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Bond-orientational order in molecular-dynamics simulations of supercooled liquids and in
models of metallic glasses is studied. Quadratic and third-order invariants formed from
bond spherical harmonics allow quantitative measures of cluster symmetries in these sys-
tems. A state with short-range translational order, but extended correlations in the orienta-
tions of particle clusters, starts to develop about 10% below the equilibrium melting tem-
perature in a supercooled Lennard-Jones liquid. The order is predominantly icosahedral, al-
though there is also a cubic component which we attribute to the periodic boundary condi-
tions. Results are obtained for liquids cooled in an icosahedral pair potential as well. Only
a modest amount of orientational order appears in a relaxed Finney dense-random-packing
model. In contrast, we find essentially perfect icosahedral bond correlations in alternative

“amorphon” cluster models of glass structure.

I. INTRODUCTION

Two distinct broken symmetries distinguish crys-
talline solids from isotropic liquids. Broken transla-
tional invariance is measured by the phase of the
periodic density modulations in a solid. A broken
rotational symmetry is defined by the singled-out
crystallographic axes. These two symmetries are not
independent, because rotating one patch of perfect
crystal relative to another clearly disrupts not only
orientational correlations, but translational correla-
tions as well. A relative translation of the two
patches, on the other hand, decorrelates translational
order, but leaves orientational correlations intact. It
is possible to imagine states of matter with extended
correlations in the orientations of locally-defined
crystallographic axes, but with short-range transla-
tional order. In equilibrium, such materials would
be anisotropic fluids, rather like nematic liquid crys-
tals.! In contrast to conventional liquid crystals,
however, the orientational anisotropy refers to the
“bonds” joining near-neighbor atoms, rather than an
anisotropy in the constituent particles.

Anisotropic fluids of this kind are an integral part
of recent theories of two-dimensional melting®3
based on a dislocation mechanism proposed by Kos-
terlitz and Thouless.*> There are indications of
quenched analogs of these anisotropic fluids, with
sixfold “hexatic” bond-orientational order, in two-
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dimensional binary mixtures at low temperatures.® It
is natural to inquire about three-dimensional bond-
orientational order in simple fluids, like liquid ar-
gon, and in relatively simple disordered solids, like
metallic glasses.” The importance of local orienta-
tional symmetries in three dimensions was em-
phasized over thirty years ago, in an important pa-
per by Frank.® Measurements of radial distribution
functions (RDF) in dense liquids indicate that each
atom has roughly 12 particles in its first coordina-
tion shell. Obvious “crystallographic” clusters of 12
atoms around a central particle are shown in Figs.
1(a) and 1(b), corresponding to nuclei of fcc and hep
crystals. As observed by Frank, the icosahedral ar-
rangement shown in Fig. 1(c) actually has a signifi-
cantly lower energy, at least for simple Lennard-
Jones pair potentials.” Frank argued that the experi-
mentally observed ability to supercool simple liquid
metals well below the equilibrium melting tempera-
ture!® was due to the prevalence of these icosahedral
clusters.

Hoare and collaborators!! and also Farges et al.'?
have made extensive studies of the energetics of par-
ticle clusters, and found that noncrystallographic ar-
rangements (like the icosahedron) are preferred over,
say, an fcc cluster, until one gets to clusters of
several hundred atoms. “Magic numbers” observed
in molecular-beam experiments on argon'? also sug-
gest that crystallographic symmetries are unlikely in
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FIG. 1. Different 13-atom particle clusters occurring
in liquids near the melting temperature.

small clumps of particles. Hoare has speculated
that the size of these “amorphons” will grow with
decreasing temperature in supercooled liquids, until
limited near the glass transition by frustration ef-
fects.!! He has also criticized traditional dense-
random-packing models of metallic glasses,* on the
grounds that the energetic preference for noncrystal-
lographic clusters is not properly taken into account.
He suggests that more realistic models of glasses can
be obtained from simulations of glass formation in a
soft potential without periodic boundary conditions.

In this paper, we develop ways of measuring both
local and extended orientational symmetries in
computer-generated models of dense liquids and
glasses. Our analysis starts by associating a set of
spherical harmonics with every bond joining an
atom to its near neighbors. By “bonds” we of
course do not mean chemical bonds, but rather lines
resulting from some convenient assignation of near
neighbors (see Sec. II). With a bond whose midpoint
is at T we associate the set of numbers,

Qim (T) =Y, (6(T),8(7)) , (1.1)

where the {Y},,(6,¢)} are spherical harmonics, and
O(7) and ¢(T) are the polar angles of the bond mea-
sured with respect to some reference coordinate sys-
tem. We need not associate a direction with a par-
ticular bond, provided our attention is restricted to
even-/ spherical harmonics, which are invariant

under inversion. The orientational order parameters
{Q,(T)} are a natural generalization of the two-
dimensional hexatic order parameter discussed in
Ref. 2. As we shall see, they will allow us to deter-
mine the range of orientational order in various sys-
tems, and to study the orientational polymorphism
stressed by Frank.® (Orientational polymorphism is
not an issue in two dimensions, because there is
essentially only one way of packing six disks around
a central one.) A preliminary account of our investi-
gations appeared in Ref. 15.

Three-dimensional bond-orientational order has
been studied theoretically by Nelson and Toner,!®
who showed that simple crystalline solids disordered
by an equilibrium concentration of unbound disloca-
tion loops retain long-range cubic orientational or-
der. Such materials are not isotropic liquids, as as-
sumed in most theories of dislocation melting.!” It
was argued that supercooled liquids might drop into
a phase with cubic orientational order prior to the
glass transition. The possibility of extended
icosahedral bond order (see below) was not con-
sidered. Toner'® has discussed bond-oriented liquids
with uniaxial symmetry. The onset of cubic bond-
orientational order in crystals near the melting tran-
sition has been studied by Hess'® and by Mitus and
Patashinskii.?’

