(i,j,K) for the i —j—k bond angle. In our calculations
we consider only four different force constants for each
system which we will designate as K„and K~ for the Si
bulk and K,' and K~ for the Si—X bond and X—Si—Si
bond angle, respectively. These interactions are schemati-
cally represented in Fig. 1. The Si Bethe lattice has been
solved using the transfer-matrix method. Since the Ham-
iltonian described above includes second-neighbor interac-
tions, we have used a generalization of this method similar
to one recently developed for an electronic tight-binding
Hamiltonian. Details of this method and its application
to this particular cluster calculations are described in the
Appendix. The bulk vibrational density of states obtained
with this Bethe lattice is shown in Fig. 2, using the param-
eters K, and K~ of Table I. These parameters have been
chosen to fit the center of the TO band ( -480 cm ') and
the upper edge of the TA band ( -210 cm '). This densi-
ty of states reproduces qualitatively the Raman spectrum
of a-Si except for two features. First, it does not repro-
duce the two humps observed in the longitudinal acousti-
cal and optical bands due to the absence of closed rings of
bonds in the Bethe lattice. Therefore, the behavior of
these features with the incorporation of H or F cannot be
properly described in this approximation. Nevertheless,
an analysis of the correlation functions reveals that the
transition from an acousticlike into an opticlike longitudi-
nal band at -355 cm ' is present in this density of states.
Second, the Bethe lattice does not satisfy the acoustic lim-
it, having an unphysical lower edge of the TA band at
-70 cm '. Therefore, those defect modes which may ap-
pear near the low-frequency edge of the spectrum have to
be regarded with caution.

This effective medium is connected to the cluster of
Fig. 1 and the 3 &3 G,j matrices are calculated, where G;J
is the set of matrix elements of the Green's function be-
tween atoms i and j as described in the Appendix. The lo-
cal density of states (LDOS) in atom i is given by

0 200 400 600
Frequency ( crn ~)

FIG. 2. Densities of vibrational states for a Si atom near a
vacancy as obtained by the Bethe-lattice technique. These re-
sults are compared with the bulk densities of states. The z coor-

, dinate points towards the vacancy. The results for the vacancy
qualitatively agree with the calculation by the recursion method
performed by K. Suzuki, D. Schmeltzer, and A. A. Maradudin
[J. Phys. (Paris) Colloq. Q6, 42 {1981)].

and the correlation function between the displacernents of
atomsi and j is

(U; U~ ) = — lim ImG J.(ro +ill) .
7T g~0

III. RESULTS

A. Vacancy

For the purpose of comparison we show in Fig. 2 the lo-
cal density of vibrational states for a Si atom near to a va-
cancy, i.e., in a defect such as that of Fig. 1 when atom X
is removed. The main change we can observe with respect
to the bulk density of states is a transfer of about one third
of the states of the TO band to the TA band. In Fig. 2(b)
we show the local density of states (LDOS) in the Si atom
of the vacancy projected on the z and x, y directions, using
the coordinate axes of Fig. 1. Because of symmetry, these
three projections are identical for a bulk Si atom. As can
be easily understood the vibrations in the xy plane are on1y

slightly perturbed, however, the bulk states corresponding
to vibrations of the Si atom against its neighbor in the Z
direction are shifted to lower frequencies near the vacancy.
Notice that we are dealing with an ideal nonrelaxed vacan-

a-Si:H
a-Si:F
a-Ge:H
a-Ge:F

1.3
1.3
1.16
1.16

0.042
0.042
0.036
0.036

2.28
4.4
2.09
4.04

0.092
0.12
0.077
0.1

TABLE I. Force constants used in the present paper (with the
exception of Fig. 8, see text) in 10 dyncm

K,'



E. MARTINEZ AND MANUEL CARDGNA

cy and that we have not taken into account the possible in-
teraction between the dangling bond and the back bonds.
The latter would only be physically meaningful in a
bond-charge description. '

B. Si—H
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FICx. 3. Density of vibrational states for the Si and H atom of
a-Si—H bond in a-Si as obtained with the Bethe-lattice method
using the parameters of Table I.

