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Adams representation and localization in a magnetic field
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The localization problem of a Bloch electron in a magnetic field is investigated by using
the concepts of the Adams representation and of von Neumann lattices. Bloch functions in

a magnetic field are derived, and their properties are established. The magnetic Adams rep-
resentation, based on these functions, is constructed. It is characterized by a magnetic band
index and a magnetic quasimomentum x, and is analogous to the Adams representation in
the Bloch theory. It is shown that the problem of localization in a magnetic field is closely
related to the corresponding problem in the theory of von Neumann lattices.

I. INTRGDUCTIQN

The Bloch theory' is based on the invariance of a
crystalline lattice under translations. Because of this
invariance a conserved quasimomentum (or crystal
momentum) k exists in ideal solids. In the presence
of a uniform magnetic field H the solid is invariant
under magnetic translations. ' The latter invariance
leads to a conserved quantity ic, which is connected
with the center of magnetic orbits. As a conse-
quence of translational invariance the energy spec-
trum displays a band structure both for H=O and
H&0. The existence of bands in the Bloch theory
(H=0) was used by Adams in order to develop what
is called the Adams, or the crystal-momentum, rep-
resentation (CMR). This representation has provid-
ed a suitable framework for studying a variety of
phenomena in condensed matter. Qualitatively,
the usefulness of the CMR follows from the fact
that, because of the energy gaps in the spectrum,
most of the physics takes place in one band or in a
small number of bands. A similar situation should
also prevail when a magnetic field is present, and
then one speaks of magnetic bands, or broadened
Landau levels. ' It should therefore be of interest
to develop the Adams representation for Bloch elec-
trons in a magnetic field.

The translation group and the magnetic transla-
tion group have a number of features in common.
They both are built on the discrete lattices of solids,
lead to conserved quantities (k for the translations
and a. for the magnetic translations), and, finally,
the energy spectrum in both cases has a band struc-
ture. However, on a deeper level there turns out to
be a substantial difference between these two sym-
metries. It is by now well known that the magnetic
translation group is very different in its basic struc-
ture from the usual translation group. " ' In addi-
tion, from the point of view of the dynamics the

magnetic field introduces drastic changes since it
leads to a singular perturbation in the Hamiltoni-
an. "

A general foiiri for the eigenfunctions of a Bloch
electron in a magnetic field can be written on the
basis of group-theoretical considerations. ' ' These
eigenfunctions are labeled by the magnetic k vector
(~ vector in this paper), which specifies an irreduci-
ble representation of the magnetic translation group,
and by an index indicating the magnetic band, or
broadened Landau level. The group-theoretical ap-
proach can be well analyzed on the basis of the kq
representation. ' ' Recently, ' this representation
was used for writing down expressions for the Bloch
functions in a magnetic field and for numerical cal-
culations of the energy spectrum.

An alternative approach to the problem of an
electron in a magnetic field can be achieved by
means of canonical transformations. ' In the latter
approach the Hamiltonian assumes an explicit
harmonic-oscillator form. In particular, the infinite
degeneracy of a Landau level is displayed quite well
in the transformed coordinates. Canonical transfor-
mation methods have also been used to find an in-
teresting similarity between Pippard networks of
Dingle functions and von Neumann lattices of
coherent states. ' This similarity follows from the
fact that both the Pippard network and the von
Neumann lattice are generated from a discrete set of
translations in phase space. In the case of the Pip-
pard network this set consists of the magnetic
translations, while for the von Neumann lattice it
consists of translations in the x-p (coordinate-
momentum) phase space. Since the kq representa-
tion' is based on exactly this latter type of transla-
tion, it should give a connection between Pippard
networks and von Neumann lattices.

The classical Pippard network is based on a set
of Dingle functions, which are well-localized in
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space. The problem of completeness of this set rela-
tive to a Landau level is closely related to the corre-
sponding problem for sets on a von Neumann lat-
tice. In the presence of a periodic potential the
Dingle functions will be replaced by some more gen-
eral set of localized orbitals. These latter orbi-
tals are related to the localized functions for a Bloch
electron in a magnetic field. When H=O, these are
the Wannier functions or, more generally, the local-
ized functions for the Bloch problem. While the
problem of Wannier functions (H=O) has been in-
vestigated in a number of papers, ' there is no
comparable work on the problem of localized orbi-
tals in a magnetic field.