In our numerical studies, we shall often consider
averaged quantities, like

Oim =(Qpn(T)) , (1.2)

where the average is taken over some suitable set of
bonds in the sample. The first nonzero averages
(other than Qgg) occur for / =4 in samples with cu-
bic symmetry and for / =6 in icosahedrally oriented
systems (see Sec. II). Because the Q,,,’s for a given /
can be scrambled drastically by changing to a rotat-
ed coordinate system, it is important to consider ro-
tationally invariant combinations, such as

ar L 172
o= 21+1m§_1fQ1m|2 (1.3)
and
1 1 1
Wi= '"1,'"22»'"3 m, mj; m3‘
my+my+m3=0
Xé]ml§1m2§1m3 . (1.4)

The coefficients

11

m; m; mj;

in the third-order invariants (1.4) are Wigner 3j sym-
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bols.2! We have found that the {Q;] and {W,] are
the key to a kind of cluster “shape spectroscopy” in
liquids and glasses. The ratios

W]EWI/

in particular, are a sensitive measure of the different
orientational symmetries enumerated by Frank.

Many of our results refer to orientational order in
a molecular-dynamics simulation of 864 atoms, sub-
ject to periodic boundary conditions, and interacting
via a Lennard-Jones pair potential. In an isotropic
liquid, we would expect that all Q,,(T) except Qg
vanish when averaged over the sample volume. This
is indeed the case for all temperatures above the
equilibrium melting temperature. Upon supercool-
ing about 10% below T,,, however, extended orien-
tational correlations appear, with little or no in-
crease in the translational correlation length. The
symmetry of the orientational order which develops
appears to be predominantly icosahedral; it is as if
the icosahedral clusters discussed by Frank® have be-
gun to align. Haymet?? has solved a simple lattice
model of interacting icosahedra within the mean-
field approximation, and finds that they align via a
first-order phase transition, as one would expect
from arguments based on Landau theory.!” Fluc-
tuation effects, neglected in mean-field and Landau
theories, can drive such transitions continuous, how-
ever.!® Although we interpret our results in terms of
an apparent orientational phase transition,!> one can
of course never be certain that this indeed is the case
in simulations of small 864-particle samples. What
is clear, however, is that an orientational length
scale £4(7T) increases with decreasing temperature
until it greatly exceeds the translational correlation
length &,

Ee>>E7 . (1.6)

This inequality appears to be in force at low tem-
peratures, with £¢ limited only by our small sample
size. Qualitatively similar results were obtained at
two different densities, and in a smaller 600-particle
system.

The symmetry of the bond-oriented states we find
is not perfectly icosahedral. This is probably due to
the periodic boundary conditions, which favor cubic
order. Another possibility is that the sample con-
sists of several icosahedral “domains.” To study
this point further, we repeated our simulations using
a Lennard-Jones pair potential augmented by a
small direction-dependent part with an icosahedral
symmetry. Upon cooling well below the apparent
orientational transition, and then slowly turning off
the applied icosahedral “field,” we obtained a bond-

32
) (1.5)

m
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oriented state with enhanced icosahedral order.
These results are consistent with a picture of
icosahedral domains aligned by the field-cooling
process. Imposing a very strong icosahedral field
generated not only icosahedral bond order, but dis-
cernable cubic order as well. In Sec. III F, we argue
that this is due to a coupling between icosahedral or-
der and the periodic boundary conditions. Although
molecular-dynamics simulations of Lennard-Jones
liquids often crystallize when supercooled,”® we
found that a small icosahedral field always sup-
pressed crystallization.

Crystallization before significant supercooling can
take place makes experimental studies of real
Lennard-Jones liquids like argon rather difficult.
Studies via the molecular-dynamics technique are
possible because of the extremely limited maxi-
mum-run times (~10"° sec in argonlike units)
available even with very-high-speed computers. It
would be interesting to search for bond order in
liquid metals, however, since these materials can be
significantly undercooled in the laboratory.'® Our
results also have implications for metallic glasses,
which might conceivably have frozen-in bond-
orientational order. Crystallization is suppressed in
metallic glasses by rapid quenching, and by using
materials with at least two different components.’

We have searched for frozen-in bond order in a
number of simple models of glasses. Weak but per-
sistent orientational order appears in a relaxed
3701-atom portion of the Finney model** of dense
random packing. We have also computed the spher-
ical harmonics for a spiral configuration of “twisted
tetrahedra” discussed by Bernal.”® Bernal argued
that these linear structures could be found
throughout his random packing models of dense
liquids. The average spherical harmonics are small,
but presumably would be much larger if the order-
parameter equation (1.2) is averaged with a spatially
dependent rotation that matches the pitch of the
Bernal spiral. This sort of order if it occurred in
bulk systems would be a kind of bond-oriented ana-
log of a cholesteric liquid crystal.!

Exceptionally strong orientational order appears
in some of the noncrystallographic clusters dis-
cussed by Hoare. In addition to the 13-atom simple
icosahedron, we have studied a 43-atom “‘icosadode-
cahedron,” and a 127-atom ‘“‘rhombicosadodecahed-
ron.” When these clusters are relaxed, we find
essentially perfect icosahedral bond-orientational or-
der. It is remarkable that the spherical harmonics
of the 324 bonds of the icosadodecahedron and the
1212 bonds of the rhombicosadodecahedron add so
coherently; these clusters exhibit only weak bend or-
der before relaxation, even though their overall rota-
tional symmetry appears icosahedral.



