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Binding energy of biexcitons and bound excitons in quantum wells
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The binding energy of excitons in a semiconductor (e.g., GaAs) quantum well to each other and to
neutral donors is calculated variationally using the six-parameter wave function of Brinkman, Rice,
and Bell. The biexciton results for wells of various thicknesses agree closely with some of the data
previously assigned to the biexciton. The biexciton binding relative to the exciton binding in the
two-dimensional limit is about 3—4 times larger than in the three-dimensional case, but otherwise
varies in a similar way with the mass ratio. It is found that the biexciton and bound exciton closely
obey Haynes's rule.

I. INTRODUCTION

Quantum wells for holes and electrons are formed in
semiconductor heterostructures when a thin layer
(l-20—500 A) of semiconductor (e.g., GaAs) is bounded
on both sides by a semiconductor of larger gap (e.g. ,
Gal „Al„As). The excitation and luminescence spectra of
quantum wells are dominated by peaks due to two-
dimensional (2D) excitons, which have much greater oscil-
lator strength and binding energy than the three-
dimensional (3D) exciton in the same semiconductor. It
has not been possible to determine directly by examination
of the spectra the binding energy Blz of the exciton
ground state (1S) because the exciton continuum limit is
not recognizable as a feature in the spectra. Nevertheless,
a reliable indirect determination of Blq as a function of I
(42—145 A) has been reported' based on the observation of
the exciton excited state (2S) in the excitation spectra of a
number of samples, giving a direct determination of the
term value Blq-B2q. It was shown' that theory can ac-
count quantitatively for both the term value and the in-
tegrated strength of the main (1S) peak, strongly suggest-
ing that the calculated values of Blq are accurate. A par-
ticularly interesting feature of this work is the observation
that the heavy-hole (hh) exciton has slightly smaller B,z
than the light-hole (lh) exciton, the difference being quan-
titatively in accord with theory. The theory is simple for
quantum wells because the confinement splits the degen-
erate hole band of the semiconductor allowing separate
uncoupled heavy and light holes.

The photoluminescence spectra of quantum wells are
dominated by the hh 1S exciton. Recently, a splitting of
this peak into two peaks has been observed in a number
of samples (I —50—1000 A) in which the dependence of
the lower-energy peak on polarization, temperature, and
excitation intensity is consistent with the 2D biexciton. If
this assignment is correct, the binding energy B of the 2D
biexciton is B—1 meV, which is surprisingly high com-
pared to the value (0.13 meV) calculated ' for the 3D
biexciton in bulk GaAs. As far as we know, no experi-
mental determination has been reported for bulk GaAs,
but the experimental value 1.46+0.9 meV has been report-
ed for bulk silicon which is much higher than the calcu-
lated value ' (0.24 meV). It must be mentioned, however,
that in other cases (CuBr, CuCl, Cu20) the calculated and
observed values for the 3D biexciton are in good agree-

ment. A preliminary calculation has been presented for
the 2D biexciton which predicts values of B about half of
those observed (if the assignment is correct), but, neverthe-
less, of the correct order of magnitude to account for B be-
ing much larger in the 2D case than the 3D case. As far
as we know, this is the only published theoretical treat-
ment of the 2D biexciton.

Formally, if the conduction and valence bands can be
assumed to be nondegenerate, spherical, and parabolic, the
3D biexciton is equivalent to the positronium molecule.
The first treatment of this problem to predict a stable
molecule was that of Hylleraas and Ore on the basis of
the wave function

f(p;r) =exp[ —(s, +s2)/2]cosh[p(t~ t2)I2], —
Sl =I la+ lb S2 =r2 +r2g

1 =rla r}$, t2 =r2a

where 1,2 denote electrons and a, b denote positrons (or
holes). The two-parameter variational wave function
g(P;kr), where k is a scaling parameter, provides probably
the simplest description capable of giving a binding ener-
gy. This is the function used in the 2D calculation of Ref.
2. It is not possible with this function to calculate the
dependence of 8 on the mass ratio o. of the electron and
hole. It was conjectured in Ref. 2 that an increase of
about 70% in the calculated 8 might be expected from the
six-parameter variational function employed by Brinkman,
Rice, and Bell 4(kr) with

4(r) =g(p;r)X(v, p, A, ,~;r,b ),
where

X(v,p, A, ,r; U) = v "exp( —pu)+ X exp( —rU),

and P, v, p, A, , r, and k are variational parameters
(v=-1,2, . . . , runs over integer values). With this func-
tion they calculated a B about 70% larger than that given
by g alone for the 3D case. In 3D, B is just a single value,
whereas in 2D it is necessary to calculate the function
B(l).