In this paper properties of sets on von Neumann
lattices are used for investigating the problem of lo-
calization of a Bloch electron in a magnetic field.
We restrict ourselves to the case of rational magnet-
ic fields. In Sec. II, Bloch functions in a magnetic
field are derived, and their properties are considered.
In Sec. III we construct the magnetic Adams repre-
sentation, based on these functions. When restricted
to a single magnetic band, the Adams representation
essentially reduces to a kq representation in the two
components of a perpendicular to H. In Sec. IV the
problem of localization of magnetic orbitals is inves-
tigated by using the concepts of the Adams repre-
sentation and of von Neumann lattices. A Pippard
network is introduced, reproducing a single magnet-
ic band. Magnetic Wannier functions on this net-
work are obtained, and the concept of localization of
magnetic orbitals is then discussed. It is shown that
localization is accompanied by nonorthogonality.

II. BLGCH FUNCTIONS IN A MAGNETIC FIELD

The Hamiltonian of an electron (of charge —e
and mass M) moving under the influence of a
periodic potential V(r) and a uniform magnetic
field H is

have a superlattice with basis vectors b1 ——N1 a1 and
bz ——Nzaz (N1 and Nz are integers satisfying
N, Nz —N), such that the magnetic flux through the
unit cell built on b1 and bz is exactly the quantum
of flux, hc/e. It is easily verified, using (3), that the
two operators (magnetic translations)

T(b )=exp —II, b, j= l, 2 (4)

where

Il, =p ——,PXr,
commute, and that they also commute with the
Hamiltonian H in (l).

We want to study the nature of the simultaneous
eigenfunctions of (I) and (4). For the sake of clarity,
let us restrict ourselves to the case of a two-
dimensional rectangular lattice perpendicular to H,
and neglect the motion along H. Our results can be
extended to more general cases without much diffi-
culty. Thus, let the lattice vectors a1 and az be
directed along the x and y axes, respectively, of a
coordinate system (x,y). We will now describe the
problem in terir1s of new coordinates defined by the
canonical transformation

Q =p„/P+y/2, P =p„—Px/2,

Q=p»/P+x/2, P=p„—Py/2,
which preserves the commutation relations between
the position and momentum coordinates

(Q,Pl=(Q Pl =&&

and all the other pairs of operators from (6) com-
mute. The advantage of using the coordinates (6) is
that they are simply related to the components of
the operators II and II„given by (2) and (5). In
fact, olle has

Q =yo ——II,„/P, P = —Pxo ——II,»,

H= + V(r),
2M

where II is the kinetic momentum

II=p+ —,PXr, P= —H (2)

written in the symmetric gauge (which is adopted in
this paper). Let the basis vectors of the lattice be a1,
az, and a3. It is assumed in what follows that H is
parallel to a3, and that it satisfies the rationality
condition

where (xo,yo) corresponds to the center of the mag-
netic orbit. ' In what follows we shall work in the
PP representation, details of which are given in the
Appendix.

Let us write the Hamiltonian Ho (for V=O) and
the magnetic translations (4) in the new coordi-
nates":

eH 1
a1X az ———,N positive integer .c (3) T(b&) =exp PQb1, T(bz) =—exp Pbz—

What condition (3) means is that it is possible to
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Because of the absence of the Q, P canonical pair in
(8), a general eigenfunction of Ho assumes the fol-
lowing form in the PP-representation [a superscript
(0) will indicate the case V=O]

p' '(P, P)=fI(P)g(P), (10)

where f~(P) is an oscillator function in P, corre-
sponding to the energy

el ——(I+ 2 )fm, , cu, = —, l =0, 1,. . .1 eH
C

and g(P) is an arbitrary function of P. This arbi-
trariness in (10) is directly related to the well-known
infinite degeneracy of the Landau levels [Eq. (11)].
Qne may consider several complete sets of functions
g (P) spanning a given Landau level. ' Thus, the set
of Dingle functions

in P, while T(bz) gives a translation by b2 in Q.
These translations in P and Q satisfy, because of (3),
the relation

pbib2 ——h . (13)

&& 5(P —fee, —Pmb, ),

By using the operators in (9) together with Eq. (13)
one can define the kq representation' for the pair of
canonical coordinates Q and P. The latter play the
role of x and p (up to a constant) in the original kq
representation. The eigenfunctions of the operators
(9) assume, then, the following form:

Pip'(P, P)=fi(P)f (P), p =O, l, . . . (12) (14)

where lc=(a&, lc2) specifies the eigenvalues of the
magnetic translations, corresponding to the eigen-
function (14), via the expressions

exp(ilc&b& ), exp(ilczb2),

for T ( b
~ ) and T( b2), respectively. With the nor-

malization constant in (14), the following ortho-
gonality relation is satisfied:

[f&(P) is an oscillator function in P] specifies the
square of the radius vector for the orbit center:
ro ——(p + —, )A'/p.