600

In order to calculate the vibrational density of states
when an H atom is attached to a Si dangling bond in a-Si,
we include two new force constants K,' and E as
described in the preceding section. In the case of the
Si—H bond these two new parameters are fitted to the
wagging (-630 cm ') and stretching (-2000 cm ') fre-
quencies observed in' '" ir and Raman spectra. The
values of these force constants are given in Table I. In
Fig. 3 we show the local density of vibrational states for
the H atom and for the Si atoner~ attached to it. The corre-
lation function Gs; H is positive in all the frequency range
displayed in the figure and in the x, y, and z directions.
Thus, these states correspond to vibrations in which the Si
and H atoms move in the same direction. A comparison
of Figs. 3 and 2 reveals that the H atom induces two main
features in the vibrational spectrum of a Si atom near a
vacancy. (i) The states corresponding to vibrations in the
Si—H bond direction are shifted to higher frequencies and
have the tendency to accumulate near the upper edge of
the TA band. This shift can be easily understood consid-
ering the resistance to deformation of the bond angles
Si—Si—H, introduced by the new force constant K~. The
small mass of the H atom is not large enough to shift
these states down and plays no role in the vibrations of the
cluster. The z component of the vibration shows a weak
peak close to 200 cm '. This peak depends very critically
on the force constants chosen and can be enhanced if the
constants of the Si—Si backbonds are slightly increased
(see discussion). We should point out that a first-neighbor
interaction Hamiltonian is not able to reproduce this
feature, a fact which led to the introduction of the model
of Ref. 6. (ii) The vibrations perpendicular to the Si—H
bond are only perturbed in the TO band centered at 480

cm ' in the vacancy. We can observe a splitting of these
states: Some of them shift to the wagging-mode frequen-
cy at 630 cm ', whereas the rest shift slightly to lower
frequencies at -460 cm '. Finally, we can also see in
Fig. 3(b) that the relative weights of the TO and TA bands
of the LDOS on the H atom are different from those for
the Si atom, the TO band states being enhanced by the
wagging mode in the H states. As we shall see later, this
is relevant to interpret the neutron scattering experiments.

C. Si—F

Ir experiments' ' indicate that the stretching frequen-
cy for the Si—F bond in a-Si is at -830 cm '. This value
has been used to fit the K,' force constant of Table I.
However, the wagging-mode frequency, which would al-
low us to fit the force constant K~, cannot be easily ex-
tracted from the experiments. Extrapolations from molec-
ular data show that, due to the large mass of the F atom,
this mode is inside the bulk continuum spectrum of a-Si
and so we can expect it to interact strongly with the vibra-
tions of the Si atoms. Four peaks have been observed ' '
below 520 cm, associated with the presence of F in a-Si,
at about 510, 380, 300, and 212 cm '. The peak at 380
cm ' can be clearly assigned to the bending mode of the
SiF„molecule due to its annealing behavior. ' The peak
at 212 cm ' was associated with the same mechanism that
gives rise to a peak at the same frequency in a-Si:H; the
peak at 510 cm ' was considered to be a perturbed TQ Si
vibration induced by the presence of F, whereas the wag-
ging mode was ascribed to the peak at 300 cm '. These
assignments had two main problems: First, none of the
mechanisms proposed ' ' to explain the "quasilocal"
mode at 210 cm ' in a-Si:H work satisfactorily in the case
of a-Si:F and, second, it is difficult to understand why the
ir activity of the wagging mode of the rather ionic Si—F
bond is smaller than that of the other resonance modes.

In order to clarify the position of the Si-F wagging
mode and to study its interaction with the bulk continuum
spectrum we have calculated the density of vibrational
states in the cluster of Fig. 1 embedded in a bulk Si Bethe
lattice, for different bond-bending force constants. In Fig.
4 we show the evolution of the total density of vibrational
states in the five-atom cluster when Ee is decreased. For
an extremely high value of Kq (0.4 dyncm ') we can see
the wagging mode as a localized peak at -550 cm
above the bulk spectrum. For smaller values of the E~
force constant two main features should be noticed: First,
this localized peak interacts strongly with the TO band,
shifting its center to higher frequencies and becoming a
strong resonance mode at -505 cm ' for small enough
values of the bond-bending force constant. Second, the in-
teraction of the F atom with the bulk spectrum produces a
broad resonance in the longitudinal Si band that moves to-
wards lower frequencies with decreasing values of K~.
When the TQ resonance mode is at about 505 cm ', that
latter feature appears as a sharp resonance mode in the
TA-band upper edge, near 200 cm '. As will be shown
below these two resonances correspond to wagginglike vi-
bration modes and can be considered as the result of the
interaction of the Si-F wagging mode with the Si bulk.
The value of E~ given in Table I has been chosen to fit
simultaneously the 212- and 510-cm ' expenmental
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II). The frequencies are given by the solutions of