In the present work we have applied (2) to the 2D case
and have obtained the expected increase in B. The results
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are in excellent agreement with the experimental values
for the three thinnest samples (i=81,102,145 A). For the
thicker samples ( l=222,327,520 A), the calculated B(l)
falls off smoothly with l while the measured values in-
crease to about twice the calculated value before falling off
at i= 1000 A to about the value expected in bulk GaAs. It
was not possible in Ref. 2 to give more than a sketchy
description of the computation. Here we give complete in-
formation on the essential formulas and special problems
of the computations.

A problem closely related to the biexciton is that of the
bound exciton, an exciton (X) bound to a neutral donor
(D ) or acceptor (A ) center. For simple bands this is
equivalent in 3D to the positronium hydride molecule
which has been extensively studied theoretically. ' As far
as we know, no theoretical treatment of the 2D bound ex-
citon has previously been published, so there may be some
interest in the binding energies predicted by (2) for 2D
bound excitons. We believe the theory is on firm ground
for X-D, although clearly not as accurate as it is for the
biexciton. The only difficulty in this case is that N allows
for only one scale parameter, which prevents a correct
description of the separated exciton and donor center.
However, an interesting result of these as well as the biex-
citon calculations is the confirmation for the 2D case of
"Haynes's rule"

& =fa&o

where Bo is the binding energy of the neutral center (D,
A, or X) and the "Haynes factor" f~-0.1 depends only
slightly on the particular center. By scaling our result to
the correct value of Bo + B„,we obtain in a simple way a
correction to B which we believe overcomes the difficulty
mentioned above. Unfortunately, no data are available as
yet on X-D . To treat X-A, for which data has recently
been reported, ' we would have to give up our absolute
theory containing no adjustable parameters (other than
variational parameters completely determined by the re-
quirement of maximizing 8) and introduce a model energy
band for the holes determined perhaps by requiring that it
give the correct Bo for 3 . The separated system then in-
volves a hypothetical model exciton with the wrong hole
mass. A more fundamental difficulty is that the factori-
zation implied in (2) of the wave function into N and oth-
er factors [not shown in (2)] representing the confinement
of the particles in the quantum well is not valid for such a
deep level as A . In view of the uncertainties involved in
making the necessary corrections, we do not attempt to
treat X-2 in this paper. However, it is interesting to note
that X-A obeys' Haynes's rule (4) with f~ ——0.13.

Although the 4 we obtain is variational, we believe it is
the best wave function available at present to describe
biexcitons and X-D . It can be used to calculate quantities
of physical interest including radiative and nonradiative
(Auger) recombination. Here we do not go into these cal-
culations but we give all the parameters specifying N at
each l for a series of l out to 520 A. We cannot treat
larger l because our wave function does not go over to the
correct form in the bulk limit l~ 00. A model treatment
based on an isotropic hole mass recently described by Bas-
tard and co-workers"' can cover the whole range of l,
but has the disadvantage of not correctly involving the hh
mass in the limit l~0.

II. THEORETICAL FORMULATION
FOR THE EXCITON AND BIEXCITON

If the well width l is sufficiently small the heavy and
light holes moving along the layer normal (001) direction z
(masses mi„m~, respectively) are uncoupled. The Hamil-
tonian for one electron and one hole can then be written

0 =P(r, z)we(zq )ws(zp ),
where the well states w„ws are eigenfunctions of H, ~&,
respectively, and P(r, z) describes the 2D exciton of zero
total momentum, P=O. It is assumed that P(r, z) is nor-
malized over r,

f fP(r, z}]dr=1,
independent of z.