We now choose g (P) as an eigenfunction of the
magnetic translations (9). By doing so, (10) will be-
come a simultaneous eigenfunction of (8) and (9).
Because of (7) the magnetic translations (9) are
essentially translations in the phase space defined by
the Q-P plane. T( b &) gives a translation by pb ~—

K P K = K —K = K$ —K$ — 77 ] m e ' '
K2 —Kp —n (15)

ln this expression the x coordinate of the orbit
center is determined up to a multiple of b, , while

the y coordinate is fixed up to a multiple of b2.
Thus the vector w gives the coordinates of the orbit
center relative to the magnetic cell built on b~ and

b2. All the orbit centers in a magnetic cell are ob-

tained by varying lc in the magnetic Brillouin zone:

0(lc, (2m. /bi,
0(K2 ((p/A)bt (=2m!bz) .

(17)

Next, we consider the case when a two-

dimensional periodic potential V(r ) is present in the
plane perpendicular to H. Let us expand it in a

By choosing (14) as g (P) we obtain the simultaneous
eigenfunctions of (8) and (9):

(P,P) =y( „(P)(,P
~

lc ), (19)

where qr&-„ is to be determined from the Schrodinger
equation with the Hamiltonian (1). Let us substitute
(19) into the Schrodinger equation. By using the ex-
plicit expression for.K~ „ in Eq. (18), it is easily ver-
ified that p& (P) satisfies the following eigenvalue

problem:

I

Fourier series,

V(r)= g u „exp(iK „.r), (18)

where r = (x,y) is the radius vector and K „are
vectors of the reciprocal lattice. The magnetic
translations (9) commute with (1), and the simul-
taneous eigenfunctions g&„of H and of (9) must
therefore contain the distribution (14). The most
general fornI of g& „ is

Ho+ g u „exp[(iN/A')(Sue~ P)na&]exp[(iN/—fi)(PQ —Suez)ma2] yI „(P)=eI(~)pl (P) .
rn, n

(20)
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Apart from notation, Eq. (20) is identical with the
one-dimensional equation that was derived before by
a different method. Recently, this equation was
derived again on the basis of the kq representation. '

Equation (20) is K dependent, and should give, for a
fixed l, a continuous energy spectrum e~(K), or a
magnetic band. A band structure in the spectrum is
a well-known feature of the Bloch problem (H=O).
In the latter case, for each fixed quasimomentum
one obtains a discrete spectrum of energies. One
should expect a similar situation to exist for H&0,
and for each K in Eq. (20) one should get a chscrete
set of energies. There is no exact proof of this state-
ment. However, it is plausible because if the period-
ic potential is considered as a perturbation in Eq.
(20), one obtains for each K a discrete spectrum.
Numerical calculations also show that the spectrum
e~(K) for a fixed K is discrete. ' Similarly, one
should expect the solutions of Eq. (20) to be square-
integrable functions in the variable P. This feature
of the functions comes together with the above-
mentioned discreteness of the spectrum. An exam-
ple of a square-integrable function is the oscillator
function f~(P) appearing in (16).

In Eq. (20) K varies over the magnetic Brillouin
zone (17). However, as is seen from Eq. (20), its
solutions are periodic in K& and Kz with the periods
2m INa

&
and 2~I%a&, respectively. These periods

define a unit cell which is X times smaller than that
given by (17). This fact leads to the well-known X-
fold degeneracy in a magnetic band ' and to the fol-
lowing periodicity conditions obeyed by the eigen-
functions (19) [or (16)]:

q/, , +P„/b. ..(P,P) =
~/)/ -„(P,P), (21a)

4i, ,+pb, i~(»P)=e ' '0( —.(P,» . (21b)

Conditions (21) are quite different from those sa-
tisfied by usual Bloch functions g &

(m is the band
index) with respect to the quasimomentum k.
Indeed, Bloch functions can be made periodic in k
in the reciprocal lattice, while the eigenfunctions
(19) must satisfy the Bloch-periodicity condition
(21b) in Kz. One may shift this Bloch periodicity
from Kz to K, by multiplying (19) by a proper (con-
tinuous in K) phase factor, but one cannot eliminate
it completely. This characteristic of the eigenfunc-
tions (19) is a consequence of the fact that they are
eigenfunctions of translations in phase space and not
in ordinary space as in the case of Bloch functions.
Despite the fact that the magnetic translations (4)
commute in the same way as the usual ones, there is
nevertheless a fundamental difference between these
two kinds of translations. This follows from the
fact that the generators ll,„and 11,~ of the magnetic
translations do not commute (the usual translations

are based on the commuting generators p„and p„).
Because of this noncommutativity of II,„and II,&, it
turns out to be impossible to choose the eigenfunc-
tions (14) of the magnetic translations to be periodic
in both K~ and Kz. The best one can do is to make
(P

~

K) periodic in one variable, say K&, but then
they become Bloch periodic in Kq. This is a general
feature of the kq representation. ' As a consequence
of this, the eigenfunctions (19) are also Bloch
periodic in Kz. On the other hand, the Bloch func-
tion g z can always be chosen to be periodic in

both components of k. This difference between
the magnetic Bloch functions (19) and the usual
ones very strongly influence the definitions of local-
ized functions for the corresponding problems, as is
shown in Sec. IV.