(co"~co"~) = —K' (K +2K )M;M P
(2a)

to the wagging and stretching modes, co& and coq, and two
other modes at lower frequencies (see Table II). For both
atoms, in which coq»co~, we can approximate the fre-
quencies of the vibrations in the Si—X bond direction by

(co)~) +(cop~) = (K, +2Kg)
Si

(co', )~= (K„+SKg+ SPKg ),
3(M„+M~)

(6a)

3 1 1

2 pP Ms;
1+— E'

g (2b)

(~,~~) = K„'(K„+SKg+8PKg),
si™X (2c)

(coi) (coq) = (K„+SKg+SPKg)+—K,',3~s P
(2d)

where p and p are the reduced mass and the ratio of bond
lengths, i.e.,

s +Mx
—1 —1

Rs -x
R$

(3)

In this simplified scheme, the bulk can be approximately
simulated by setting Mz ——oo, P= 1, and K,' g ——K„g and
the vacancy by setting K,' ~ ——0. For the bulk we thus find
a triply degenerate mode at

(rgP) = (K, +2ICg)
Si

(5a)

(e)q) — (E +8&@)
3Ms;

(5b)

As can be seen in Table II, the degenerate mode, corre-
sponding to vibrations in the xy plane, is only slightly per-
turbed with respect to the bulk. However, the vibration in
the z direction shifts to —182 cm, i.e., it overlaps with
the TA band. This explains the transfer of one-third of
the states between the TQ and TA band that can be ob-
served in Fig. 2. The interaction of the modes in our
model for the bulk or the vacancy with H or F gives rise

(~q ) = (K, +4Kg),bulk P

Si

and a triply degenerate zero-frequency mode, which can be
easily related to the optic and acoustic modes of Fig. 2,
respectively. For the vacancy the zero-frequency modes
are not perturbed, whereas the optic modes of (4) split into
a double and a single degenerate mode given by

(~+ )2 (6b)
p

The second is the stretching frequency of the Si—X bond
whereas the first is a perturbation of the vibration (5b) of
the Si atom in a vacancy induced by the presence of atom
X. In the latter case, we can neglect for the Si—H bond
the effect of MH, and the perturbation is reduced to a
hardening of the Si vibrations due to K~. These modes, as
can be seen in Fig. 3, are pushed up towards the TA upper
edge singularity. We believe that this process is the main
one responsible for the "quasilocal" vibrational mode ob-
served in the ir spectra of a-Si:H at -210 cm '. It is
clear from Fig. 3, that a single Si—H bond in our unre-
laxed vacancy model is not strong enough to make these
states appear as a sharp resonance. However, any small
perturbation in the surroundings of the Si—H bond can
now give rise to a sharp peak in the TA band edge. In
Ref. 6 the effect of small internal surfaces is discussed.

From Eq. (6a), we deduce that an increasing of the force
constants describing the interactions among the four Si
atoms of Fig. 1, due to relaxation or to the different elec-
tronegativity of the H and Si atoms, can also give rise to a
strong "quasilocal" mode. In Fig. 8 we show the LDOS
in the same Si atom that in Fig. 3, but with K, =1.43 dyn
cm ' and K~ ——0.07 dyncm ' in the cluster. Comparing
the z component in Fig. 8 with that in Fig. 3, we can easi-
ly observe the strong effect of the perturbation in the force
constants, due to the fact that the frequencies co& were al-
ready quite near the upper-band-edge TA singularity.