The binding energy B„corresponding to (II is

a„=—f f f %(H, —W, —8„)+drdz, dz„,

(10)

where W„Ws are the eigenvalues of H, gled corresponding
to the well states w„ws. If P(r,z) is taken to be a function
only of r, (11) reduces to the simpler form

&.= —f f f y(r)(H„)y(r)dr, (12)

where (H„) is H„averaged over z„zs,

H, =H, +HI, +H„,
where H, and H~ describe the z motion of the electron
and hole including the quantum-well potential, and

p2 2 2

(6)2M+ 2@+ E (r'+z )'~'

describes the 2D exciton with total 2D mass M~ and re-
duced 2D mass p+, relative coordinates r=r, —r~ and
z =z, —z„, total 2D momentum P=p, +pi„and relative
2D momentum p conjugate to r. The 2D masses pertain-
ing to motion in the (x,y) plane of the heavy ( + ) and
light ( —) hole are given by

m+ ' ——(1+—, }(2m') '+(1+—,
' )(2m()

M+ ——m, +m+,
—1 —1 —1p+ =m~ +m+

Note that the heavy hole is light and the light hole is
heavy for the x,y motion, but the isotropic mass m; de-
fined by

m; '= —,'(ms '+mi ')= —,'(m+'+m ')

is the same in the z and x,y directions.
Strictly speaking, one should include in H„a contribu-

tion from image charges due to the discontinuity in the
dielectric constant e at the well interfaces. However, the
discontinuity is typically only —15%, so image charges
can be satisfactorily taken into account simply by using an
effective e=(e eb }',where E„,6 abre the well and barrier
dielectric constants, respectively. This form specifically
comes from the equivalent dielectric continuum corre-
sponding to thin wells and barriers of equal width.

If the quantum well is sufficiently deep, H is dominated
by H, +H~, allowing the wave function to be written in
factored form
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V(r) =—

(H„)=p '/2~+ V(.),
W (Z ) Wb(zb )

E
dzeC zh 2 2 1/2(r +z) (14) U{r)=(1—e r )/r, (22)

(13) parameter k at the outset. Assume that (19) can be re-
placed by the simple model function

2
,s(r,z) =

mb

1/2
exp(

~

z
~

/b)
(1+2 ~z

~

/b)'/

( 2+ 2)1/2

b
(15)

Here V(r ) is the effective 20 Coulomb interaction which
depends both on l and the particular well states of the
electron and hole. Here, however, we are only concerned
with the lowest states. If there is significant penetration
of the barrier, p ' should be approximately averaged over
the well and barrier effective masses. As pointed out in
Ref. 1, the function

M = f [(V,lp) +{Vb@)]dQ1+o.

f [(V,C )2+(V24 )2]dA,1+cr

L(y)= f 4'(U„+ —U,b
—U12)dQ,

D =, lI1=lP(r) .M,

ar
Now (20) can be written

(23)

where y
' is a measure of the well width I/a~. Then de-

fine the following integrals with k=1 in N:

N= +dQ,

with b a variational parameter, gives better results than
the simpler function p,s(r) =/is(r, 0). It is clear that (11)
must give values of 8„ larger than the bulk binding ener-
gy; ltd, s(r, z) meets this requirement out to l —500 A,
whereas P,s(r) fails around 1-300 A for CiaAs.

For the biexciton we use the wave function

B2, 2b = [2kL (y/k) kM] /N—.

Optimizing with respect to k gives the two relations

r=p [LV ) S»—(J )]/M

B2~ 2h = [L (P) PD(P) ]—™, (25)

(26)

0 =@(kr)we(zl )we(z2)wb(z~ )wb(zb ), (16)

where k is a scaling parameter, C1 is the function (2), and r
stands for the set of interparticle distances r&„r», r2„
r2b, r&2, and r,b. The form + is expected to be most accu-
rate when o. &&1, but we shall apply it over the whole
range 0(o.(1 as in Ref. 3. To simplify the calculation
we have not included an explicit z dependence in N. The
Hamiltonian of interest is then just (H„), which we write
in dimensionless form

(V,'+ V„')— —(V', +V2)
z

1+ ' ' 1+
—2(U1, +Ulb+U2, +U2b Ugb U12) (17)

where o.=m, /m+ is the mass ratio, 1,2 are electrons and
a, b are holes, the units of energy and distance are the hh
Rydberg and Bohr radius, respectively,

r =p'/[2(I+p/2)']
B„=[2y/( I +p/2)] —y /p

(27)

By requiring that (27) gives the B„obtained using (15) as
reported in Ref. 1, we obtain the calibration y(l) shown in
Fig. 1. This calibration makes it possible to use the form
(16) out to large values of I —500 A even though 4(kr)

for y and 82, 2~ as function of p =y/k. To find B2, 2~ for
a fixed y, (25) must be numerically solved for p. Any
common factor in N, M, L, D cancels out of (25) and (26).