III. MAGNETIC ADAMS REPRESENTATION

In the preceding section the magnetic Bloch func-
tions for a rational magnetic field were derived. We
now construct the representation based on these
functions, which turns out to be analogous to the
Adams representation in the Bloch theory.

Let us write the orthogonality relations satisfied
by the eigenfunctions (19). It can be easily shown
that, for each K, the Hamiltonian in (20) is Hermi-
tian, so that, using (15), one has

One has also a completeness relation
(22)

(IK
~ Q ~

l'K ) =i 5((h(K —K ),
C)Kp

(24)

+@& ~l, l'~(K
l C)K)

where the following quantities have been introduced:

Xip(z)= f dpgi „(p)iR pi. -(p), -
P

(25)
Y~~(v)= f dPp& (P)Pp& „(P) . -.

f l7d(d(P P)l() (P P ):S(P P )5(P P )

(23)
where the integral over K is performed in the region
(17). Expressions for operators in the magnetic
Adams representation are obtained by taking the
matrix elements of the operator between the eigen-
functions (19). By using (14) and (22) we obtain
then the representations of the operators in (6):

(lK lQ ~

l K )=~„(K-)~(K—.-),
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Because of the localization of g&-(P) in P, men-

tioned in the preceding section, we may expect the
quantities (25) to assume, in general, finite values.
These can be calculated exactly in the potential-free
case, where y& (P)=f~(P), an oscillator function.
One has in this case

Xii '(ic)=i &fi/2P(~l'5&+& i —&I'+15i i+ i) ~

F('( '(ic)= , v'tip(v —l'5(+,i, +V/'+ l5i i, +, ) .

The matrices for x,y,p„,p» are obtained by inverting
the transformation (6) and by using (24). One

should compare the form of the matrix elements
above with that of matrix elements in the ordinary
Adams representation. " In particular, the fact that
certain operators [such as Q and P in (24)] are diago-
nal in the magnetic band index is a consequence of
the special structure of the eigenfunctions (19),
which is quite different from that of usual Bloch
functions.

Let P(P,P) and Bi(ic) denote the same state in the
PP and the Adams representations, respectively.
Using relations (22) and (23), together with (19) and
(14), the following formulas connecting P(P,P) with
Bi(~) are obtained:

&g)&)=1/))b)/2m ge ' ' f dPp( jP)d)P, @c2~Pmg)), (26)

m/b )
d')+ +)= X f «&i)&)d) )+ +)=&))~&~2~X f ~~

«i&()&i,+~&)p(, , ~ra(+) .
1

(27)

By using (26) we obtain the periodicity conditions
obeyed by a wave function Bi(a ) in the Adams rep-
resentation. They coincide with the conditions satis-
fied by a kq function':

Bi(a., +2'/bi, K2)=Bi(a ),
Bi(ici,~2+Phd/fi) =e ' 'Bi(ic) .

(28a)

We now consider the effect of magnetic transla-
tions on a wave function in the Adams representa-
tion. Defining a magnetic translation as in (4), one
has

( —1) ' 'T(b„):—( —1) ' 'T(n&b, +n2b2)

=T '(bi)T '(b2)

(ni and n2 are arbitrary integers), which is derived
by using the multiplication rule for magnetic
translations ' " and relation (3). The operators (29)
form a basic Abelian group" in the two-dimensional
case. Since the magnetic Bloch functions (19), on
which the Adams representation is based, are eigen-
functions of T(b&) and T(b2), the elements of the
group (29) are represented by the following matrices:

(lic
~

( —1) ' 'T(b„)
~

l'Pc) =e "5i i A(ic —ic ) .

This means that

IV. LOCALIZATION IN A MAGNETIC FIELD

The localization problem of a Bloch electron in a
magnetic field has attracted attention ever since the
very early stages of solid-state physics. In recent
work ' the problem of localization on von Neu-
mann lattices was investigated in the framework of
the kq representation. We show in this section how
known results on von Neumann lattices can be ap-
plied for investigating the problem of localization in
a magnetic field. Different sets of localized states
will be considered, and a summary of their defini-
tions is given for convenience in Table I.

