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Self-consistent electronic structure calculations in the envelope-function approximation are per-
formed for InAs-GaSb superlattices, with a three-band kP formalism and suitable boundary condi-
tions. The subband dispersion for K not parallel to the growth axis, realistically computed for the
first time, obeys a no-crossing rule which opens small (<10 meV) gaps between conduction-band-
like and valence-band-like subbands. It is therefore argued that the semimetallic behavior observed
for periods d > 180 A is dominated by extrinsic effects.

I. INTRODUCTION

There has recently been much interest in semiconductor
superlattices of “type II,” such as InAs-GaSb.!~7 Their
characteristic feature is that the top of the GaSb valence
band lies higher in energy than the bottom of the InAs
conduction band. Charge transfer across each interface of
the periodic array and novel electronic properties are to be
expected. Experiments,>~>? indeed, indicate a transition
from a semiconductor to a semimetal occurring as the su-
perlattice period is increased, and the lowest conduction-
band-like subband sinks through the highest heavy-hole-
like subband. Therefore, the nature of this transition de-
pends strongly on the superlattice band structure. It is, in
fact, well known that in a general low-symmetry direction
in kK space, no band degeneracies are allowed, so that a gap
must appear between the two intersecting bands. The oc-
currence of the semimetallic state depends, therefore, on
the possibility of crossing along high-symmetry directions.
A further mechanism takes place if an indirect gap be-
comes negative, so that pockets of electrons and holes at
different points of the Brillouin zone result. This cannot
be determined on symmetry grounds, but must be investi-
gated by detailed calculations.

It will be shown in the present paper that neither
mechanism is operative in InAs-GaSb superlattices, so
that in an intrinsic sample no truly semimetallic band
structure results, but rather a zero-gap or very small gap
(Eg <10 meV) semiconductor. Therefore, doping and
temperature effects must play a key role in the observed
semimetallic behavior.

There are some stringent requirements on a band-
structure calculation for such systems. In fact, (a) the
narrow-gap nature of InAs and GaSb, and the mixing of

valence and conduction bands at the interfaces, make a
J

Hj= 3 Djfkokg+ 3 Phko+Epd;

many-band treatment necessary; (b) the investigation of
the bands for kK parallel to the layers requires a realistic
description of the host bands, and in particular, of the de-
generate valence-band edge; (c) the occurrence of charge
transfer requires a method suitable for self-consistent cal-
culations. On the other hand, the very large superlattice
unit cells in the region of the transition (period d > 180 A)
rule out ab initio methods’; among semiempirical
methods, tight-binding theories"!® are remarkably simple,
but unsuitable for requirement (c) [as well as for (b) if
oversimplified schemes are adopted]. The envelope-
function approximation appears to be the most convenient
framework for this problem, as pointed out by Sham and
co-workers*!! and by Bastard.%’ It is shown in the fol-
lowing that besides fulfilling requirement (a) as pointed
out by these authors, this method can be formulated so as
to fulfill requirements (b) and (c) as well.

II. METHOD OF CALCULATION

Consider an A4-B superlattice composed of layers of
thickness a and b, i.e., with period d =a +b. Let x denote
the superlattice axis and let y,z denote two orthogonal
directions in the x =0 plane. Following Ref. 11, we
choose z as the quantization axis of angular momenta, and
consider K vectors in the xy plane. The six states of the
conduction and wupper spin-orbit-split valence bands
decouple then in two equivalent sets. Our basis is
uy=|s1), u,=1|%,%), u3=1|2,—+), and the analo-
gous ug,us,ug for the “spin-down” set. We retain the full
coupling of the heavy holes with the other bands, which is
necessary for a correct description of the dynamics in the
layer direction. For K in the (xy) plane, the dispersion of
spin-up states in material 4, for example, is given by the
eigenvalues of the following matrix (atomic units are used
everywhere):

a,B=x,y a=x,y
E .+ +k? iP(ky+ik,)/V2  —iP(k,—ik,)/V6
= | —iP(ky—ik,) V3 Eu._”T”k2 V3 Phey —iky 1272 | (1
iP(ky+iky) VG (VIVTky + ik, )2/2 jzu_’/‘—z—zk2 |
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where E,(E,) is the conduction- (valence-) band-edge ener-
gy, P is Kane’s momentum matrix element,'?
iP={(s |ps |x), and ¥, and 7 are Luttinger-type valence-
band parameters in the spherical (y,=7y3;=7%) approxima-
tion.!> The parameters P, y,, 7, and E, —E, are known,
for each material, by magneto-optical experiments.'*!
The relative position of the band edges of the two materi-
als is, on the other hand, an empirically determined input
parameter. By following the standard effective-mass pro-
cedure, we obtain equations*®~7 for the slowly varying en-
velope functions Fﬁ B(x) (j'=1,2,3) in the form