Since (22) is just a model potential, the parameter y
must be calibrated by requiring that (22) gives the correct
B„ for a single exciton. It is easy to show that for a single
exciton the relations corresponding to (25) and (26) are

A'=e /2@a~, az ——eh' /e p+, (18)

and UJ ——U(rj ), which comes from the effective Coulomb
interaction (14), is defined by

w (zz ) w(zb )
U(r)= f f dz, dzb (19)

(r2+Z2)1/2

which we take the same for all particles. The total bind-
ing energy is

400

500

200

f de@(kr)H@(kr)

f dQ N{kr)
(20)

100

where dQ=dr&dr2dr, drb is the total volume element.
When B2, 2b is maximized by varying k,p,v,p, l.,r, the biex-
citon binding energy is

&~ =&2e,2a —2&x (21)

Following Hylleraas and Ore we eliminate the scale

100 200 300 400 500

A(A)
FIG. 1. Calibration of the parameter y in the model potential

(22) to the exciton calculations of Ref. 2 (curve X) and the donor
calculations of Ref. 11 (curve D) for GaAs quantum wells of
thickness I (A).
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contains no z dependence. The limit v=O, p=o, A, =O,
r=O, p~l corresponds to two separated excitons, and
therefore

~2g2h ~ 2+~p &=P=~=7 =0
P~1 (28)

must hold for any value of y, providing a check on the
computations.

III. EVALUATION OF INTEGRALS

d&=u du dr, drz =(v du)(J)ds(dt, )(Jzdszdtz),

J =[(s —t )/4][(s —u )(vz —t )]

u&s& oo, =u&t&v

where u =r,b and the elliptic coordinates s1, . . . , t2 are de-
fined in (1). The integration over s, t covers only half the r
space, the other half being a reflection in the line ab. In
all the integrals except those containing r12, this is fixed
by supplying a factor of 2. We write the integrals (23) in
the form

Because 4 is invariant to any rigid translation or rota-
tion of the molecule, the eightfold integrations in (23) can
be reduced to fivefold integrations with volume element
dO and limits,

1
dS

X ' s ' X exp( ((ts)
(s —u )'

s 2

Kp(pv)

uK1(pv)

u [Kp(pu)+K) (trav)/pu],

(32)
1

f dt
2»z X ) t Xexp( pt)——'(v —t)

Ip(pv)

uI, (pu—)

u'[Io(pu) —I 1 (pu) /pv],

where E„,I„are the modified Bessel functions. It is not
possible to do any of the final integrals over v analytically.

To express the integrals more conveniently we define
the following quantities:

T1
——2K( puK(1, —Tz ——K 1 +uKp /2,

T3 K)Ip+ pKp——I), T4 ——K)I()+K()I) /p,
Ts =K)Io KoI1/P T—b =Kl —uK0/2

T7 =(p ' p)K, I„T—8 =vK, /2,
T9 —Ip +Ip T]p=I1 —I1(-) (+) (-) (+)

n (v)

,
m(u)= f uX(v) dv X
q(u)
d(u)

(30)

T„=K',+'I +E''+'I

Tlz I1+ /(p+p/2)+——I 1 '/(p —p/2),
T13

—Ko+)I 1/(p/2)+K(1+)I op/(1+p/2),

with the notation

(91a+91b+q2a+92b) Cab '912 (31)

and further resolve q(u} and d (u) into separate parts in the
form

K„=K„(v), K„'+'=K„(u +pu/2),

I„=I„(Pv), I„'+ =I„(Pu+pu/2), (34)

I„=I„(pu/2) .
As a result of the convenient form chosen for U(r) in (22),
all integrals over r1,r2 except q]2 and d12 can be obtained The results are as follows (dropping a factor m. /8) for the
in exact closed form by use of the integrals integrals which can be done exactly:

n(u)=u (T2+T4},

q b(v) = [[1—exp( —pu)]/u j n (v),

d.b(u) =exp( —pu}n (v),

m (v) =u (Tl Tz+2T3T4)+u [(r/(1+(r)]

(36)

(37)

X[(T2+14)(X/7) —4(T2TS+T4T7)(X /X)+(1+P )(T() T2T6)+T7

—(1 P)T4T3]), —

la+qlb+'q2a+ q2b 2v [~K'1(T2+IOT4) 2T4(K1 T9 K0 Tip) 4T2T111

dla+dlb+d2a+d2b 2v j T4[K0 T12+K i T9/( +p/ )]+ 2 13 j

(38)

(40)
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The quantity in square brackets with subscript 1 will be
referred to again in (59) and (60). When X=const, syin-
metry requires q &2

——q,b,d &2
——d,b. Also, when 7=const, it

can be shown that the term in m (v) containing o. contri-
butes nothing when integrated over v, providing a valuable
check on the computations.