We begin by reviewing earlier work on localized
states in a magnetic field. A localized set of orbitals
for the problem of a Bloch electron in a magnetic
field was first introduced in the classical work of
Peierls. Peierls considered the limit of tight bind-
ing and attempted a solution in the form of a linear
combination of atomic orbitals centered on lattice
sites. In the absence of a magnetic field, and in the
tight-binding limit, a satisfactory local solution of
the Schrodinger equation is P(r —t „), namely, an
atomic orbital centered on any lattice site t „.
When H&0, one should apply to P( r ) magnetic
translations by lattice vectors in order to obtain local
solutions. This gives the following orbitals:

( —1) ' 'T(b„)Bi(a.)=e "Bi(ic) . (30)
T( —t „)P(r)= exp[ (i/2R)P~—t „.r]

We thus see that the effect of a magnetic transla-
tion (29) in the Adams representation is quite sim-
ple, and is expressed by multiplication by a
dependent phase factor. This is analogous to the ef-
fect of ordinary translations on a wave function in
the Adams representation for the Bloch theory. 4

&&/(r —t „), (31)

where T( —t „) is a magnetic translation by the lat-
tice vector —t „. Thus one should multiply
P( r —t „)by the phase factors in (31) (known as the
Peierls phase factors) in order to obtain local solu-
tions in the case H&0. By using the orbitals (31)
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Localized States

TABLE I. Definitions of localized states.

Definitions

Wannier functions
Peierls orbitals
Luttinger functions
Magnetic Wannier functions
Magnetic Wannier functions in the potential-free case
Dingle functions
Pippard network

Eq. (46)
Eq. (31)
Eq. (32)
Eqs. (33), (34), and (36) with (40)
Eq. (42) or (44)
Eq. (12)
Eqs. (35) and (37)

&&a (r —t „), (32)

where a (r) is a Wannier function corresponding to
a given Bloch band m. A common feature of the or-
bitals (31) and (32) is that they both form
nonorthogonal sets of functions. However, while
the atomic orbitals P(r —t „) in (31) are nonorthog-
onal, the Wannier functions a (r —t „) in (32) are
known to form an orthogonal set. It is the presence
of the Peierls phase factor in (32) that causes the
nonorthogonality of the functions (32).

Wannier functions in the presence of a magnetic
field can be obtained by using the localization ideas
in the kq representation for perfect lattices. These
functions are calculated by treating the magnetic
field as a perturbation to the Bloch problem, and
their general form is

s=1
(33)

At the lowest order in the perturbation expansion,
the magnetic Wannier functions (33) reduce to the
functions (32). Unlike (32), however, the functions
(33) are orthogonal up to any desired order of H.

Another definition of magnetic Wannier functions
was given by Brown, using the group-theoretical
approach:

A(r; t„)=T(—t„)A(r) . (34)

Here T( t „) is a magnetic tran—slation as in (31),
and 2 (r ) is a properly defined linear combination of
eigenfunctions belonging to N magnetic bands [X is
given by Eq. (3)]. According to Brown these X
magnetic bands should result from the splitting of

Peierls found that the energy eigenvalues within the
tight-binding band E ( k ) could be obtained as eigen-
values of the operator E(II/fi) where II is the ki-
netic momentum (2). E( II/iri) is the effective Ham-
iltonian of the problem.

The results of Peierls were later derived by using
Wannier functions instead of atomic orbitals,

a (r; t „)=exp[ —(i/2i)i)P )& t „ r]

an isolated Bloch band in a magnetic field.
A common feature of all the magnetic orbitals

(31)—(34) is that they are associated with the sites of
the crystal lattice. In order to account for magnetic
breakdown and related phenomena, Pippard intro-
duced a set of localized orbitals associated with the
sites of the magnetic lattice built on
b„=n ib& +n 2bq. These orbitals are obtained by
applying the magnetic translations (29) on a Dingle
function (12) with p =0 (corresponding to the classi-
cal circular trajectory in a magnetic field '). In the
case of a rectangular lattice, the Pippard network of
orbitals is then

( —1) ' 'T(b„)fi(P)fo(P)

(35)

in the PP representation, where we used (29) and (9).
By a heuristic argument based on the degeneracy of
Landau levels, Pippard showed that the set of func-
tions (35) is sufficient to describe fully a given Lan-
dau level l and thus to account for its infinite degen-
eracy. The argument of Pippard was given a
rigorous basis by Boon, who showed that a Pip-
pard network is completely analogous to a von Neu-
mann lattice of coherent states. ' The latter is the
set of states obtained by operating on a har-irionic-
oscillator ground state fo(x) with translations on a
lattice in the x-p phase plane, whose unit-cell area is
h. It is well known that such a set of states is com-
plete in L (x). ' This means that any square-
integrable function of x, which is orthogonal to all
the states of the set, must essentially be the zero
function. The close analogy of the von Neumann
lattice with the Pippard network (35) is connected
with the fact that the magnetic translations in (35)
are simply translations on a lattice in the Q-P phase
plane. The area of a unit cell of this lattice is h be-
cause of the basic relation (13), which expresses the
fact that the magnetic cell bi-b2 encloses exactly
one quantum of flux, hc/e. It follows that the set of
states in (35) [without the factor fI(P)] is complete
in L (P). From the discussion following foIitiula
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(10), we may interpret this by saying that the Pip-
pard network (35) spans the Landau level l. This
gives a precise meaning to the statement of Pippard.
It should be pointed out that one may also construct
complete Pippard networks from "excited" Dingle
functions [namely, those with p )0 in (12)]. This
is completely analogous to von Neumann lattices
built on excited harmonic-oscillator states.

