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We investigate the dynamic structure factor characterizing inelastic neutron scattering from
intermediate-valence compounds. Starting with the ionic model of Jefferson and Stevens, we formu-
late a quasiparticle theory for the high-frequency scattering. At low temperatures the scattering at
the center of the zone arises from three processes: excitation across the hybridization gap, excitation
from gap modes, which do not hybridize with the conduction electrons to the upper hybrid mode,
and excitation from the lower hybrid mode to the gap modes. We calculate the structure factor at

q =0, neglecting crystal-field splittings. The qualitative features of the temperature and wave-vector
dependence of the scattering are discussed. An alternative approach based on a decoupled-mode ap-
proximation is proposed for the high-temperature regime. We comment on the relation of the theory
to recent theoretical and experimental studies.

I. INTRODUCTION

In recent years the existence of rare-earth and actinide
compounds showing intermediate-valence (IV) behavior
has stimulated a great number of experimental and
theoretical studies which have led to a qualitative and in
some instances quantitative understanding of their proper-
ties. ' At the risk of some oversimplification we can
identify an IV system as one where the rare-earth or ac-
tinide ions fluctuate between f" and f" ' configurations
by transferring electrons to a conduction band. Even at
high temperatures this transfer takes place sufficiently
"infrequently" that the ionic character of the f-electron
state is largely preserved.

Although the model of a weakly coupled mixture of f"
and f" ' ions and conduction electrons in thermal equili-
brium is often an adequate first approximation for inter-
preting various thermodynamic measurements, there are
dynamic properties which cannot be explained on this
basis. For example, the inelastic neutron scattering does
not resemble the scattering from an array of ions in static
configurations with characteristic sharp crystal-field levels
and weak interionic interactions. Rather, the dynamic
structure factor usually displays a quasielastic central peak
which in some instances has a long tail with structure at
frequencies which can be much greater than the crystal-
field splittings of the f" and f" ' manifolds.

In this paper we will focus on the aforementioned high-
frequency tail. We calculate the dynamic structure factor
in an independent-quasiparticle approximation. By
neglecting the crystal-field splittings of the f manifolds
and limiting the analysis to the center of the Brillouin
zone (q =0) we are able to obtain an algebraic expression
for the structure factor. The restriction to q =0 can be
circumvented at the expense of numerical calculations.
However, the omission of crystal-field effects is a funda-
mental approximation which is loosely equivalent to hav-
ing an "instrumental width" which is much greater than

the Stark splittings of the relevant manifolds. Since we
are investigating only part of the scattering, we cannot
make use of the fluctuation-dissipation theorem to obtain
the static susceptibility. Furthermore, although the chem-
ical potential can be calculated within our approximation
we choose to regard it as part of the input to the analysis.
We adopt this position because we believe that while the
quasiparticle model is a reasonable approach for charac-
terizing inelastic neutron scattering at low temperatures
there is no certainty that it will work equally well for ther-
modynamic parameters, such as the chemical potential,
which are expressed as integrals over the Brillouin zone of
various functions of the quasiparticle energies.

The remainder of this paper is divided into five sections.
In Sec. II we introduce the model Hamiltonian and
present a formal expression for the structure factor. The
quasiparticle approximation is outlined in Secs. III and
IV. In Sec. V we calculate the structure factor utilizing
the quasiparticle model. We also introduce an alternative
approximation which is appropriate at high temperatures.
We discuss our findings in Sec. VI where we make contact
with other theoretical treatments of the problem. We also
comment briefly on the experimental situation. The em-
phasis in this paper is on the development of the formal
theory of inelastic neutron scattering from IV compounds;
applications to specific systems will be presented else-
where.

II. HAMILTONIAN AND DYNAMIC
STRUCTURE FACTOR

In our analysis of the dynamic structure factor we
adopt the microscopic model of Jefferson and Stevens. In
their approach one considers only the Hund's-rule ground
states of the f" and f" ' configurations whose levels we
designate by A, and p, respectively. As formulated by
Hewson the model Hamiltonian takes the form
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A =g g e&Xu(i)+ g g e&X»(i)+g ekck~ck~
i A, i p, k, o

g g g [V„ie 'Xqi (i)ck +H.c.]

M(q)=pe ' g Mu Xu (i)+ gM» X» (i)

(2.8)

(2.1)

where the sum on i is over the X ions located at
r;,i = 1, . . . , X and H.c. designates the Hermitian conju-
gate. The symbols e~ and e& denote the energies of the
various levels of the f" and f" ' configurations, respec-
tively, while ek is the energy of a state in the conduction
band. The symbol V&~ represents a matrix element
characterizing the strength of the interaction between the
conduction electrons and the ions. The former are
described by fermion operators ck and ck for modes with
wave vector k and spin o. The operators X&i(i), Xu (i),
and X» (i) refer to the ionic levels; the latter obey the
commutation relations

and

[Xu (i },X„„(j)]=0 (2.2)

[Xu (»Xi;x- (j)]=5J[5i.i.-Xu.-( )

5u Xi—-i (i)] (2.3)

with a similar result for [X» (i), X&-& (j)]. In the case
of X&i (i) one has fermionlike behavior, i.e.,

{X„),(i),X„i (j) j =0,
{X„i(i),Xx„(j)]=5 1[5uX» (i)+5»Xi i (i)],

(2.4}

(2.5)

where the brackets denote the anticommutator,
{A,B ] =AB +BA. We also have

[Xpi.(&)»A, 'i,"(l)]=5i/5iÃXpA, "(&) (2.6)

with a similar result for [ X„i(i), X&-(j)]. In addition the
operators X» (i) and Xu (i) commute with the ck
and ck in contrast to the X„~{i)which anticommute with
the conduction-electron operators.