In view of these results, it is tempting to associate
the orientational correlation length &4(7) we find in
Lennard-Jonesium with the size of the “amorphons™
discussed by Hoare.!! Of course, the correlations we
measure are statistical averages over all bond angles;
literal icosahedral clusters are not required. It is in-
teresting that the increase in £4(7) seems to come
well above the molecular-dynamics glass “transi-
tion” temperature Tg.23 Hoare suggested a large in-
crease in the amorphon size close to Tg.11

Extended bond-orientational order, when it exists
at all in real materials,?® is an extremely subtle ef-
fect. An icosahedron, after all, is a rather good ap-
proximation to an isotropic sphere. Because the
broken symmetry is typically higher than uniaxial
(I >4), most bond-oriented materials (in contrast to
nematic liquid crystals) would not be optically ac-
tive. As discussed in Sec. II, the structure function
S(q) in bond-oriented liquids and glasses should
have a directional modulation reflecting the broken
orientational symmetry. Alben et al.?’ have, in fact,
found an interesting direction dependence in S(q)
for a 996-atom relaxed Finney model. Their results
seem consistent with our observation of weak orien-
tational order in this system. All evidence of bond-
orientational order would, of course, be lost in a
directionally-averaged “powder” x-ray diffraction
pattern.

Local orientational order could be measured by
focusing down an x-ray beam until it illuminates a
very small sample volume (say 100 atoms), and then
observing the directional modulations in S(q). This
experiment has already been done via light scatter-
ing in films of polystyrene spheres, suspended in wa-
ter between two glass plates.?® The interparticle
spacing is several thousand angstroms, and so light
diffracts as x rays would in conventional materials.
Bulk colloidal “glass” phases in binary suspensions?’
could also be studied in this way. By cross-
correlating data from two small sample volumes, the
orientational correlation length could be measured
directly. Time autocorrelation functions in liquids
would also be interesting, since the onset of long-
range orientational order in space should be accom-
panied by extended temporal correlations as well.

A number of indirect manifestations of bond or-
der are possible: (1) Liquids which drop into
icosahedrally oriented phases upon supercooling
should be exceptionally resistant to crystallization.
There should be a pronounced asymmetry in the
limits of superheating and supercooling, in such ma-
terials as suggested previously in the case of cubic
bond order.'® It is even possible that some liquid
metals drop into an icosahedral phase above the
equilibrium melting temperature. (2) The very dif-
ferent translational and orientational length scales
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present in an oriented fluid may play a role in glass
formation. Vogel-Fulcher fits to the viscosity of
glass-forming liquids must be redone at tempera-
tures such that 1 reaches 10*—10° P.3° Perhaps this
temperature is associated with an anomaly in the
orientational order. (3) Magnetic metallic glasses
exhibit particularly “soft” hysteresis loops, as one
might expect in an amorphous material.” The small
residual hysteresis observed experimentally is often
attributed to frozen-in strains. Another explanation
would be frozen-in orientational order, which would
act in many ways like a small crystal field on the
magnetization.

In Sec. II, we discuss how to measure bond-
orientational order in simple cases. A number of
useful theoretical ideas are tabulated in Sec. III. In
Sec. IV, molecular-dynamics simulations of Len-
nard-Jones particles are described. Orientational or-
der in models of amorphous materials is discussed in
Sec. V. In Sec. VI, we conclude with comments on
the nature of an icosahedrally oriented liquid and its
possible relevance to the glass transition.

II. MEASURING
BOND-ORIENTATIONAL ORDER

In order to evaluate the bond-orientational order
parameter (1.2), we must first define what is meant
by a “near neighbor.” We have found it computa-
tionally convenient to consider all atoms within
1.2ry of a given particle as near neighbors, where r
is, say, the minimum in a Lennard-Jones potential.
More generally, one could take r( to be the position
of the first peak in the radial distribution function.
This definition insures that all atoms in the first
coordination shell are counted as near neighbors,
which is the definition used by Frank.® Average
bond order parameters can then be evaluated by
summing over all bonds in the sample,

Oim=7— 3 Qm(D), @1
Ny bonds
where N, is the number of bonds.

Another common definition of near neighbors
proceeds via the construction of Voronoi polyhe-
dra.®' Each face of every polyhedron bisects a
near-neighbor bond. With this definition, one might
want to weight the Q;,,(T) by the solid angle sub-
tended by the face of the corresponding Voronoi po-
lyhedron so that distant near neighbors are de-
emphasized relative to closer ones. We have found
no changes in our basic results upon changing the
definition of near neighbor. For example, all
reasonable definitions lead to @}, which vanish in
isotropic liquids for / >0, and which are nonzero in
cubic solids for />4. The quantity Qg (corres-
ponding to the constant spherical harmonic
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Yoo =1/V'41r) is always nonzero, and scales with the
average coordination number associated with a par-
ticular convention for assigning neighbors.

A number of earlier studies of symmetries in
liquids and dense-random-packing models have been
reviewed by Collins.3! Most of these investigations
catalog the number of faces, edges, and vertices of
Voronoi polyhedra. The angular distribution of
neighbors in the first three coordination shells for
hard-sphere random close packing has been calculat-
ed by Scott and Mader.>?> This work focuses on the
angles between bonds in the various coordination
shells. The bond angles entering in Eq. (1.3) are dif-
ferent, because they are measured with respect to an
external coordinate system. We shall see, however,
that the Q;,,(T) are a sensitive measure of the kind
of features studied by Scott and Mader.*?