Let us now show that in the presence of a periodic
potential leading to a broadening of the Landau lev-
els, it is also possible to define a Pippard network of
magnetic orbitals spanning a given magnetic band.
Consider the most general linear combination of
eigenfunctions belonging to magnetic band I'. From
the first equality in (27) this is

W, (PP)= f de ii, (e)de-„(P,P), (36)

where Bi(a. ) is a general function satisfying the
periodicity conditions (28). In the Adams represen-
tation the orbital (36) reads simply 5iiB&(ic). By
operating with the magnetic translations (29) and us-
ing (30), we obtain the set of functions

( —1)"'"'T(b„)5,(BI(a)=5ii e "B((x-) .

(37)

We now show that the set (37) is complete, relative
to magnetic band l'. Let G(ir) be a function (in the
Adams representation) that belongs to the magnetic
band l', which is orthogonal to all the functions (37).
We then have

Bi (~)=Ce'~ " ', (40)

where C is some constant and ~(~ ) is a real function
of a. The constant C will be chosen as )/fi/2rrP in
order to normalize (40) in the usual sense [the in-

tegral in (39) is equal to 1 for n =n'] T.he orbitals
(37), with Bi (a. ) given by (40), form a complete set
of magnetic Wannier functions spanning the mag-
netic band l'. This is in full analogy with a general
von Neumann lattice of states in the kq representa-

36 37

It can be easily shown that any continuous func-
tion of a. that satisfies the periodicity conditions (28)
must vanish somewhere. The proof of this state-
ment is analogous to that given for a general wave
function in the kq representation. Since the func-
tion BI (a. ) in (40), corresponding to the magnetic
Wannier functions, cannot vanish because of its ex-
ponential nature, we conclude that it must be
discontinuous. For example, one may choose in (40)
(with C =&A/2mP) the following expression

Wannier functions for the problem if, in addition to
their completeness, they also form an orthogonal set
of functions. From the requirement of orthogonali-
ty of (37), it follows that (for n ~n ')

f dec " "' ~i)i(e)(~z=o . (39)

Relation (39) means that FBI(a)
~

has to be a con-
stant and therefore

Bi ( ~ ) =&fi/2m P exp[ i (A'/P)a'&K2—], (41)

f de. G*(e)e "Be(e) 0= (38)

for all b„. Now, since the integral in (38) gives the
Fourier coefficients of the periodic function
G*(x.)Bi(tc), this latter product must vanish, and
we then obtain G(a. )=0. This means that the set
(37) is complete, relative to magnetic band l'.

A complete description of a single magnetic band
is thus provided by the Pippard network of orbitals
(37), which are associated with the sites b„of the
magnetic lattice. Orbitals associated with general
sites of the crystal lattice become superfluous in this
description.

The orbitals (37) may be interpreted as magnetic
I

where R&
——x.

&, for —~/bi (~& ~ m/b, , and is p. eriod-
ically continued beyond this interval (a sawlike func-
tion). It is easily checked that (41) satisfies the con-
ditions (28), but it is, of course, discontinuous in ~.
The orbital (36) with the choice (41) for BI (Ir) is
easily calculated in the potential-free case [the eigen-
functions PI, (P,P) being given by (16)]. We obtain

is(nm. PP/bi)
AI (P,P) =(P)+b2/h fi (42)

It is of interest to have the orbital (42) written in the
xy representation. By using the transformation (A4)
between the PP and the xy representations, we get

j
Ae(x,y)= , QPlb, e "yzz"—i*zf dz exp[i( l e)zz b(x()efeii(lb, )z —b)y) . (43)

In order to better display the localization of the function (43), it is convenient to express it in a different form.
Being an oscillator eigenfunction of the Hamiltonian Ho in (8), fi (P) depends on P through the dimensionless
variable u =P/VRP. Writing thus fi (P)=gi (u), and expanding gi(u) in a Taylor series around the point
uo ———&P/Ry, we obtain the following expression:

A (x,y)=+213/~b e ( ib )yb gll

.=0 ni ax"
sin(~x/bi) 8"gl (u)

(x/b) Bu"
u = —yib

(44)
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b ib2
8i (~)=

Sm
exp ~', e,(z ~~), (4S)