2’ [Hf;"(B) + VA(B)(x)ajjI]E;? (B) ZEI‘_:#(B)
J

(j=12,3) (2)

in the 4 (B) part of the superlattice unit cell, respectively.
Here k——iV in H* and H?, and V4(x),V?(x) are the
potentials arising from charge redistribution across the in-
terfaces. F4 and F® must be joined at the interfaces by
suitable boundary conditions. (Similar equations hold, of
course, for j'=4,5,6.) Given the structural similarity of
III-V compounds, it is a good approximation®* to take the
basis functions u, * * * ug to be the same in 4 and B, which
also implies PA=P2  The continuity of the total wave
function implies, then, continuity of the envelope function
at each interface. The other three boundary conditions'®
are obtained by imposing a constant probability current
J.(x) across all planes perpendicular to x, and in particu-
lar, across the interfaces. Averaging over one unit cell of
each material, we find the following for the expectation
value of the current operator J,:

T, = ZF* [(D? + D}k, + P |F;

F*D“iF —F D“iF*

Ji Ax 1] Ox 3)

—i 2
Bi

Using the continuity condition, the equality of the P’s in
A and B, and the hermiticity of the D matrices, from the
continuity of Eq. (3), we get the following conditions.

2 ‘D"y DIk, —2iDH-S

Jla F

continuous (j =1,2,3) . (4)

These boundary conditions reduce, in particular cases, to

those derived by other authors: In the absence of K?
terms in the Hamiltonian (vanishing D matrices) one sim-

TABLE I. Band parameters used in the calculation (from
Refs. 4, 14, and 15). The values of y,,7 turn out to be equal
within experimental error for both materials, although they need
not be. € is the dielectric constant, appearing in Poisson’s equa-
tion for V4, V2 (see text).

InAs GaSb
E. (eV) 0.000 0.960
E, (eV) —0.420 0.150
P (a.u) 0.719
Y1 (a.u.) 3.7
7 (a.u.) 0.6
€ ) 15.0

ply obtains the continuity of the envelopes, as in Ref. 4;
the coefficient of the 3/0x term in Eq. (4) reflects the
jump in effective mass that must be included in the
derivative continuity condition, as pointed out in Refs. 6
and 7.

Equation (2), for A and B, are coupled into a modified
variational principle!®!’ which automatically produces
solutions satisfying the boundary conditions. From the re-
sulting wave functions, calculated at 21 K points in the ir-
reducible portion of the (k,,k,) plane, we calculate the
charge-density change, in the 4 layers for example, with
respect to bulk 4 material. This is achieved by consider-
ing the A conduction-band component of all occupied
states, and similarly the 4 valence-band component of all
empty states, which correspond to the excess electron and
hole densities, respectively. These components are ob-
tained by projecting, at each k value, the superlattice wave
functions on the eigenvectors of the matrix in Eq. (1), cor-
responding to the bulk A-material states. From these
p(x) and p®(x), we obtain ¥4(x) and ¥5(x) in the Hartree
approximation'® by solving Poisson’s equation, and iterate
to self-consistency. We found six to seven iterations at
most to be necessary to stabilize the eigenvalues and po-
tential to better than 1 meV.

We therefore have a scheme which allows us to investi-
gate the subband dispersion in the layer planes realistically
and self-consistently for the first time.