The dynamic structure factor, S ~(q, co), characterizing
the inelastic neutron scattering is obtained from the
Fourier transform of the correlation function of the spa-
tial transforms of the magnetic-moment operators of the
ionic system. We write the structure factor as

where M~~ and M&& are matrix elements of —gJp&J p
within the appropriate Hund's-rule ground states, gJ being
the Lande g factor, pz the Bohr magneton, and J,p the
total angular momentum operator.

In our analysis we will find it useful to rewrite (2.7) in
the form (a)&0)

dM(q, t) .[M( )
dt

(2.10)

the time derivatives appearing in (2.9) can be expressed in
terms of the X and c operators in the Hamiltonian. Before
proceeding we will make the approximation of neglecting
the crystal-field splittings of the spin-orbit manifolds.
This amounts to taking all of the ei (and all of the e&) to
be equal. Under these conditions we can label the eigen-
states of the A, and p manifolds by the quantum numbers
MJ and MJ, respectively, where J and J' are the corre-
sponding angular momenta.

Focusing attention on the longitudinal component we
have

dM, ;q, dXu(i) dX»(i)dt, .
&

dt „dt' =pe"' gm, + m„

S p(q, co)

dM (q, t) dMp( q, t)—
00 dt dt

Equation (2.9) is obtained from (2.7) by integrating twice
by parts and then making use of the fact that the correla-
tion function is a function of the separation in time of the
two operators. In arriving at (2.9) we have neglected con-
tributions coming from evaluating the correlation func-
tions at t =+(x). In general, these contributions are zero
in the absence of long-range order, which we assume to be
the case. When there is long-range order associated with
the wave vector qo the magnetic-moment correlation func-
tion is proportional to (M, (qo)) at large time separa-
tions. This property leads to an elastic scattering term in
S (qo, co) which is proportional to (M, (qo) ) 5(co).

Using the Heisenberg equation of motion {A= l),

S ~(q, co)= f dte'"'(M (q, t)M&( —q, 0)) . (2.7)
(2.11)

In (2.7} we have a,p=x,y,z while the angular brackets
denote a thermal average. The magnetic-moment operator
is given by

where mi. (—:mu) is identified with —g~psMJ
m& (=M») with gj p—sMJ. Utilizi—ng the commutation
relations we can write the time derivatives in (2.11) in the
form

~Xu, (&) i-—ikr; ko g . ikr,.Xr[e '(Vpi, )'ck&ip(i) —e 'VpiXyx(i)ck ]dt (2.12)

dX»(i } ikr, ko . y
—ikr, kogg [e 'V&iX&i„(i)ck —e '(V&i }*ck~x„(i)],&k

where the asterisk denotes complex conjugate.
Equation (2.11) can be simplified by introducing the operators Xk„i and Xk„x defined by

(2.13)
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1 ikr,.
Xk„k= g e 'X„k(i), (2.14)

(2.15)

which obey the anticommutation relations

i(k —k')r;
[Xk„k,xk„k I =—pe 'l@kxii (i)+~ii Xkk(i)l . (2.16)

Utilizing (2.14) and (2.15) we can rewrite (2.11) as

dM, ip—mkpp [( V„k }*ck~k ~i k —Vi kxk+&i kck&]
k

iX ~pg P l Vpk'Xk+qpk' k ( Vpk' krak qpk']-
@, kcr A,

'
(2.17)

Equations (2.9} and (2.17) are the principal results of
this section. It should be noted that were we to take into
account the crystal-field splittings there would be addi-
tional terms in (2.17) involving ek —ek and e& —e». When
the interaction with the conduction electrons is set equal
to zero these give rise to 6 functions in the structure factor
at co=@~—t ~, etc. , which collapse to a term proportional
to 5(co) in the absence of crystal-field splittings. Because
of this result Eq. (2.9), as written, is only applicable to sys-
tems with crystal-field splittings when the frequency is
large in comparison with the widths of the A, and p mani-
folds. For this reason we will refer to the right-hand side
of (2.9) as "S~~(q,co), the high-frequency (HF) part of the
structure factor.

«W (t);B(D)» = —e(t) & Ia(t), B(D) ] &, (3.1)

where e(t) is the unit step function. We write the
transform of «A (t);B(D)» as

«A;B»„=j dte' '«A(t);B(D)» . (3.2)

Using the Hamiltonian and the commutation relations
given in Sec. II we obtain an equation for «ck, ck~ &&~ of
the form

The central feature of the approximation is the representa-
tion of Xk„k and ck in (2.17) as a linear combination of
quasiparticle annihilation operators. In order to develop
the approximation we utilize the retarded Green's func-
tion,

III. QUASIPARTICLE APPROXIMATION

In this section we introduce an independent quasiparti-
cle approximation which will be used in the evaluation of
the high-frequency part of the dynamic structure factor.