2P

where z=b&(~, +i~2)/2, 7 =ib, /b2, and 53(z
~

~) is
a theta function. ' While 8I (~) in (45) is an entire
function of ~, the function 8I (~) in (40) and (41)

where b =&A'/P is equal in magnitude to the classi-
cal cyclotron radius for the ground-state energy
fun, /2. The sum in (44) converges for all x and y
and is an expansion in powers of the variable b/x,
which is small for x &&b. It can be easily seen then
that AI (x,y) is well localized in the y direction (like
a harmonic-oscillator function), and falls off essen-
tially as 1/x when

~

x
~

~oo.
This localization of the magnetic Wannier func-

tion (44) should be compared with that of the Dingle
functions (35). The latter correspond to the classical
magnetic orbits, and have a harmonic-oscillator lo-
calization in all directions of the x-y plane. ' The
classical features of the Dingle functions (35) are ex-
pressed by the fact that they assume the smallest un-
determinancy possible in the location of the orbit
center Mo kayo ——fi/2P. ' ' For the magnetic Wan-
nier function (44) [or (42)], on the other hand, one
can show that Mo hyo ——oo, and so it is very far
from classical states.

The value of Mo byo for the orbital (36) does not
depend on the detailed magnetic band structure (or
the periodic potential), but only on the expansion
coefficient 8i(x. ). This is because the matrices for
Q =yo and I' = —Pxo in the Adams representation
[see (24)] do not depend on expressions involving the
dynamical part yr-(P) of the eigenfunctions (19).
These matrices are also completely analogous to the
expressions for x and p in the kq representation. '

Recently, this representation was used to show
that orthogonal states on a von Neumann lattice are
necessarily noncoherent, namely Ax Ap = oo for
these states. By means of the Adams representation
one may prove similarly that Pippard networks of
magnetic Wannier functions are characterized by an
infinite value of hxo byo, even in the presence of a
periodic potential. In other words, orbitals on a Pip-
pard network with hxo hyo & oo are necessarily
nonorthogonal. An extreme example is the Pippard
network of Dingle functions (35), which assume the
smallest value of Axo Ayo but are known to form a
nonorthogonal set of functions. '

This difference between Pippard networks built
on Dingle functions and on magnetic Wannier func-
tions is connected with the analytic properties of the
function Bi (~) in the two cases. Consider the func-
tion 8I (~) in (37) corresponding to a Pippard net-
work of Dingle functions. Substituting (12), with

p =0, into Eq. (26) [with yl--(P) =f~ (P)], we find

(corresponding to the magnetic Wannier functions)
is not even continuous.

It is interesting to note that the orbital (36) with
8i(Pc) given by (45) assumes the minimal undeter-
minancy Mo Ayo even in the presence of a periodic
potential. The problem of defining a wave function
with a good localization in the orbit center for a
Bloch electron in a magnetic field was first con-
sidered by Chambers. He constructed such a wave
function in the framework of an effective-
Hamiltonian approach and showed its localization
by means of the WKB and other approximations.
Here we have an exact result. The set of orbitals
(37), with 8I (x ) given by (45), assumes the smallest
value of hxo kayo and forms a nonorthogonal set of
functions spanning the magnetic band l'. This set is
then completely analogous to the Pippard network
of Dingle functions (35) in the potential-free case.

It is instructive to compare the concepts of locali-
zation and orthogonality of magnetic orbitals with
the corresponding concepts in the Bloch theory
(H=O). In the latter theory one has the notion of a
Wannier function, defined as

a (r)= f dkg z(r),1
(46)

where V& is the volume of a unit cell of the recipro-
cal lattice, g k(r) is a Bloch function correspond-
ing to band m, and the integration is over Vb. By
operating with ordinary translations on the crystal
lattice, one generates from (46) an orthogonal set of
functions a ( r —t „),which span the band m in the
following sense:

ge "a (r —t„) .

It is well known that the Wannier function (46) can
always be chosen to be localized in space, in the
sense of an exponential decay. ' Thus, in the one-
dimensional case, for example, the Wannier function
falls off exponentially as exp( —h

~

x
~

), where h

known as the degree of localization, is the halfwidth
of the strip of analyticity of the Bloch functions
itj k(x) in the complex k plane. This localization
of the Wannier functions should be compared with
that of the magnetic Wannier functions generated
from the orbital (42) [or (44)]. The latter is rather
poorly localized in one direction of space (with a
falloff as I/P or as 1/x).