III. RESULTS FOR InAs-GaSb AND DISCUSSION

The parameters used in the calculation for InAs and
GaSb are listed in Table I. Figure 1 shows results ob-
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FIG. 1. Band structure of (a) a d =2X60 A and (b) a
d=2X90 A InAs- GaSb superlattice in the flat-band approxima-
tion. k, is perpendicular to the layers, k, parallel to them. The
dashed horizontal line denotes the Fermi energy. All energies
are in meV.
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tained in the non-self-consistent flat-band approximatior},4
[VAx)=V53(x)=0], for d =2X60 A and d =2X90 A
InAs-GaSb superlattices. These results illustrate a general
symmetry principle: Subbands can only cross for K paral-
lel to the superlattice axis x; for k,£0, hybridization and
anticrossing behavior occur.!” This symmetry principle
holds for the Hamiltonian with the spherical approxima-
tion [see Eq. (1)], i.e., for an approximation which artifi-
cially raises the symmetry of the system. It will a fortiori
continue to hold in all directions perpendicular to k, when
the actual, lower symmetry is restored. Thus a gap always
opens for K off the x direction, as is visible in Fig. 1(b).
The Fermi surface reduces, for this value of d, to the one
point along x where the crossing takes place, so that a
zero-gap semiconductor, rather than a semimetal, is ob-
tained. When the period is further increased, the crossing
electron- and hole-like subbands keep moving along the
energy axis in opposite directions, and they are soon com-
pletely past each other, resulting in a small-gap semicon-
ductor. This is illustrated in Fig. 2, where the subband
structure of a d =120+ 80 A superlattice is shown. Fig-
ure 2(b) is in the flat-band approximation. Figure 2(c) is
the self-consistent Hartree solution. In Fig. 2(b) the gap is
about 10 meV and is along A. The substantial quantita-
tive effects of self-consistency [Fig. 2(c)] are such that the
gap moves closer to L, and shrinks to 2 meV; also, the
crossing of the two top occupied subbands between I' and
L disappears. This is because the self-consistent potential
raises all states, localized mostly in the InAs layers by
~10—15 meV, and lowers those mostly localized in the
GaSb by a comparable amount. About ~0.9%10'? cm—?
electrons are transferred across each interface. The no-
crossing rule for k,5<0 is of course preserved, being a
consequence of symmetry alone, and so is the resulting
strong nonparabolicity of the subbands in both parallel
and perpendicular directions.

We have investigated the band structure for many other
values of the layer thickness. In no case was a negative in-
direct gap found, although small positive indirect gaps are
present at some thickness values. It appears, therefore,
that the indirect gap semimetal case does not apply to
InAs-GaSb.

We can compare the results of Fig. 2(c) to those derived
from magneto-optical and magneto-transport experiments
on a d=120+80 A sample>>>% The position of the
highest occupied conduction-band-like subband [see Fig.
2(c)] is E;=100=%15 meV; the first unoccupied subband is
H;=139+15 meV; the I-L bandwidth of E, is
AE;=23+1 meV, and the Fermi energy position is given
as Er —E;=39 meV. The results of Fig. 2(c) give E; =97
meV, H; =121 meV, AE;=15 meV, and Er—E ;=21
meV. The sensitivity of these numbers to the fine tuning
of the input parameters can be shown if we simply take
the slightly larger value 0.175 eV (proposed in Ref. 4) in-
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FIG. 2. Band structure of a d =120+ 80 A InAs-GaSb super-
lattice (b) in the flat-band approximation (c) in the self-consistent
Hartree approximation. The Brillouin-zone nomenclature is
shown in (a).

stead of 0.150 eV (from Ref. 2) for the position of the
GaSb valence-band top; we then obtain E; =100 meV,
H,;=144 meV, AE; =19 meV, and Er—E ;=39 meV, in
closer agreement with experiment. It should also be men-
tioned that the procedure of extracting the experimental
values from the actual data implies some assumptions
about the structure of the Landau levels which may not be
entirely correct for the strong nonparabolicity of the sub-
bands shown in Fig. 2. A full calculation of the energy
levels of the superlattice in a magnetic field is currently in
progress. 2

In conclusion, it was shown by explicit self-consistent
calculations in the envelope-function approximation that
in spite of the peculiar ordering of the energy levels and of
the band interchange, no semimetallic band structure is
obtained in intrinsic InAs-GaSb. In view of the very
small gap values, however, it is to be expected that extrin-
sic effects produce the semimetallic behavior observed.
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