The spherical harmonics Yj,,(0,¢) for a given
value of / (and |m | <) form a (2] 4 1)-dimensional
representation of the rotational group SO(3). This
means that the Q,,,(T) corresponding to a particular
representation are scrambled by rotating the external
coordinate system. To eliminate the dependence on
the arbitrary orientation of the external reference
axes, one must form the invariants (1.3) and (1.4) de-
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FIG. 2. Histograms of quadratic and third-order in-

variants for 13-atom icosahedral, fcc, and hep clusters, as

well as for 15-atom bcc and 7-atom sc clusters. Bonds at
the surface are excluded.

fined in the Introduction. Figure 2 shows these in-
variants for five different bond clusters, and / =2, 4,
6, 8, and 10. The averages are over the 12 bonds
emanating from the central particle in the
icosahedral, fcc, and hep clusters shown in Fig. 1,
and correspond to 14 and 6 such bonds, respectively,
in bcc and simple cubic (sc) clusters. Note that
nonzero averages appear for / >4 in the hcp cluster
and in the clusters with cubic symmetry (fcc, bec,
and sc). Identical results would be obtained for in-
finite fcc, bee, and sc crystals, since our clusters
corresond to unit cells. In general one would expect
a signal at / =2 in infinite hcp crystals. The [ =2
component vanishes accidentally, however, for the
13-atom hcp cluster corresponding to close packing
of hard spheres.

Note that nonzero averages occur only at /=6
and 10 for the icosahedral cluster. More generally,
clusters with an icosahedral symmetry can have
nonzero spherical harmonics only for
1=6,10,12,... .33 The particular values of / for
which nonzero spherical harmonics can occur de-
pend only on the cluster symmetry. The magnitudes
of the nonzero {Q;} and {W;}, however, can be
changed by altering the definition of near neighbor,
and by including surface bonds in the average.

It is useful to have a more quantitative measure of
the symmetry of a cluster, namely

11
2

m, m, m3|Q1m1Q1m2Q1m3
my,my,m3

o m1+m2+M3=0

1=

372

[2 O | ]
(2.2)

This quantity is normalized so that it is independent
of the overall magnitude of the {Q,, } for a given L
The remarkable sensitivity of the {W,} to cluster
symmetries is illustrated in Table I, which shows
these quantities for the five clusters tabulated in Fig.
2. Despite their rather different Q; and W, histo-
grams, the cubic fee, bee, and sc clusters have iden-
tical Wl s, except for a sign. Although the signs can
change, the magnitudes of the W, s are unaffected
by including surface bonds in the averages and by
changing the definition of nearest neighbor.

The parameters | W,I are a direct index of the
symmetry of a particular cluster (see Sec. III).
Specifying the Q),,’s in a standard coordinate system
leads to a closely related measure of symmetry.
Consider for concreteness the 14 bonds piercing the
faces of the Wigner-Seitz cell of a bee crystal. In a
coordinate system aligned with the cubic unit cell,
all spherical harmonics except Y4 and Y,4+4 vanish
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TABLE I. Reduced invariants W, calculated numerically, for the simple shapes whose
quadratic and third-order invariants are cataloged in Fig. 2.

2 We Ws Wio
icos —0.169 754 —0.093967
fcc —0.159316 —0.013 161 + 0.058 454 —0.090 128
hep + 0.134097 —0.012442 + 0.051259 —0.079 854
bee + 0.159 317 + 0.013 161 —0.058455 —0.090 130
sc + 0.159317 + 0.013 161 + 0.058 455 + 0.090 130

when averaged as in Eq. (2.1). It is straightforward
to check that the six bonds along the cubic axes give
a contribution

dodecahedron.

Given an arbitrary cluster of atoms, one can see
how nearly cubic or icosahedral it is by evaluatlng
the | w, | and comparing with the entries in Table

172

2 Q.(F) = 9 7 I. Since W4 is undefined for icosahedra, the com-
= 40 41 2 parison is best made at / =6, where one typically
finds a strong signal (see Fig. 2). It turns out that

(%)1/22Q4i‘4(?) , (2.3a) the cubic [ =6 order parameters are also an ex-

axes

while the eight bonds along the cube diagonals give

tremum of | W |, but with a value about 12.9 times
smaller than the icosahedral one. 3% The hcp cluster
gives a | Wi | which is close to the cubic value, al-

172 though the W,’s are rather different. The sensitive
> 04(T)= 2 28 dependence of the W, on cluster symmetries is very
diag 4m 9 helpful in studying the orientational polymorphism

141/ N discussed in the Introduction.
=(=5) sz4i4( r). (2.3v) One can always analyze a cluster by trying to find
iag

Although the signs and numerical magnitudes
differ, note that the ratio of the Q4 sum to the
Q4+4 sum is ( —)1/ 2 in each case. This signature of
cubic symmetry is preserved no matter how we
weight the relative contributions of (2.3a) and (2.3b)
to averages like (2.1). In Sec. III, we shall see that
bond order parameters such that

0%=-5104+4]? 2.4)

with all other (4, =0 maximize | W,|.**3 Note
that Qg is positive for the bonds represented in Eq
(2.3a) and negative for the “dual” bonds summed in
Eq. (2.3b). It turns out that the sign of Qg4 deter-
mines the sign of W, for cubic clusters in this spe-
cial coordinate system. One can imagine situations
in which the Q,,, are “accidentally” small for clus-
ters with cubic symmetry due to cancellations.

Similar results hold for icosahedral clusters. In a
coordinate system such that all Qg, vanish except
Qw and Q6+5, one always finds that

o= |0ses|?. 2.5)

This set of order parameters is an extremum which
very likely maximizes | W |.>* The sign of W; is
determined by the sign of Q¢. The quantity Qg is
positive for the 12 bonds of a simple icosahedron,
and negative for the dual bonds at the vertices of a

a special coordinate system in which its spherical
harmonics simplify. To do this, we use the rela-
tion®®

Q6m=2Dmm(,B,7)Q6m » (2.6)
-

which shows how spherical harmonics transform
when the coordinate system is rotated with Euler an-
gles a, 3, and y. The Wigner matrices D,‘,,’,’m' form a
(27 4 1)-dimensional representation of the rotational
group. To identify nearly icosahedral clusters, for
example, one would first search for Euler angles
such that all Qg,, except Qg and Qg5 equal zero,
and then see how well (2.5) is obeyed. Although this
procedure is more tedious than simply evaluating
| We |, it can give interesting information about the
preferred coordinate system. The icosahedral order
we found in supercooled “Lennard-Jonesium,” for
example, was often aligned by the periodic boundary
conditions (see Sec. IV).