~«ck. .ck. ».=I+ek«ck. ,ck. ».

p, A,

Repeating the procedure for «Xk&k, ck »„we obtain

(3.3)

& «Xkpk, ckn »co =ED«Xkpki'Ckn »~ —g g ( Vp'k' ) « Ck'~'Ixk&k, xk'&'k' I;Ck~ &&~,
p', A, k', o'

(3.4)

where ep=&k —e& is the difference in energy between the Hund's-rule ground states of the f" and f" ' configurations.
At this point the equations of motion are decoupled by replacing the anticommutator on the right-hand side of (3.4) by

its thermal average which according to (2.16) is equal to 5kk 5&&5kk(&X&z &+ &Xkk &), all sites being equivalent. ' Thus
in place of (3.4) we have

CO «Xk&k,'Ck& »~ =ep«xk&k, ck~ &&~
—g ( V&k ) A&k && Ck& ', Ck& &&~, (3.5)

1/2
XkpA~Api ckpk ~ (3 7)

a„,=&X„„&~&X„,& . (3.6)

Further discussion of this approximation is left to Appen-
dix A where it is shown that the leading correction is of
order V/8' where 8'is the width of the conduction band,
and vanishes identically when there is full rotational sym-
metry about the rare-earth site. generally speaking the
approximation is appropriate only at low temperatures,
k&T « V /8', where thermal fluctuations have only a
small effect on the phase coherence of the hybrid modes.

We note that if we make the identification

(3.8)

then Eqs. (3.3) and (3.5) are formally equivalent to the
equations for the Green's functions associated with the
fermion operators ck and ck&~ which are obtained from
the effective Hamiltonian,

GOCkpgckpA. +~ ~k Ck~cka
k,p, A, k, cr

-ko
+g g ( Vpkck~kck +H c )

k pro
-kyar

where V&~ denotes the temperature-dependent interaction
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~k(T k~ ]/2 (3.9)

The essence of the quasiparticle approximation is con-
tained in (3.7} and (3.8}. That is to say, in the evaluation
of "S(q,co} we make the replacement (3.7) and then use
the effective Hamiltonian to evaluate the resulting fermion
correlation function. Although A&~, like the chemical po-
tential, can be evaluated within the quasiparticle model we
choose to regard it, too, as input to the calculation. How-
ever, we note in passing that to zero order in V, A&~ is
given by

e +1P(eo —P )

A~g ——

(2J+1)+(2J'+ l)e
{3.10)

where p is the chemical potential and P=(ks T) '. Equa-
tion (3.10) shows that in the limit k~ T && I eo p I, —
Apk~(2J+ I) ' or (2J'+. 1) ' depending on the sign of
eo —p. Thus at low temperatures A„~ is dominated by the

I

contribution from a single configuration (eo&cu).
It must be stressed that the replacement (3.7) is intended

only for correlation functions which are either linear or bi-
linear in operators of the type Xkz~. When applied to
more general functions, e.g.,

(Xt(t)X2(t)X3(0)X4(0)),
it leads to incorrect results even in the limit V—+0. For
this reason we cannot use it to evaluate S(q, co) directly
from Eq. (2.7). However, starting from (2.9) we obtain
correlation functions of the type

(c ) (t)X2 (t)c 3 (0)X4(0))

involving only pairs of the Xk&~ in which case our replace-
ment is exact for V =0. For V&0 we evaluate the correla-
tion functions in an approach which is equivalent to (im-
plicitly) factorizing them into expressions which are either
linear or bilinear in the Xk&~ and then making the replace-
ment. Thus we have

(c (t)Xpk(t)Xpk(0)c (0))~(ApkApk )'~ (c (t)cpk(t)cpk(0)c (0)}
~(A pkA pk. }'~~(c (t)c (0) ) (c„k(t)cp k (0)),

which is equivalent to

(c (t)Xt (t)X„(0)ct(0)) (c (t)ct(0))(Xt (t)X„(0))
~(ApkAp k

)'~ (c (t)c (0) ) (c„k(t)cp k (0) ) .

(3.11)

(3.12)

X I ~k. I
'+g

I ~kpk I

'=1 . (4.2)

The stipulation that ak be a normal-mode operator is
equivalent to the equation,

Qkackcr+g Qkpkckpk
O p, A

IV. QUASIPARTICI. E SPECTRUM

In this section we analyze the quasiparticle Hamiltonian
(3.8). Since the effective Hamiltonian is bilinear in the
fermion operators it is convenient to use equation-of-
motion techniques instead of Green's functions. The an-
nihilation operators for the normal modes, ak, are written
as follows:

ak g 0kaCkcr +g QkpkCkpk (4.1)
p p, A,

From the requirement [ak, ak J
= 1 we obtain the normali-

zation condition for the expansion coefficients,

which is equivalent to the algebraic equations,
-ku

(~ ek )&k = ——g {V„k } &k„k
PrA,

-k
(~—~0)~k„k= —g V„k~k. .