In Table IE we also observe a slight shift to lower fre-
quencies of the Si vibrations in the x-y plane when an H
atom is bonded to it. This shift can be easily seen in the
TQ band of Fig. 3, and has been observed in the ir spectra
of highly hydrogenated samples. We can explain this
feature as a result of the interaction of the localized wag-
ging mode with the TO band of the Si atom. In the case
of a-Ge:H the wagging mode is further away from the TO
band at -300 cm ' and we expect this shift to be negligi-
ble, as can be easily obtained from Eqs. (2a) and (2b). Fi-
nally, inelastic neutron scattering experiments on a-Si:H

TABLE II. Vibrational frequencies obtained for bulk and surface silicon and for Si—H and Si—F
bonds embedded in Si with the simple model discussed in the text.

Bulk Vacancy Si—H Si—F

344 182 202 163

323

628 375
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where Nd is the density of Si—F bonds, Q; is the effective
charge tensor in the Si or F atoms, and 6;~ the Green-
function matrices described in the Appendix. The tensor

Q;, given by the derivatives of the dipole moment with
respect to the atom displacements:

Si (total)27- (a)

18-
E

lh
CP 9-
LA

0
9- (b)

I/)

O
o 6—
th

0)
C3

[Qi ]a,p=

is assumed to be a diagonal tensor, with a longitudinal and
two degenerate transverse elements, in the frame of refer-
ence of Fig. 1 (the bond along the z axis), whose elements
can be obtained from molecular data. ' Of the two sets of
elements of the tensor Q; given in Ref. 17, we use
[Q;]te„s——1.17e and [Q]„,„,=0.68e as these values yield
the best agreement with experimental data. Also, the oth-
er set implies that [Q;]t,„s and [Q;]„,„, have opposite
signs, a rather unpalatable situation. In Fig. 9 we show
the calculated absorption coefficient and the experimental
results for an F concentration of 10% (the one used in Fig.
5 of Ref. 11). The calculated results were slightly
broadened by convoluting them with the Gaussian

Si
x, y

0
400200 600

Frequency (cm 'j
FIG. 8. Densities of states for the motion of Si in a Si—H

bond embedded in a-Si:H as obtained with the Bethe-lattice
method but with the force constants of Fig. 3 slightly modified
as discussed in the text. The aim of this figure is to display the
sharp peak in the z component of the DOS at the top of the TA
band.

G(co')=(2o vr) t~ exp( co' /—2rr ) .

The spurious low-frequency band-edge states (see Figs. 5
and 6) correspond to in-phase vibrations (see Fig. 7) and
do not contribute to the absorption coefficient, the two
main contributions coming from the wagginglike states at
-200 and 505 cm '. We have not included the back-
ground contribution of the Si bulk and other possible di-
pole contributions, such as the charge transfer of the back
Si atoms that will increase the relative weight of the 505-
cm ' feature. The agreement with the experimental re-
sults is good except for the structure at -300 cm '. One
must keep in mind that the magnitudes of the absorption
coefficient were obtained from the theory without fitting
the experiment. The feature at 300 cm ' can come either
from the similar peak already existing in pure a-Si, whose
ir activity is increased by the out-of-phase character of all
the vibrations in this region (see Fig. 7), or from some
modes of vibration associated with the Si-F2 units. ' None
of these possible mechanisms are included in our model.

(Ref. 15) reveal an increase in the relative weight of the
TO band with respect to pure a-Si. This can be easily un-
derstood by referring to Fig. 3(b), since the neutron
scattering spectra in a-Si:H are more sensitive to the local
density of vibrational states at the H atoms (the scattering
cross section for H is -50 times larger than that of Si).

In the case of the Si—F bond we can see in Table II that
the in-phase vibration states in the direction of the bond
are not shifted to higher frequencies with respect to the
vacancy. The effect of it s in Eq. (6a) is, in this case, com-
pensated by the large mass of the F atoms. On the other
hand, as we have shown before, the interaction of the wag-
ging mode with the continuum spectrum gives rise to a
peak at -200 cm ' and a shift in the TO band.