III. THEORETICAL BACKGROUND
A. Landau theory

Many of the results discussed empirically in Sec.
IT become more transparent when viewed in the con-
text of Landau’s general theory of phase transi-
tions.>’” Even in systems with only short-range
orientational order, the symmetry principles under-
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lying Landau’s approach provide useful insights.

Following Ref. 16, we start by considering a den-
sity of bonds p({2) piercing the unit sphere, as a
function of solid angle Q=(6,¢). We assume that
p(Q) is obtained by averaging over all bonds in the
system. This density can always be expanded in
spherical harmonics, which form a complete set of
functions on the unit sphere,

© ]

pQ)=73

I=0m=—

Oim Yim (Q) . (3.1)
1

The expansion coefficients Q;,, are just the bond or-
der parameters considered in the preceding section.
By counting all bonds in both of the two possible
directions which can be assigned to them, we insure
that all coefficients with odd !/ vanish. In isotropic
systems, all Q),, except Qy are zero. A state with aj

]
Fi=r; 3 [Qm|*+w >
m=—1 my,my,ms
ml+m2+m3=0

m; m,

where r; and w; are temperature-dependent parame-
ters. Assuming that r;(7T) becomes negative with de-
creasing temperature, one finds that F; is eventually
minimized by a state such that

Qi #0 (3.4)

at low temperatures. If the third-order coupling wj,
is nonzero, Landau theory predicts that the transi-
tion to this state will be first order.

The quantity

1

172
S | Qm !2‘ 3.5)

m=—1

can be viewed as the “magnitude” of the (2/ 4 1)-
dimensional order parameter. For a fixed magni-
tude, a variety of different states are possible. If the
transition is only weakly first order, the preferred
state can be found by minimizing the third-order
term in (3.3), with the magnitude held fixed. The
problem reduces to finding extrema of the symmetry
parameter W introduced in Sec. II. If w; is posi-
tive, we want to minimize W;, while negative w,
means that W, shguld be a maximum.

The quantity W, was discussed for systems with
cubic symmetry in Ref. 16. In a coordinate system
such that only Q4 and Q414 are nonzero, we have
(using the 3j symbols tabulated, for example, in Ref.
21)

. — 3004037 3Qi0+14Qu0 | Qs |*
FTOVI3 Q3 +2]Qus | P

, (3.6a)

broken orientational symmetry is characterized by
some smallest value of / >0 for which Q,,,#0,

5p(Q)=p(Q)— Qo /V 41
(3.2)

1
=2 QmYi (D) + -,

m=-—I

where the ellipsis stands for ‘“harmonics.” The
numbers Qy,, form a (2/ + 1)-dimensional order pa-
rameter describing the low-temperature bond-
oriented phase. The higher-order terms labeled
“harmonics” are usually small, and will be discussed
further in the next subsection.

Landau’s approach is to expand the difference be-
tween the isotropic and bond-oriented free energies
F; in rotationally invariant combinations of the first
nonzero {Q,, }. This expansion takes the form?3?

I 1 1 .
ms lelle2QIm3 +0(Q1m ) ’ (3.3)

r
where the relation

Qs _4=0% (3.6b)

has been used to eliminate Q4 _4. It is easily shown
that (3.6) is maximized when Q4 >0 and Eq. (2.4) is
satisfied. The corresponding minimum occurs for
Q4 <0. The problem of finding extrema of
the {W;} has been considered more generally by
Busse* and Sattinger,*> who were interested in pat-
terns of fluid convection in spherical shells. Busse
shows that the solution (2.4) is an extremum in the
nine-dimensional space spanned by all possible [ =4
spherical harmonics. He further argues on the basis
of numerical evidence that this solution is a global
maximum or minimum, depending on the sign of
Q4. Of course, a three-parameter family of
equivalent solutions can be obtained by rotating the
external coordinate system. Sattinger>> has obtained
the eigenvalues about the cubic extremum, and finds
that they are consistent with Busse’s conjecture. In-
serting the relation (2.4) in (3.6), we find that, at the
cubic extremum

Wit = 1(25)12=0.159317 3.7

in agreement with the values for the cubic clusters
displaced in Table I,

The invariant Wy is easily minimized in an
“icosahedral” subspace spanned by Q¢ and Qg.s,
with all other Qg,,=0.!°> Inserting the relevant 3j
coefficients, we find that
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(61372 4Q3+33Q40 | Qes | 2
VIOl (Qeo+2|Qes |2??

(3.8a)

We=—420

where we have used the relation

Q6,—5=_Q25 . (3.8b)

Extrema of Eq. (3.8a) occur when the relation (2.5),
characteristic of icosahedral clusters, is satisfied.
The icosahedral value of Wy is

l WICOS I —

=0.169754 . (3.9
V4199
In the right coordinate system, cubic clusters have
only Qg and Qg+4 nonzero. In this subspace we
have

- (6132 (—5Q80+6Qe0 | Qs |2
We=336 > > ,
VIO (Q%+2| Qe |7
(3.10)
which has a nontrivial extremum for
2
Qo _2 3.11)
| Q64 | 7
corresponding to
4
Wehie | = ——=——~0.013161 . (3.12)
| | v'92 378

Busse®* has shown that these two configurations are
in fact extrema in the full 13-dimensional space of
I =6 spherical harmonics, and has further speculat-
ed that | W™ | is a global maximum of | Ws|.
In the extensive numerical calculations reported
later in this paper, we have never found a configura-
tion of spherical harmonics such that | W | exceeds
(3.9), in agreement with Busse’s conjecture. Note
that (3.9) and (3.12) agree with the numerical results
for icosahedral and cubic clusters in Table 1.