(4.5a)

(4.5b)

Equations (4 5a) and (4 5b) are a set of
(2J+1){2J'+1)+2linear equations. Four of the eigen-
modes are hybrid in character, being linear combinations
of ck and Ckpk. The remaining (2J + 1)(2J'+ 1)—2
modes have energy eo and involve only the ck&~. They are
orthogonal to the hybrid modes and can be made orthogo-
nal to each other. We refer to these modes as gap excita-
tions since their energy lies in the hybridization gap.

In order to evaluate the energies of the hybrid modes we
use (4.5b) in (4.5a) obtaining the two equations (cr = +):

k+ 2(~ ~0)(~ ~k)~k+= X I Vpk I ~k+
PrA

=g +ka[Ckar~effl +g ~kpA l.ckpkr~eff1 ~ {4.3)

Evaluating the commutators in (4.3) we find

+koCk~+ QkpACkp

-kog Oker CkCkcr g Vpkckpk
cr P, c)L,

+
PrA,

-k-
(ccr —Eo)(co —Ek )Qk = g I Vpj, I uk-

p, A,
L

k — -k+
g(Vpk )"Vpk &k+ ~

(4.6a)

(4.6b)

ko+g &kpk &ockpk g{Vpk)*ck-
p, A, CT

(4.4)
From inversion and time-reversal symmetries it follows
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that

X I Vpk I'=X
I V„k I'=

I
Vk I

(4.7)

Equations (4.6a) and (4.6b) can be diagonalized with the
resulting eigenvalues ck =g(uk ) ak (4.14a)

Since our diagonalization is equivalent to performing a
unitary transformation on A,ff we can express ck and

ck&~ as a linear combination of the o'k,
v= 1, . . . , (2J+1)(2J'+1)+2,by means of the equations,

~k =
2 («+&o)+ z [(«—&o)'+4~k ]'"

~k= 2('k+&o}+ ~ [(&k —&o} +4&kl'

(4.8a)

(4.8b)

V ~ V g V
ckpX ~(uk@A. } ak ~ (4.14b)

where

~k=
I

Vk I'+ g(V„k )*V„k
p, A,

&k =
I Vk

I

' —X ( Vpk ) *Vpk
p, A,

(4.9)

{4.10)

where ukk and uk , are given by (4.12) and (4.13), respec-
tively, for the hybrid modes (in an approximation where
Ak=Bk=

I
Vk I

), while in the case of the gap modes
uk ——0.

It was mentioned above that we can calculate the chem-
ical potential in the quasiparticle approximation. It is
determined by the condition that there be a total of nX
electrons in the conduction and f states, i.e.,

~k =
2 («+&o)+ 2 [(«—&o) +4

I Vk
I ]

(v= 1 —4) . (4.11)

In this limit the coefficients ukI ~ in Eq. (4.1) are given by
-kyar

uk~k = —Vqkuk~ l(cok —eo) . (4.12)

Using (4.12) in (4.2) we obtain

uk~ =[I+
I

Vk
I

'~(~k —&o)'] '" (4.13)

where it is understood that v = 1,2 are the two hybrid
modes associated with o.= + and v =3,4 are the two
modes associated with o= — (i.e., uk ——uk =uk+

4 1 3 2 4x=uk+ =0, 6)k =Q)k, h)k =Q)k ) .

The corresponding eigenvectors are linear combinations of
uk+, uk, and ukj g.

In the analysis of the structure factor we will make the
simplifying approximation of neglecting the second term
on the right-hand side of (4.9) and (4.10). When this is
done uk+ is decoupled from uk, and the hybrid modes
become two-fold degenerate with energies

g (ck ck &+nNQ (&kk &

k, cr

+(n —1)NQ (X„„&=nN . (4.15)

The details of the calculation, which utilizes the spectral
representation of the Green's function, are developed in

Appendix B.

V. CORRELATION FUNCTIONS
AND DYNAMIC STRUCTURE FACTOR

In this section we use the results of Secs. II—IV to cal-
culate the high-frequency part of the structure factor [Eq.
(2.9)]. As noted we will limit the quantitative analysis to
q =0 where we can obtain algebraic expressions for

"S(O,co). In order to minimize the algebra we will con-
sider only the case where the ground state of the f"
configuration is a singlet (e.g. , Eu}. Under these condi-
tions we have

dM, (O, t) dM, (O, t)

dt dt ' =0 A, , A,
'

-ku
y

-ka=—g mkmk g g ([(V„k )*ck-(t}ck„k(t) V&kck„k(t)ck (t)]-
k, cr k', cr'

&&[(V„k ) ck'(0)ck'„k (0) V„k ck'„k'(0—)ck. (0)]&, (5.1)

where we have made the replacement indicated by (3.7) and (3.9} (cf. the discussion at the end of Sec. III).
We proceed by expanding ck and ck&~ in terms of normal-mode operators using (4.14a) and (4.14b). The resulting ex-

pression involves fermion functions of the form
II ill(

(ak(t)ak (t)ak (0)ak (0)&,

which reduces to

5kk5 „5 . (ak (t)ak(0)&&ak(t)ak(0)& . (5.2)