The different nature of the vibrational "resonance" of
the upper edge of the TA band appears clearly when com-
paring Figs. 3 and 5: In the case of Si—H bonds, this res-
onance is polarized along z (longitudinal) while for Si—H
bonds the polarization is transverse (x,y). The reason why
these modes appear at the same frequency is that they
occur near the TA singularity. The singularity traps de-
fect modes which occur in its neighborhood. A better
comparison with the ir experiments can be made if we cal-
culate the absorption coefficient

2&
a,'(co ) = Ne2(co )

n

G-Sl: F

E 400- experiment / &,

theory

O~ 200
O

(7)

where n is the index of refraction and e2 the imaginary
part of the dielectric function. In the simplest possible
model we can consider that the main contribution to e2 in
a-Si:F comes from the ionicity of the Si—F bond. In this
case we can write'

ez(co) = %~4m g Im(Q; G;J.QJ ), —ij =Si,F
l,j

0
0 200 &00 600

Frequency (cm ')

FIG. 9. Absorption spectrum of a-Si:F (with 10% fluorine)
calculated with the Bethe-lattice method including only the vi-
bration of the Si—F bonds. The results are compared with ex-

(8) perimental data of Ref. 11.
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FIG. 10. Density of vibration states of a-Si:H at the H atoms
compared with inelastic neutron scattering data of Kami-
takahara (Ref. 1S). The arrow shows the resonant mode dis-
cussed in the text.

The discrepancy between the calculated and the experi-
mental curve in the region of the TO modes is due, in
part, to having neglected in our calculation the dipole mo-
ment associated with the vibrations of the Si matrix.

Unfortunately, a similar estimate of the absorption
spectrum of a Si:H around the TA band is not possible.
The reason is that for this band the hydrogen moves al-
most exactly together with the silicon to which it is at-
tached. As shown in Ref. 6, the dipole mechanism must
involve changes in the back bonds. In view of the uncer-
tainties and increasing number of free parameters involved
in such mechanisms, we have not performed a detailed
calculation of the absorption spectrum for the a-Si:H case.
In the experimental spectra a strong peak appears at -212
cm '."' Figure 8 shows that the peak is very weak for
the total density of states although it appears strongly in
its z component. We thus believe that the z-component ir
coupling constant (e.g. , the dipole matrix element) must be
much larger than its x,y counterparts in order to fit the
observed ir spectra.

The 212-cm ' peak appears weakly in the Raman spec-
tra, in a way which seems to reflect the total density of
states of Fig. 8. Recent inelastic neutron measurements by
Kamitakahara' have succeeded in observing the -212
peak in a-Si:H. We partially reproduce his data in Fig. 10
in comparison with the projection of the DOS on the H
atom (the main contribution to the scattering comes from
the hydrogen). We believe that, in view of the shortcom-
ings of the Bethe-lattice model, the calculated density of
states accounts qualitatively for the neutron data. The
weak part at the upper edge of the TA band seen in the ex-
periment is seen in the z component of the calculated den-
sity of states but is rounded off in the "total" DOS. We
do not know the exact experimental configuration but it is
possible that the measured DOS is somewhat more sensi-
tive to the longitudinal (z) DOS as a result of a preferen-
tial sample orientation.

The ability of our model to reproduce the ir spectrum of
a-Si:F allows us to make some predictions for the ir spec-
trum of a-Ge:F. The force constants for the Ge—F bond
can be extrapolated from those of the Si—F bond under
the assumption that they scale from Si to Ge in the same
way as those of the corresponding hydrogenated samples.
In Table I we have included the force constants providing
the best fit for a-Ge:H and the extrapolated ones for a-
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FIG. 11. Infrared absorption and local DOS calculated for a-
Ge:F with the parameters of Table I.

V. CONCLUSIONS

We have shown that a simple cluster-Bethe-lattice cal-
culation with second-order force constants can explain the
quasilocal modes observed near the top of the TA band of
a-Si:H and a-Si:F. The observed peaks, however, are
shown to have different origins in the H and the F case.
For a-Si:H the peak is mainly a rigid vibration of the
Si—H bond longitudinal to the bond while for a-Si:F the
vibration is transverse, related to the wagging mode of the
Si—F bonds. In the latter case, we have calculated the ab-
sorption spectrum and obtained quantitative agreement
with the strength of the observed absorption near the
quasilocal mode. Thus, surface clusters of H, of the type
proposed in Ref. 6, do not seem to be necessary to explain
the quasilocal modes. They may, however, enhance the ef-
fect calculated here.
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APPENDIX