Clusters with an hcp symmetry are a somewhat
special case. It is natural to allow for a variable uni-
axial symmetry, and consider clusters which are
stretched or compressed along the z axis relative to
the “hard-sphere” hcp configuration shown in Fig.
1(c). In this coordinate system, only Q¢, and Qg4
can be nonzero, independent of the amount of dis-
tortion. The / =6 invariant becomes

(61)372 —10Q3%+33Q40 | Qss | 2
V19! Q60+2IQ66I )*/2

We=168

(3.13)

in this hcp subspace. The extremal hcp configura-
tion occurs for

2
AZ=£ , (3.14)
| Qe+ | 1

which gives

22
Vv'222547

Figure 3 shows the quantity Vf’6 for a 13-atom hcp
cluster as a function of the stretching or compres-
sion along the z axis. Note that the minimal Wi
configuration does not correspond to the hard-
sphere configuration shown in Fig. 1(c)
[( 2)1720 /g =1] which is only a local maximum.
The results (3.14) and (3.15) correspond to another
extremal / =6 configuration found by Busse.’* Note
that (3.15) is still rather far from the icosahedral
value of Wg. A general hep cluster will also have
nonzero [/ =4 spherical harmonics. In the coordi-
nate system discussed above, it is easily shown that
only Q4 is nonzero, and that

4 4 4
000
_90(41)32
V13

There is also a ‘“uniaxial” extremum with only
Q60+0, and

| prexther | ~0.046635 .  (3.15)

2h
| WP | =

~0.134097 . (3.16)

s _ |66 €
_ —1680(6!)*"
- V19
~—0.093060 . (3.17)
L o e e e e i e B R e e B e o
0.08: ;
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FIG. 3. Symmetry parameter W(, for a 13-atom hcp
cluster as a function of aspect ratio ¢ /a. The two equila-
teral triangles above and below the “‘equatorial plane” of
Fig. 1(b) have been stretched along the ¢ axis. The c/a

ratio corresponding to hard spheres is ( % )2,
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Transitions to orientationally ordered states need
not be first order, notwithstanding predictions based
on Landau theory. As shown in Ref. 16 for the case
of cubic order, fluctuation effects, neglected in
Landau’s approach, drive the transition continuous
in 2+ € dimensions. Similar conclusions apply for
icosahedral transitions, and for the case [ =2
describing nematic liquid crystals.!® It is hard to
say what happens in three dimensions. The experi-
mentally observed isotropic-to-nematic transition is
first order, but much weaker than one would expect

based on mean-field and Landau theories.!
J

6 6 4

F=F4+F¢+we,a 2 my m, mj

my,my,my
m;+my+m;3=0

4 4
m; m; m;j;

+wy6 >

my,m,y,my
m;+my+m;=0

where F, and Fg4 are given by Eq. (3.3). Nonzero
Oi’s can be generated even if they do not minimize
the corresponding free energy F;. The coupling
we 4, for example, shows that nonzero / =6 spheri-
cal harmonics can act like an ordering field which
couples linearly to the Q,,,, generating / =4 spheri-
cal harmonics if these are not already present. In
order for this not to happen, the / =6 spherical har-
monics must satisfy nine nonlinear equations, name-
ly

6 4
my; mj

2 2

m1+m2——m

Q6ml Q6m2 =0 ,

m=—4,-3,...,+4 . (3.19)

Since there is a three-dimensional manifold of
equivalent states related by rotations for any /, these
nine constraints completely specify an / =6 state, up
to a rotation and an overall amplitude. It can be
checked that the icosahedral state, with
Q% =11|Qg+s|%/7 and all other Qg,, =0, satisfies
(3.19). It is probably the only nontrivial solution. It
can also be checked that icosahedral spherical har-
monics do not generate / =2 order parameters, via a
we, coupling. In order for nonzero Qg,’s not to
generate Q,,,’s we must have

4 2
22

m; m
m, 1 2

m1+m2——m

Q4ml Q4m2 =0 ,

m=-2,—1,...,2 . (3.20)

B. Coupling between order parameters
and effect of periodic boundary conditions

Landau theory also provides a convenient way of
determining which of the terms labeled “harmonics”
in Eq. (3.2) are nonzero, and allows a discussion of
the coupling between different spherical harmonics
in general. Suppose we are interested in the inter-
play between /=4 and /=6 spherical harmonics.
The most general free energy to third order in the

QIm is

Q6ml Q6m2 Q4m3

6
]Q‘$m1Q4m2Q6m3 ’ (318)

[

A (probably unique) nontrivial solution to this set of
five constraints is the cubic state (2.4), with all
spherical harmonics except Q4 and Q44 zero in the
appropriate coordinate system.