We define

q»(u) =g (u) —h (v),

g(u)= f dr, dr3$2u

h (v)= f dridr2$ exp( —pu)u

g (u) 1 3(1—P) 3(7—12P+7P )

n (u) u 2pu 8piv2

(49)

Note that this expansion is not valid as P—+0, but this
causes no problem in our calculation as the optimum is al-
ways P-0.5.

We write the function to be interpolated between (46)
and (49) as

f (u) =g(v)ln (u) ~ a bu —~ u '(1+c/v+dlv ) .
v~O V —+00

where u =r &2. The most serious problem in the whole cal-
culation is obtaining a satisfactory approximation for
g (u). We define the function

g(u, v) =g(v, tt) =2 f dBds, Jdt, P (42)

We augment the first form with two more terms,

f (u) ~ a bu +—su +tu
v~O

(50)

(S 1)

+(1—u )K, (2u)/u] . (44)

It now follows that the expansion of g (u) in powers of v is

g(u)=(3m/4)[1 —2v (1—P /4)/3+ ] . (45)

As a check, the corresponding expansion of n (u) given by
(35) can be obtained in two ways, either directly from (35)
or from

n(v)= f g(u, v)u du =2[1—(1—P )u /2+ . . ] .

The quantity which we wish to join smoothly between its
large- and small-v expansions is

so that

g(u)= f g(u, v}du .

We shall approximate g(u) by smoothly joining two ex-
pansions. The small u «r„,r2, expansion is (dropping
m /8)

g ( u, v) ~ 4u [(1+P v'/2)KO(2u )
v —+0

where s, t are determined by requiring that at some value
u =uo, f~(v) in (50) joins smoothly (continuous f and f') to
the second (v~ oo ) form in (50). Then the function f (v)
is taken to be

f;(v), 0&u &uo
f(vo, v)= .

v '(1+c/u+dju ), u&vo . (52)

di2(u)= f dridr2l( exp( pu)— (54)

and h (u) given in (41) are treated by considering an expan-
sion for sma11 u «v which is analogous to the small-v ex-
pansion leading to (43). Without repeating any details we
can write the result by interchanging u, u in (43),

The parameter uo(P) is determined numerically from the
exact condition

f f(v)n(u)udv= f n(v)dv, (53)

which follows from the symmetry of g(u, v). There is al-
ways a unique vo satisfying (53}. Finally g(u) is taken to
be n(v)f(vo, u).

The functions

g(v) jn( )u=(3vl )8[1—(1+P /2)u3/6+ . . ] . (46)

The large-v expansion has already been given by Brink-
man, Rice, and Bell (Appendix B) in terms of certain in-
tegrals Ii, . . . , I5. Their result can be written

g(u, v) ~ 4v [(1+P u /2)Kp(2u)
u~0

+(1—u )Ki(2u)/u] . (55)

g (u) 1 2I2 (1—p)(IiI3 IQI4) IiI5 +2I2—1—
n(v) v I v I(v

It follows that for sufficiently large p we can write

d~2(u) = du ue i'"g (u, u)
0

=4Cdv [(Ko+Kilu)/p +6(P KOI2 K, lv)/p ], —
(47)

For the 20 case, the integrals are

I2 ——

00 2~
du ue

—Gu d0e —Fucos8
0 0

f 00 2~
du u 2e —Gu dOe —Fu coseCOS

0 0

f 00 2m

u u 4e —Gu d0 e —Fu cos8Sin2g COS|9
0 0

00 2~
du u3e Gu dOe Fucos~sin 0

0 0

f 00 2~
du u e " dL9e "'" (1—3cos 0)

0 0

Evaluation of these integrals gives the large-v expansion

h(u)= f du e ~"g(u, v)
0

=4Ct, v [(Ko+Ki lv)/p+2(P Ko/2 —K, /u)/p'],

(56)

(57)

where K =K(2v) and Cd, C~ are correction factors close to
unity. We determine Cd, Ci, by requiring that di2(u), h (v)
satisfy the exact conditions required by symmetry

f udice(u)du = f vn (v)e ~"dv,
(58)

f vh(v)du= f n( )eu~"dv .
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For the range of interest p&2.5, the required values of
Cd, Ch are found to be close to unity justifying (56) and
(57').