In our system (cluster and Bethe lattice) we have four
different bond directions corresponding to the tetrahedral

Ge:F. The results of our Bethe-lattice calculations for a-
Ge:H and a-Ge:F are shown in Fig. 11. In this figure, we
show the LDOS in the Ge and F atoms and the absorption
coefficients for the a-Ge:F case. The stretching mode, not
displayed in the figure, is expected to be at 680 cm '. We
can appreciate two main differences with respect to the a-
Si:F spectrum: (i) The wagginglike resonance spreads over
to the longitudinal band, and (ii) the contribution of the F
vibrations to the TO band is rather small, due to the larger
mass of the Ge atoms.
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IG t ~ o gjk Tk G + ~ + jk +MT jG + ~ + j (Al)

In Eq. (Al) QT and Tkj (j&k) are the transfer matrices
that can be obtained by iteration using the following equa-
tions:

T/c =kk D~ + g Dl + g Bk~~T TIk
I (wk) m (&I)

+ ~ Bkl~T
I (~k,j)

directions of Fig. 1. We label all the bonds from 1 to 4 de-
pending on their direction, bands 1 being those in the
Si—X bond direction. All the atoms of the system can be
labeled as (i,j,k . . x,y) the notation indicating the path
of bonds we have to follow to reach a given atom from the
Si atom (labeled as 0) attached to atom X. I.et ~G

be the 3X3 set of matrix elements of the Green functions
between the vibrations of atom h of the cluster and atom
ijk - . . x. In the Bethe lattice these matrix elements are
related by [see Eq. (18) or Ref. 9]

5o=Do, o —Q g B,TJ, ,
i =2 j(~i)

DJ+ X B,kT/ T,'
k(&j)

~5' =Do; —g
j(«')

(A6a)

+ X Bjk~+j
k(~j)

(A6b)

5 =D' + g BJ TJ' .
j (&i)

(A6c)

a, p, p,
D'i = —Pi ai Pi

p, pi ai

P2 P—2—

D' and B'~j are the interaction matrices through K„' and
K~ in the cluster. They are given by'

~T) ——~h B~& + g Bk( TIJ
I (+k,j)

where

(A2b) D'z = — P3 a3 —P4

p3 p4—

~~= .Do —g
I (~k)

—I+ ~ —Im —mD ~~ B T Tk
m (~1)

BI TI
m (&I)

&'i2 =—Kg
—4 —2 —2

2 1 1

1 1

4

Do ——McoI —g D+ g B (A4)

with M the mass of the Si (Ge) atom.
The vibration of the five-atom cluster and its connec-

tion with the bulk can be described by the 15& 15 matrix
M

D. and Bj are the first- and second-neighbor interaction
matrices, respectively, through bonds i and j. These rna-
trices can be easily obtained as the second derivatives of
the potential energy in (1) with respect to the atomic dis-
placements. D0 is the "self-energy" matrix defined as

a) ——, [K„' +(1+3/p)—Kg],

a, = —, [K„+4K,+2(1+p)Kg],
a3 ———,[K„+8Kg ——,(1 p)K'g], —

Pi =
3 [K; ——,'( I+3IP)K'g],

Pp = —,[K„—2Kg —(1+P)Kg],
p3 ———,[K,—4Kg+(1 —p)Kg],

P) ———,[K„—4Kg ——, (1 —P)Kg ] .

where

05

(D' )

(52)

(& )

(54)

D]
D0, 1

B2i

B4i

—2 3 —45 5 5

Bi2 B]3 Bi4

—0 —23 24
52 B

B 5'B—32 0 34

4
B42 B43 &0

(A5)

D0 p, (h =0, . . . ,4) are the "self-energy" matrices of the
five atoms in the cluster. The inverse of matrix M,
equivalent to Eq. (33) of Ref. 9, contains all the informa-
tion on the vibration of the cluster. Its diagonal elements
(actually 3X3 matrices corresponding to the three carte-
sian coordinates) are proportional to the density of vibra-
tional states at each of the cluster atoms projected along
the appropriate cartesian directions and the off-diagonal
elements are proportional to the correlation functions.
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