The w, ¢ coupling in Eq. (3.18) shows that the cu-
bic state can, in general, generate “harmonics” at
I=6. Couplings like w4, Wy 19, etc. suggest har-
monics at even higher / values, as indeed seems the
case for the cubic clusters tabulated in Fig. 2. An
interesting case is the possible generation of / =8 or-
der parameters by the icosahedral state The
relevant coupling term,

We,3 2

my,my,ms
m;+my+m3=0

6 6 8
m; m, mj Q6m1Q6m2Q8m3 ’

(3.21)

will lead to nonzero Qy,,’s provided

6 6 8
m, m, m Qom,Qom,

2 2

my
m;+my,=—m

hs,mee,s

(3.22)

is nonzero for some m. It can be checked that all
hg ,, vanish identically in the icosahedral state, so
that [ =8 order parameters are in fact not generated,
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in agreement with the icosahedral histograms in Fig.
2. Using the character tables of the icosahedral sub-
group of SO(3), Mermin has shown that icosahedral
harmonics can occur only for / =10,12, ... .3

One can also discuss the effect of the periodic
boundary conditions imposed in most computer
simulations within Landau’s formalism. The cubic
symmetry of these boundary conditions will clearly
favor the / =4 state of cubic bond-orientational or-
der. We can model its effect by adding a term,

4
S hamQim > (3.23)

m=—4

to Eq. (3.18). In a coordinate system aligned with
the periodic boundary conditions, we expect that the
coefficients A4 ,, may be written in vector form as

P4 m=(h4,0,0,0,(%)"*h4,0,0,0,h,)
form=—4,—-3,...,+4 . (3.24)

The constant #4 measures the strength of the cubic
bias of the boundary conditions. This effect turns
out to be very small in our 864-atom samples at
high temperatures.

Periodic boundary conditions can have a much
more pronounced effect at low temperatures, partic-
ularly when a state with extended orientational order
starts to form. Interaction of the icosahedral order
with the boundary conditions can produce an effec-
tive cubic field which is much stronger than that
displayed in Eq. (3.23). Indeed, we can model this
situation by an effective free energy

4
Fr=F+ 3 himQs_m
m=—4
6 4 4
m; m; mj;

tw 3
my,my,ms
m +m2+m3=0

X Q6m1h4m2 Q4m3 ’
(3.25)

where F is given by (3.18). The two couplings in-
volving the field Ay, due to the periodic boundary
conditions are designed to be invariant under a
simultaneous rotation of the boundary conditions
and the relevant order parameters. The coupling
proportional to w becomes important when Qs,, is
nonzero. The result is an enhanced effective cubic
field

R (T =h,, +w

6 4 4
m; m; m
XQGml(T)h4m2

(3.26)

By applying a strong, icosahedral ordering field to
our sample at low temperatures we have in fact been
able to generate the nonzero cubic spherical harmon-
ics predicted by (3.26). It would be hard to under-
stand this result in the absence of a coupling be-
tween icosahedral order and the periodic boundary
conditions.

DID>

mi+my=—m

C. Orientational order versus translational order

An order parameter theory of the liquid-to-solid
transition was constructed in the 1930s by Landau
himself.>* Just as in the case of the orientational
free energies (3.3), the existence of a third-order in-
variant suggests that this transition must be first or-
der. Baym et al.*’ have shown that the third-order
term favors a bee crystal structure. Since Landau’s
approach assumes an expansion in a small order
parameter, this observation is strictly valid only in
the limit of a vanishingly small first-order transi-
tion. This bias toward bcc crystals was rediscovered
by Alexander and McTague,*! who also noted that a
hypothetical “icosahedral crystal” would be the
most favorable structure of all. They argued that
the tendency toward local icosahedral order could be
understood in this way.

In our view, the most convincing argument for lo-
cal icosahedral order is the energetic one originally
proposed by Frank.® One does not need to be close
to a vanishingly small first-order transition. In our
numerical studies, we have found no evidence for
icosahedral density waves. Although a space-filling
icosahedral density wave is impossible, one might
expect subsets of the allowed wave vectors to order,
or abnormally persistent oscillations in the radial
distribution function. The icosahedral order we do
find refers to a different order parameter.

To clarify this distinction, consider a Landau free
energy which depends on both translational and
orientational order parameters. Translational order
is described by the Fourier components pg in the
Fourier expansion of the mass density p(T’) (Ref. 39)

p(O)=po+3 pge’ T, (3.27)
G

where the sum is over possible reciprocal-lattice vec-
tors G. The orientational order parameters
displayed in Eq. (3.2) can be combined with the
pg’s to give a free energy
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! 2 1 & 2
F=3rr 3 lpg|’+wr 3 pgP,pe, T T3 X [Qonl
g 6,503, m=l
G +G,+G ;=0
6 6 6 . ,
+Wws > m. m. m Qem,Qom,Qom, + * +1Y D Yem(0g,6)Qemlpg|” -
my,m,,ms 1 2 3 G m=—6

ml+m2+m3=0

Here,aea» and ¢ are the polar angles associated
with G, and we have displayed only the / =6 orien-
tational order parameters for simplicity. The
summations over G are typically restricted to a
spherical shell with a radius corresponding to the
first maximum of the structure function in recipro-
cal space.’® With decreasing temperatures, either
the translational or the orientational degrees of free-
dom will order first, depending on the values of the
temperature-dependent coefficients r and rs. Alex-
ander and McTague discuss the translational order
embodied in an icosahedral subset of nonzero
PE ’s.*! Our numerical studies, however, seem better
interpreted as an ordering of the Qg,,’s, rather than
of thepg’s.

The coupling proportional to ¥ in Eq. (3.28)
shows that a nonzero translational order parameter
acts like an ordering field on the bond order. Thus,
long-range orientational order must accompany any
periodic density wave. This same term, however,
only couples bond order to the square of the transla-
tional order parameter. Translational order is not
automatically generated by bond order. This asym-
metry between translational and orientational order
was emphasized in a more physical way in the first
paragraph of the Introduction.

D. Structure function

The Landau expansion (3.28) implies a modula-
tion of the structure function in the presence of
bond-orientational order. The argument given for
cubic bond order in Ref. 16 leads to the prediction

S(a)5< |Pa>|2>
kpT
VT+2')/2 Yzm(ea”(pa’)(Q()m)

(3.29)

If (Q¢n) is nonzero, and represents, say, an
icosahedrally oriented state, Eq. (3.29) predicts a
direction dependence in S (q) with the same symme-
try. The y coupling in Eq. (3.28) shows that
nonzero bond order breaks rotational invariance in
reciprocal space. If a solid crystallizes at a still

(3.28)

r

lower temperature, it will be aligned with the direc-
tions singled out by the bond order.