The case o.=0 requires special treatment. In this case
the form (3) for g(v) is inappropriate and no optimization
of v,p,k,~ can be found. It is found that as o. decreases
below 0.1, larger and larger values of v and p are required
corresponding to a distribution in the hole-hole distance v

that is more and more localized around an optimum value
u. To treat this case we drop the integration over u in (30),
set u =u, and then optimize Bz, qb with respect to p, v.

Numerical quadratures are still required to find the
parameters vo in (53) and Cd, Cb in (58). Note that the ac-
tual hole-hole separation is v/k, where k is the scale
parameter.

For X-D, with the center at a, we have

Fl b V2b 712

Vl a 72a Pab
(64)

(Dlb+D2b 12)p ++ (Dla +D2g ab )Rp

L =(L )b+Lgb L)P—)p+(L t~+L2g L(zb—)~p .

It is possible to determine a yn(l) for the donor in the
same way as y(l) was determined for the exciton [see (27)]
taking care to describe the donor in the same units (18)
(even though these are not the most natural units for the
donor). We have calibrated yD(l) to the recent calcula-
tions of Bastard" for a donor in the center of the well.
The result for GaAs is shown along with y[~] in Fig. 1.
This calculation determines

IV. MODIFICATIONS FOR THE BOUND
EXCITON 8 (I) =yg)(l)/y(l) . (65)

(X-D )m(U)=p 1+o/2
u (T(Tp+2T3Tg)1+o.

o/2

1

p +~
(X-3 )m(v)= v (T~Tq+2T3T4)1+o.

(59)

+ u'[~]»1+o. (60)

where [M], is the same quantity in square brackets identi-
fied in (38). Actually, we do not consider X-A here, but
(60) is useful for treating X Dwhen m+ &-m, and cr is
redefined as o.=m+/m, .

For generality, suppose that each interaction U J in I.
has a separate parameter y;J. when written in the form (22).
We still have only one scale parameter k. B2, 2h still has
the form (24) except that L is a function of more parame-
ters,

L =L)~(P)g)+ . . L~b(p~b) )Lg(P—)z )—

To treat the bound exciton two modifications in the for-
mulation are required: (a) in M [see (23)] one of the kinet-
ic energy terms must be dropped, e.g. , (7'bC ) for X Dor-
(V'qN) for X-A; (b) in L it is necessary to use different
model potentials characterized by different y for interac-
tion between particles and between a particle and the
center. We continue to use ihe same units (18). It is
straightforward to obtain the modified forms of (38),

8„= limP 1 8~ bn,
v=p=A, =v=0

~xD +2e, hD

(66)

However, 8 is not equal to BD+B„because our wave
function with only one scale parameter cannot describe the

I I I I I I I I

II

0.5—

0.4

We do not consider the case X-A here because the ac-
ceptor level is too deep to be treated as a hh state, yet the
binding energy is relative to the separated system in which
one of the holes must be treated as the heavy hole. At
present we do not have a satisfactory and simple way of
constructing the wave function so as to properly describe
both situations, so X-3 is beyond the scope of the present
treatment. Nevertheless, we have given (60) for its possi-
ble future interest and for its usefulness in the X-D prob-
lem with electrons and holes interchanged.

For X-D, values can be calculated, using the modifica-
tions described above, for the total binding energy 82e hD,
the bound exciton binding energy B„D, and the binding en-
ergy B of the separated system

=gL V» S'=)'/k (61)

We assume that the ratios of the p;

&;=&;/P=) /r (r=l'i~S'=S i» (62)

0.2
2D

are known given any value of p. Now if D is defined by

D(p)= gR;D;(p;),
(63)

M, ;
D;(p;) =

Bp.

y and the total binding energy Bz, bn are given by (25) and
(26).

0.&—

I I

0.2
I I

0.4 0.6
I I I

0.8

FIG. 2. 2D biexciton binding energy relative to the exciton
binding energy as a function of the mass ratio a =m, /m+ for
the case l=O. Also shown {dashed) is the 3D result of Ref. 3.
Intercepts at o.=O are indicated by points.
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TABLE I. Summary of the optimized results for the 2D biexciton. Values given for l assume GaAs.
The Haynes factor f~ is defined in (4). Here v= 1 and o =0.68.