[We omit the term involving the pairing of akak as it vanishes if we first calculate "S(q,co) and then take the limit

From (5.2) it follows that the quasiparticle contribution to "S{0,co) is a sum of terms of the type

&ak ak &&akak &5(~+~k ~k) .
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I

The high-frequency scattering describes the destruction of a quasiparticle in mode v'k' with energy cok and the creation
of a quasiparticle in mode vk with energy &uk

——co+cok . The equilibrium averages are given by Fermi distributions

(5.3)

(5.4)

When q =0 there will be three types of transitions contributing to the scattering at high frequencies; one of these in-
volves two hybrid modes, the other two a hybrid mode and a gap mode. We first consider the former. Using (4.14a) and
(4.14b) we can write the (lower) hybrid to (upper) hybrid contribution to the structure factor in the form

""S""(Oco)=(2~/~')X mkmk X[(V„k)*V„kuk„k(ukpk ) luk. I +Vik(Vpk ) luk~ I
(ukpk)*uk„k

A, iE' k, cr

-ka
+

—ko
+ 2 2 + ] ~ +

-kyar —kyar

{Vpk } {Vpk, ' } ukpk (uk+ ) kgb(k. c'r ) Vyk V@A,'uko ( krak' } {ukpk } ukcr ]

X nk(1 nk )—5(co+ cok —cok ),2 1 2 1 (5.5}

where v= 1 refers to the upper hybrid mode with energy —,
'

( ek+pe) +—,
'

[(ek —ep) +4
I Vk

I

]' while v==2 specifies the
lower mode with energy i (ek+ep} —i [(ek —ep) +4

I
Vk I

]' . Using (4.12) and (4.13) we can reduce (5.5) to

""S""{o~)=(2~/~') g mkmk g I V,k I

'
I V&k I

'
I Vk

I
nk(1 —nk@(~+~k ~k) . (5.6)

A, A' k, cr

If we overlook the k dependence of the matrix elements of the ion-conduction electron interaction in the energy region
of interest we can convert the sum over k in (5.6) to an integral over the density of states of the unperturbed conduction
band, pp(e), viz. ,

g h (ek)~ I pp(e)h (e)de . (5.7)
k

We finally obtain (co & 4
I

V
I

""S""(0co) = Ckk [coE (co)] '[po(eo+E(co) )f, (1 fb )+po(ep——E (co) )f, (1 fd )], —
where

E( ) (
2 4I V I2)lj2

and

f, = {expP[ep+ , E(co) —,'co ——p]+1—I

fq ——{exp P[ep+ ,' E (co)+ ,
'

co —p]+1I——
f = {exp%co—

z E(co) i co p]+1I—
fd = {exp P[eo , E(co)—+ —,

'
co —p—]+1 I

(5.8)

{5.9)

(5.10)

(5.11)

(5.12)

(5.13)

with C~~ a frequency-independent parameter proportional to V .
The contribution to the scattering from the destruction of a gap mode and the creation of an upper hybrid mode takes

the form

"S"(O, co)=(2'/co )g mkmk gg(V„k)*Vi,kuk„k(uk„k )
I
uk~

I
(e ' +1)

k, o v

—p(co — )
X (e " " + 1) '5(co+co cok ), — (5.14)

where the sum on v is over the 2J —2 gap modes. As in (5.8) we can convert the sum to an integral obtaining

"Sk&{O,co) =Ck&co po(eo —(
I

V
I

—co )/co)(e +1) '(e " +1)

where CI,g is independent of frequency.
A similar analysis for the lower hybrid to gap scattering leads to

p(~2 — )
"Ss"(Oco)=(2m/co )g mkmk gg V„k(V„k )~

I uk~ I (uk„k)*uk„k (e " +1)
A, A' k, o v

(5.15)

(5.16)

which becomes
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""Ss"(O,co)=Cst, ~ 'po(eo+(
~

V
~

—co')/~)(e ' " +1) '(e ' " +1) (5.17}

where Cgy,
—Cy,g.

The quasiparticle contribution to the inelastic scattering is given by the sum H"S""+ "S"+H"S ". Since the frequen-
ries of the gap modes are independent of wave vector the hybrid-to-gap and gap-to-hybrid scattering at fixed cu is only
weakly dependent on wave vector. In contrast, the hybrid-to-hybrid scattering is predicted to have a stronger q depen-
dence. Moreover, when q&0 inelastic intraband transitions, cok~~k+~, involving the hybrid modes will also contribute
to scattering at finite co.