The basic reason for the difference in localization
between the Wannier functions in the cases H=O
and H&0 is as follows. Wannier functions are gen-
erated from a single function by operating on it with
ordinary translations, while magnetic orbitals are
generated by magnetic translations, which are actu-
ally translations in a phase space. As we have al-
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ready seen in Sec. II, from this difference between
the two kinds of translations it follows that Bloch
functions can be made strictly periodic in k space,
while the eigenfunctions (19) must satisfy the
periodicity conditions (21). It is just because of
these latter conditions that 8i (~) in (40) (which cor-
responds to the magnetic Wannier functions) must
be a discontinuous function of ~, and this then leads
to poorly localized orbitals. The difference between
ordinary and magnetic translations is well demon-
strated by the Luttinger functions (32). These differ
from the a (r —t „) by the Peierls phase factors,
and as such, they assume the same degree of locali-
zation of the Wannier functions. Unlike Wannier
functions, however, the functions (32) do not form
an orthogonal set just because of the presence of
the Peierls phase factors, which make all the differ-
ence between ordinary and magnetic translations.

V. CONCLUSIONS

Magnetic translations are associated with the de-
gree of freedom for the orbit center and are essen-
tially translations in a phase space. Because of this
fact, Bloch functions in a magnetic field behave like
kq functions in one coordinate of the orbit center.
Correspondingly, the Adams representation based
on these functions reduces to a kq representation
when restricted to a single magnetic band.

In this paper the magnetic Adams representation
was developed and used for investigating the prob-
lem of localization of a Bloch electron in a magnetic
field. A Pippard network of orbitals was intro-
duced, spanning a single magnetic band. As in the
case of a general von Neumann lattice of states
this network is generated by a discrete set of transla-
tions in a phase space (the magnetic translations).
The analogy of the magnetic Adams representation
with the kq representation is used in order to apply
known results on von Neumann lattices ' to Pip-
pard networks of magnetic orbitals. In particular, it
is shown that exponential localization of magnetic
orbitals is excluded by their orthogonality.

It does not seem possible, therefore, to choose
magnetic Wannier functions that are both orthogo-
nal and atomiclike (or similar to ordinary Wannier
functions). For example, the generalized Wannier
functions (34), which are chosen to be orthogonal,
cannot be assumed, contrary to what is claimed in
Ref. 25, to be also atomiclike. The arguments in
Ref. 25 make use of a conjecture that an isolated
Bloch band splits into N magnetic bands when a
magnetic field is turned on [N is given by Eq. (3)].

i

This conjecture, which has never been proved, was
based on the fact that the magnetic Brillouin zone is
N times smaller than the Brillouin zone of the same
crystal for a zero magnetic field. Correspondingly,
the magnetic band has N times fewer states than a
Bloch band. However, the magnetic operator sym-
metry is not a subgroup of the Bloch symmetry, "
and one has therefore no grounds to claim that a
Bloch band should split into N magnetic subbands
when H&Q. As a matter of fact the splitting into N
subbands was confirmed only approximately for a
tight-binding model and for low magnetic fields
(large N). In the nearly-free-electron case (when
band overlapping takes place) the splitting may devi-
ate considerably from N.

The problem of an electron in a uniform magnetic
field provides a good example' for the use of
canonical transformation methods in quantum
mechanics. In Sec. II of this paper these methods
were used in order to introduce a convenient repre-
sentation for describing the problem of a Bloch elec-
tron in a magnetic field, the PP representation. The
unitary transformation between wave functions writ-
ten in the PP and in the xy representations can be
found by means of formula (3.27) of Ref. 44. In or-
der to use that formula, let us recall first the general
form of a canonical transformation [Eq. (3.2) of
Ref. 44],

xi aij xj +~ij Jjj

pi cijxj +dijpj
(A1)

where i,j = 1, . . . , N, and the N && N matrices
A =

f fa,j f f, 8=
f fb;J f f, etc. , are submatrices of

B
(A2)

where S is an element of the 2N-dimensional real
sympletic group Sp(ZN) The unitary . transforma-
tion between the x; and the x; representations is
given by formula (3.27) of Ref. 44, and is
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where X' denotes the N-dimensional row vector (x &, . . . , x&) and the tilde over a vector stands for transposi-
tion. The vector X" in (A3) corresponds to the transformed-coordinate row vector (x&, . . . , xtv). In our case
the canonical transformation is given by (6). We have N =2, and make the identifications
X"=(x&,x2) =( P, —P—), X'=(x&,x2) =(x,y). Because of (7) the operators (x&,x2) =(—P, P—) behave as po-
sition operators, and formula (A3) can then be used to connect between the PP and the xy representations. By
making the further identifications (p~,p2) =(Q, Q), (p&,p2) =(p„,p~ ), and comparing (6) with (Al), the desired
transformation is obtained:

%(x,y)= J J dPdP exp + z + + P(P,P), (A4)

where %(x,y) and P(P, P) represent the state in the xy and the PP representations, respectively.
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