I (A) y k P P B H

0
52
81

102
145
171
222
272
327
415
520

20
12.5
10.0
7.75
6.76
5.41
4.50
3.85
3.10
2.54

2.51
1.94
1.74
1.64
1.52
1.46
1.35
1.27
1.20
1.10
1.04

0.66
0.61
0.60
0.60
0.59
0.59
0.59
0.58
0.56
0.55
0.55

0.43
0.39
0.38
0.38
0.37
0.36
0.36
0.35
0.34
0.33
0.25

0.42
0.37
0.37
0.40
0.40
0.41
0.43
0.43
0.43
0.43
0.46

0.28
2.4
2.9
3.0
3.1

3.1

3.2
3.3
3.3
3.4
3.4

0.585
0.376
0.314
0.285
0.252
0.235
0.207
0.186
0.169
0.148
0.130

0.15
0.13
0.12
0.12
0.11
0.11
0.11
0.11
0.10
0.10
0.10

dif'ferent sizes of' the donor and exciton states when
separated. The simplest way of correcting for this is to
take

~2e, hD [(&D+&x)/&~ 1&2e,hD

as the corrected total binding energy, and

~XD ~2e, hD +D ~x

(67)

(68)

as the corrected binding energy of X-D . The correct
value of BD is easily obtained from (27) or (28) using

XD~

BD ——(1+a)8„(yD) . (69)

V. NUMERICAL INTEGRATIONS

The final integrations over u in (30) were all done using
the Gauss-I. aguerre numerical quadrature formula'

f f(x)dx = g W„f(X„), (70)0
1

where O'„,X„are the weights and abscissas for the quad-
rature of order 1V. In practice, it is necessary to condition
the integral with a scaling function s (x),

f f(u)dv = f f(s(x))s'(x)dx
N

= g W„f(s(X„))s'(X„), (71)
1

chosen so as to ensure that the set X&, . . . , XN adequately
covers the most significant region of the integrand.

The validity of (67) is closely connected with Haynes's rule
to be discussed later.

Consider the integrals (m =0,1,2)

S = du ve ""X(v,p, l, , r;v) u
0

(2v+m +1)! A, (m +1)!+++)2v+m+2 (2 + )m +2

2A, (v+m +1)!+ v+m +2(p+r+a)"+ +'

with X given by (3), which are closely related to the in-
tegrals required in (30), and from the values of Sepi,S2
we determine the quantities

(u) =Si/So, (u ) =S2/So,
~.=(&")—&.)')'". (73)

The parameter c is determined to satisfy the condition
f2oszo& 10 fi4si4. The Parameter e, which is arbitrary,

The region of v which contributes most to the integrals
(30) is approximately ( u ) & u & ( ( v ) +b, u); the scaling
function should place a number of points u„=s(X„) in
this region, and also provide that at the last point
vh ——s(X&) the integrand is very small. We have used
N=20 and the function

s (x)=ax+ —,
' (b —a)x + —,

' (c b)x—
T

e(b a) cosh[(x —X,o)/e]
ln

2 cosh[(X i o /e) ]

e(c b) cosh[(x —Xt4)/e]+ ln
2 cosh[(Xi4/e)]

(74)
a =(u)/Xio, b =hu/(Xt4 —Xto) e=2

TABLE 2. Summary of the optimized results for the 2D bound exciton X-D in GaAs. The values
listed for 8~~ are the uncorrected values (66). Here o =0.68.

1 (A) R k P V I 'T +XD

81
171
222
327
520

1 ~ 10
1.25
1.30
1.37
1.53

2.04
1.74
1.63
1.49
1.35

0.60
0.56
0.55
0.45
0.46

0.54
0.49
0.48
0.89
0.74

0.26
0.29
0.30
0.21
0.19

5.0
5.0
5.1

2.5
2.9

0.414
0.319
0.287
0.242
0.214
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determines the roundin f
into a new regime. We

ing o s (x) as it assesp Xio and Xi4
e. e ave found @=2 to

1 . Th f (71)
the integrals S ' th

o with (74
m,

' ese studies show that o
) can be studied on

10 .
are obtained with corn t

an in . inding ener ies 8g and BgD

however, optimizat f
computational error less than 1 in 10;

iza ion o parameters was
to an accuracy in 8

s carried out only
in ~zD of about 1 in 10 .