As mentioned, the quasiparticle model is appropriate at low temperatures. At high temperatures, ke T »
~

V
~

po(eo),
the thermal fluctuations will destroy the phase coherence between the electronic and ionic contributions to the wave func-
tions of the hybrid modes. Under these conditions a more reasonable approach is to evaluate "S in a decoupled-mode
approximation where correlation functions of the form

{ct,~(t)Xt~„(t)Xt, &~ (0)ct, ~(0) )

are evaluated treating c and X as independent operators. This leads to the expression

"S (O, co)=(2m. /co

)+ming

~ V„g ~
[(e ' " +1) '(e " "+1) '6(co+co —et, )

k cr

(5.18)

which reduces to

"S (O, co) =Coco [po(co+co)(e ' + 1) '(e ' + 1)

+po(eo —co)(e ' +1) '(e ' +1) '], (5.19)

where Co is a frequency-independent parameter
Cga+Ca, -CI~+C
A comparison of (5.19) with (5.8), (5.15), and (5.17)

shows that when co »
~

V
~

the quasiparticle and
decoupled-mode results become the same. Only when
co&

~
V~ do the particular coherence effects associated

with hybridization become significant. Moreover, apart
from the k dependence of the matrix elements implicit in
Co, "S (q, co) is independent of wave vector. Finally, we
note that although the expressions obtained for "S(O,m)
pertain to a system where J' =0 they hold equally well for
the general case provided appropriate C~~, C~g, Cg~, and
Co are used.

VI. DISCUSSION

The goal of this paper has been to outline a theory for
the high-frequency component of the inelastic neutron
scattering from IV compounds. It must be emphasized
that the theory applies only to the regime m&&AJ, AJ
where AJ and AJ are measures of the crystal-field split-
tings of the J and J' manifolds, respectively. The theory
focuses on the evaluation of correlation functions of the
type

(X~&t„{t)c~ (t)XI, ~»(0)ct. (0) ) .

To describe the scattering at low temperatures we intro-
duce a quasiparticle model. The quasiparticle Hamiltoni-
an (3.8) should not be confused with the true Hamiltonian
(2.1). The former is defined so as to have the property
that it leads to the same set of equations for the Careen's
functions ((X„q,c )), ((c;c )), and ((X„q,X„~)) as are
obtained from (2.1) with our approximate decoupling

scheme. The distinction between (2.1) and (3.8) is further
illustrated by the fact that the equation for the chemical
potential, (4.15), is not equivalent to the requirement that
there be nX quasiparticle in the system. Rather, the
chemical potential of the quasiparticles is equated to that
of the IV system.

Our low-temperature results are summarized in Eqs.
(5.8), (5.15), and (5.17) which display "S(o,co) as a sum of
terms associated with the hybrid-to-hybrid, gap-to-hybrid,
and hybrid-to-gap transitions. In all cases the scattering
depends on eo —p and the density of states of the conduc-
tion band. The hybrid-to-hybrid scattering is character-
ized by a threshold singularity at the hybridization gap
2

~

V
~

. In the gap-to-hybrid and hybrid-to-gap scattering
the threshold is determined by the lower and upper limits
of the conduction band, respectively.

At higher temperatures, keT »
~

V
~

pa{co), the effects
of hybridization disappear. The scattering is then predict-
ed to follow the decoupled-mode result, Eq. (5.19), as a
first approximation. Of the various expressions character-
izing the scattering in different regimes only the hybrid-
to-hybrid and intraband-to-hybrid scattering will show a
significant dependence on wave vector.

The theory we have outlined is not intended to apply to
the central peak regime where intramanifold transitions
contribute to the scattering. However, we note that

"S(q,co) is proportional to m so that aside from thresh-
old effects it will tend to peak at low frequencies. This is
evident in (5.19) which reduces to

"S (O, co) =(Co/2' )po(eo)cosh [P(eo—p)/2],
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as co~0. As a consequence at high temperatures "Swill
appear as a tail to the Lorentzian peak characterizing the
quasielastic scattering.

As mentioned, there have been a number of recent
theories of the dynamic susceptibility of IV com-
pounds. " ' These can be divided into two categories. In
Refs. 11—15 the analysis is based on the periodic Ander-
son model whereas in Refs. 16—18 the calculations are
carried out with a Hamiltonian similar to (2.1). Although
there are points of correspondence between the hybrid-to-
hybrid scattering and the results obtained with the period-
ic Anderson model (cf. the threshold at the hybridization
gap shown in Fig. 12 of Ref. 15) the Anderson model does
not provide a very satisfactory starting point for realistic
calculations of the properties of IV compounds. ' As em-
phasized by Anderson2o the orbital degeneracy of the f
states plays an important role. In our analysis this degen-
eracy is reflected in the appearance of the
(2J+1) (2J'+1)—2 gap modes which do not hybridize
with the conduction electrons.

The work reported in Refs. 16 and 17 is complementary
to our own in that it focuses on the width of the central
peak. The calculation is carried using an approach
equivalent to our decoupled-mode approximation. The re-
sulting expression for the width is proportional to
cosh (P(eo —p)/2) and thus vanishes exponentially in
the integer-valence limit. It should be noted that were one
to carry out a similar analysis in the quasiparticle approxi-
mation one would find that the width of the central peak
was zero. This happens because in the approach of Ref.
16 the width of the central peak is approximately equal to

lim to S(p, to)(2TXz. ) (6.2)
QP —+0

where XT is the static susceptibility. According to (5.8),
(5.15), and (5.17) the limit in (6.2) vanishes for the quasi-
particle model. Thus in this approximation the central
peak is a 6 function. The difference in the results of the
two calculations emphasizes the point made earlier about
the regions of applicability of the quasiparticle and
decoupled-mode approximations. In an operational sense
we expect the latter to be appropriate at high temperatures
where the homogeneous width of the central peak is weak-
ly temperature dependent, the former in a regime where
the width has decreased to a value which is much less than
its high-temperature limit (e.g. , TmSe below 50 K6).