VI. DISCUSSION OF RESULTS

Our results for 8 /8 f '
o

1=0 are plotted in Fi . 2 as
„as a unction oof 0. for the case

e in ig. 2 as the solid curve labeled 2D

also shown by the dashed curve 3DB'k Ri d 8e B . = we obtain

quantity plotted is the His e aynes factor in
qua itatively the 3D and

similarly; a kind of H
and 2D cases behave

o aynes's rule (with an an
ho ld „o i de y over a considera

are independent of ma
potential assumption (22).

en o material parameters andn the model-

Our complete results for the 2D biexcit
f ll th' k 1's are isted in Ta

e isted values of I are for
chosen value o.=0.68

are for GaAs, as is the

chosen to give the l f
o.= . , and most of the vvalues of y were

the dependence of 11o a computed uanti
'

e or measured sam lep es. Nevertheless

independent. Th He aynes factor
q ntities on y is material

the customary 1va ue -0.1) exce t for
or ~ in the last column has

p
me ) against I (A) for

hd)

'
o og

as e obtained previousl
tl d t bl'hdis e previously. We s

1 1 t' b %%us area out a 70% im
2 as speculated. Th e calculated 8 fits

% improvement on Ref.u"
ll f 1=e or =81102145 A. T

points deviate to hi h
The other three

o ig er values as / incr
anomalous behavior from

increases, a very
' r rom t e theoretical stand

The complete results f h
f f

s or t e 2D bound ex
' 0.

g
s e ca culated uantiti

same way as the bi
q tities optimized in the

as e iexciton calculations. In
suits are not materi 1

'
d

n t is case the re-

i . h
eria in ependent becau

(66) buce y optimization. T

in Table III along with th
e corrected values 8 s«D [see (68)] is listed

f (XD)h th td 1

ong wit the Haynes factor. It '

h f1 d'
ec e va ue and is ver

s u ied. Figure 3 sh
plotted against l. It iis tempting to note th

1o to th i t t1=32a = 7 and 520A.
For the samples i=81—520 A, the con

it 1 off kblmar a y confirm Ha n
d fo th 3D

h h 1' d
case. In view of

proce ure used in (68) to c

in p-doped GaAs

'
ie . ecentl, 8

t th
y, z~ has been observed'

a s quantum wells and f
H '

1 ih f =0.
H '

1 h
'

h
H

——0.13. It shou
as in t e past been attribu

11 o o h ffo e e ective-mass Hamilt
1 ltio b d

( td '
i 11 b

'
ns, in ing arises fr

no central-cell corrections.
'pa y y the parameter ) and there are

28

BXDB„ BXD

TABLEE III. Summary of the uan
' '

ing to (68).
e quantities needed to obt

'
ho ain t e corrected X-D bin

'

I (A)
0

o - in ing energies accord-

81
171
222
327
S20

2.62
2.11
1.92
1.64
1.32

4.S2
3.86
3.60
3.19
2.78

6.20
S.04
4.62
3.98
3.29

0.414
0.319
0.287
0.242
0.214

0.476
0.377
0.343
0.29S
0.266

0.11
0.10
0.09S
0.092
0.096
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~e have used the same physical constants for GaAs as
in Ref. 1 (see references there),

m, =0.067mp, m~ ——0.35mp, mI ——0.08mp,

e =13.1, eb ——11.4,
A' =3.7, a~ ——160,

0
the latter terms measured in meV and A, respectively.
Note that both m~, mI are required to compute the trans-
verse hh mass m + ——0.099m p required for o.=m, /
m+ ——0.68, and the units A, a~ in (18). The value of
m, /mp is experimentally well established, but a wide
range of values' has been reported for mp/mp. The first
detailed analysis' of quantum-well spectra used the value

0.45 determined from interband magnetoabsorption. '

The most precise determination is probably 0.475 by cy-
clotron resonance. However, we have observed from de-18

tailed examination of a number of quantum-well spectra
(including Fig. 12 of Ref. 16) that somewhat better agree-
ment is obtained using the smaller value 0.35. This value
also agrees with the band parameters y~, y2 given by
Lawaetz' [y, =7.65, y2=2.41, ma)mo =(y& —2y2)=0.35 for (001) motion].
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