The Foglio calculation' is based on a model appropri-
ate to CeP13 (n =1). The dynamic structure factor is ob-
tained from a Green's function analysis with a local
decoupling approximation. Because the decoupling is lo-
cal, hybridization effects are not taken into account. Thus
the theory may be more appropriate for characterizing
scattering in dilute IV systems.

Concerning the relevance of this work to experimental
studies we have noted that in addition to measurements of
the width of the central peak there have been a number of
studies reporting structure in the high-frequency scatter-
ing. ' ' In particular, in Refs. 6 and 7 evidence is
presented suggesting a hybridization gap in TmSe. (See
Note added in proof)

Taken together with Refs. 16 and 17 the theory
developed in this paper leads to a subdivision of the inelas-
tic neutron scattering spectra of IV compounds into two

categories. Type A behavior is characterized by a
Lorentzian central peak with a (nearly) temperature-
independent width. The behavior of the structure factor is
indicated schematically by the following sequence, the ar-
rows denoting increasing values of co,

2T+TI 2T+T I
lim co "S (O, to)

co +I CO CO

HFSO(() ) (6.3)

Type B behavior is characterized by a relatively narrow
central peak having a temperature-dependent width. In
addition there may be resolved or partially resolved struc-
ture associated with intramanifold transitions. The corre-
sponding sequence takes the forms temperature-dependent,
central peak, and/or intramanifold structure, which, at
high frequency, goes over to

HFShh(p )+HFShg(p ~)+HFSgh(p ~) (6.4)

Since only the hybrid-to-hybrid (inter- and intraband)
scattering is expected to show significant dispersion it may
be possible to identify the contribution from "Shh(q, co)
by comparing data taken at different wave vectors.

We have commented above on the appearance of the
density of states of the conduction band in the expression
for "S(q,co). Because of this it may be possible to relate
features in the high-frequency scattering to fine structure
in po(e), which might be observed, for example, in photo-
emission experiments. The existence of such a connec-
tion would be strong evidence in support of the theory.

Finally, we emphasize that there are still many theoreti-
cal problems relating to the neutron scattering from IV
compounds. In the context of this paper perhaps the most
important is to understand the crossover from type A to
type B behavior with decreasing temperature and why it is
seen in some systems [e.g. , TmSe (Ref. 6)] and not in oth-
ers [e.g. , CeSn3 (Ref. 7)].

Note added in proof. The inelastic line reported for
TmSe in Ref. 7 has also been found in dilute systems (0.05
at. % Tm). This suggests the transition is a single-ion ef-
fect and thus is not associated with excitation across a hy-
bridization gap [E. Holland-Moritz and M. Prager, J.
Magn. Magn. Mater. 31—34, 395 (1983)].
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APPENDIX A

In this appendix we discuss the decoupling approxima-
tion introduced in Sec. III. In Eq. (3.4) we made the re-
placement
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k'«I' [ kpk«Xk'p'k' I «ck«r » II 5kk'5k'. '5pp'( & Xpp & &Xkk & ) « ck«I«ck«I &) It ~ (A 1)

Here we examine the approximation in greater detail focusing on the equation of motion for the higher-order function.
In light of (2.16) we write the Green's function in the form

G = ((ck' «I[Xkpk«Xk'p'A. '
) «ck«I )&II=N ((ck I «('5k'k'Xk —k'pp'+5ppXk k kk)«ck«r ))ct « (A2)

where Xk&& and Xk~~ are defined by equations similar to (2.14).
The function 6 satisfies the equation

(co ek —)G =5kk5pp5kk5 ((X„„)+(Xkk))
kll II

V„" k (([Ck (5kkXk k„„+5„„, k kkk)
ktt tl tt gtl

rtgrtckll it —+kit ttgttCkli

X (5kk'Xk k'pp'+ 5pp Xk k k k)];ck )) + (A3)

II

where the ellipsis signifies terms involving ( Vp k ) which drop out after making the approximations discussed below.
We a~proximate the higher order Green s fpunction on the right-hand side of (A3) by replacing the products ck ~ ck«-

and ck-~-,k ~ by their thermal averages 6k k-6~ ~-(1 —nk ~ ) and 6k k-6~ ~-nk ~, respectively, where
nk [exp——p(« —p)+ 1] '. Since ck ~ - and Xk p-k ~ anticoinmute we obtain an expression of the type,

Vp"k"nk'&'« [(5u.'Xk k'pp'+5pp—'Xk k'k'z)»k'p—"k") ck
—1/2 k'cr'

II pit

Vp-k (((5kkXk k pp +5ppXk k jLk)Xkp"k «ckii ))I« .—$ /2 k'o'
(A4)

The commutator in (A4) can be evaluated using (2.6). We approximate the second term by repeating (Al). The combined
effect of these operations is to reduce (A3) to

(~—«.)G =5,„5„„,5„,.5..((X„„)+(X„))

+ 2 Vp"k"nk' '(5k'. '5p'p" « Xkpk" ck » 5pp'5k 'k- &(Xkp-k,'ck » )
tl gll

'I

—5,„5„„5,„5..((X„„)+(X„))g V„", ((X„„„,„; „'.)). . (A5)

The first and third terms on the right-hand side of (A5) are the ones obtained when G is approximated by

(&X„„&+&X &)5

The second term is the leading correction to this approximation. When (A5) is introduced into (3.4) the correction term
appears in the form

X X X Vp k" (Vp'k') nk' '(~ «') (5kk'5p'p" ((Xkpk"'ck && 5pp'5k'k" ((Xkp"k ck ))
p.",A,

" p', A,
' k', 0'

(A6)

The term in large parentheses in the above expression is of order V /8' where 8 is a measure of the width of the con-
duction band. Moreover, the expression vanishes identically if one assumes complete rotational symmetry about the ionic
site. In order to see this we expand V&~ in terms of the matrix elements of the annihilation and creation operators for thef electrons'

3

m =—3

m, m' k'k'

Thus we can write

g Vp':'k-(Vpk )"nko(~ —«) '= g g Vkm(Vk )*&S "If~~ I~"&&~'If~ IV'&«(~ —«) ' (A8)
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If we postulate rotational symmetry then the angular
average over the direction of k' reduces to'

(4m) 'f dQk VI, (Vk )*(a)—ek) '(x5, (A9)

which vanishes unless m =m'. In the evaluation of (A6)
one encounters terms of the form

in the limit @~0+, taking m to be real. Note that in
(Bl)—(83) we have introduced the chemical potential
through the correlation function. The results are identical
to what we would have found were we to have worked in
the grand canonical formalism with a number operator
whose expectation value is equal to nN [cf. (4.15)].

In the quasiparticle approximation «X&x(i);Xx&(i ) »„ is
obtained by making use of (2.14), (2.15), and (3.7) and then
expanding ck&~ in terms of the ak. We find

which are proportional to

++ &~If' I) '&&a'If (A 10)
«X„( );X „( )»„=

N

and

p,
' m

Apg
Qk&g CO —@Ok

k v

(85)

which are proportional to

XX &i "If . I

~'&«'If'. Iv& (A 1 1)

Thus we have

&X„„&=(&X„„&+&X„&)f„,,
&X„&=(&X„„&+&X„&)(1—f„,),

(86)

where in both cases we have made use of (A9). Because of
the spherical symmetry assumed for the ionic states I', A1O)
vanishes after summing over m unless A. =X"; likewise
(All) vanishes unless p"=p. As a consequence (A6) is
identically zero.

From this analysis we conclude that the decoupling ap-
proximation leading to (3.5) is justified in the sense that
the leading correction is small when V/8'«1 and van-
ishes identically when (A9) is satisfied. Finally, we note
that in the (unphysical) situation where both the A, and p
manifolds are nondegenerate the decoupling approxima-
tion becomes exact since in this case X»(i)+X~x(i)= l.
Moreover, our treatment of "S(O,co) is also exact. How-
ever, there is only hybrid-to-hybrid scattering since there
are no gap modes (cf. Sec. V).

where

(88)

having made use of the unitarity property,

(89)

Equations (4.21) and (4.22) can be solved for &X&& & and
&Xxx & by making use of the identity9

QX&&(i)+ QXx~(i) =1 .
p A,

(810)

This is done by identifying arbitrary reference levels p, and
X. Then from (86) and (87) we have (p&P, A,&X)

APPENDIX B
In this appendix we outline the calculation of the chem-

ical potential, &Xxx & and &X&& &. The calculation begins
with Eq. (4.15). The first term on the left-hand side can
be evaluated by expanding the ck in terms of the ak using
(4.14a). We have

&X, & = &Xxx &f„x(1—f„x) '

&X«& = &X„„&(1—f„,)f„:x',

whereas &X & and &X~~ & are related by

(811)

(812)

(813)

Using (811)—(813) in (810) we have

where as before p denotes the chemical potential.
The &Xxx & and &X&z & can be calculated from

Green's function «X„x(i);Xx„(i) »„We obtain.

&X„„&=—f da)(e ~'" "'+1)

(81)
Xf x(' —f,x) '+fpx(1 —

flax) 'X(1 f„)f„—-
the s

= &X«&-' . (814)

)&Im«Xpx(i);Xx~(i) &&„,

oo

&X„&=—f d ("-- +1)-'

(82) Equations (4.15), (88), and (Bl 1)—(814) thus form a set of
coupled nonlinear equations for the chemical potential, the
&Xxx &, and the &X&& &. In the limit V~O we obtain

where
X Im«X„x(i);Xx„(i)»„, (83)

Im«A;B »„=(iI2)(«&;&»;,—«2;8 »;,),
(B4)

&X„&=[(2J+1)+(2J+1).""-"j-,
&X„„&=e " "&X„&,

in agreement with earlier calculations.

(815)

(816)
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