IV. ORIENTATIONAL ORDER
IN A LENNARD-JONES LIQUID

A. Molecular-dynamics simulation

In this section, we describe simulation results for
particles subject to the Lennard-Jones potential

12 6

vin=ae| |Z| —|Z| |, (4.1)
r

where ry=2!"°0c corresponds to the potential

minimum, and —e€ is the corresponding minimum
energy. The atomic mass of the atoms in the models
will be designated as m. The Lennard-Jones poten-
tial is often used to model simple liquids and metal-
lic glasses. In our discussions of Lennard-Jones
models, units of dimensional quantities such as ener-
gy, density, length, and temperature will be scaled in
units of o, € and m so as to make them dimension-

less numbers [in particular, T*=kpT /€ and
p*=pla’/m)]. Time is measured by
t*=t(0?/me)'’%2.  Such units are standard

“Lennard-Jones units”; they can be converted to
units appropriate for argon by using €/kp =120 K,
ro=3.4 A, and m=40 amu. Lennard-Jones models
will be denoted LJ in our shorthand. Most of our
runs were done with density p*=0.973. With this
choice, the pressure is nearly zero at the melting
temperature T, =0.701.72

Our simulations were carried out via the
molecular-dynamics technique*: A fixed number of
particle positions inside a periodic box are randomly
chosen along with a set of random initial velocities.
The instantaneous forces on each atom due to his
neighbors are computed from the potential. From
the instantaneous accelerations, new positions and
velocities are computed. Our molecular-dynamics
time unit is 70=4.64x10"3(0?m /€)"/?=10"1* sec.
These last two steps are repeated many times over
until equilibrium is achieved, and the velocities
scaled so that the equilibrium model corresponds to
a chosen temperature. The model may then be
cooled by removing a small percentage of the kinetic
energy (less than 1%) each step until the desired
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temperature has been (approximately) reached and
then the model is relaxed at least 1000 more steps to
ensure equilibrium. It is important that during cool-
ing only a small percentage of the kinetic energy is
removed in order to remain as close to equilibrium
as possible. Further relaxation assures that equili-
brium has been reachieved. The models are relaxed
for a total of 10000 to 70000 molecular-dynamics
time steps, including steps for quenching. Our run
times and sample sizes ( < 864 particles) are about at
the limit of what is possible on a modern high-speed
computer.

The equilibrated LJ models may be classified ac-
cording to the quench procedure that is used to gen-
erate them. If the model is quenched directly from
a high-temperature model we will refer to it as a
“direct-quench” (DQ) model. Depending on how
small a percentage of the kinetic energy that is re-
moved each molecular-dynamics step, the quench
will be referred to as fast (1%) or slow (0.1%) corre-
sponding to 10'* and 10'? K/sec, respectively. Even
the slowest quench calculable on the computer is ra-
pid compared to any experimental quenching pro-
cess ( <10’ K/sec). In some cases a model has been
obtained through a sequence of quenching a few de-
grees, relaxing 5000 steps, quenching again, etc. A
model so obtained will be referred to as a sequential-
ly quenched (SQ) model. The growth of bond order
with decreasing temperature was most pronounced
in the sequentially quenched samples.

B. Orientational order

A histogram of Q; vs I for an 864-atom SQ-LJ
model with 7% =0.719 (equilibrated 30000 steps at
that value of T%*) is shown in Fig. 4(a). The averages
over the bonds in Eq. (2.1) are evaluated by sum-
ming all bonds in a sphere of radius 7 centered
within the periodic cell used for the molecular-
dynamics computation (the units of length are
chosen such that the first peak in the radial distribu-
tion function occurs at » =1). Bonds which extend-
ed outside the periodic cell were excluded. The side
of the box for the 864-atom model with density
p*=0.973 has a length of 8.56 in these units. The
histograms for T* =0.719 were found to decrease
steadily with increasing averaging volume. The
melting temperature for the LJ solid is T}, =0.701.
Superimposed on the figure are Q,’s found by using
a random-number generator to produce the same
number of bonds but with an isotropic distribution
of directions. The two histograms appear to be vir-
tually indistinguishable with a possible weak signal
at / =6. Evidently, the orientations of nearby clus-
ters are uncorrelated at 7* =0.719. In contrast,
Fig. 4(b) shows the histogram of Q; vs / for a SQ
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FIG. 4. (a) Quadratic invariants Q; for a high-
temperature Lennard-Jones liquid (solid lines). The
dashed lines indicate averages obtained using a random-
number generator to produce the orientations of an
equivalent number of bonds. (b) Q; histograms for a su-
percooled Lennard-Jones liquid. The dependence on the
radius (7) of the averaging volume is shown: a dashed
line, »=3; dotted-dashed line, r=35, solid line, r=7.

model with 7% =0.554. The signal at / =6 is partic-
ularly large, and rather insensitive to the averaging
volume. The result suggests extended correlations in
the orientations of bonds, possibly with an
icosahedral symmetry. Although the signal at / =4
is rather weak, a glance at the histograms in Fig. 2
shows that a more sophisticated test is necessary to
rule out cubic orientational order. Also, the size of
the / =8 signal (which would be zero for a perfect
icosahedron), suggests that some cubic order may be
present.

One’s first concern is that the appearance of
orientational order in a model supercooled below the
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melting temperature might be an indication of the
onset of crystallization. A sensitive test of crystalli-
zation is to study the temperature and pressure of
the model as a function of relaxation time. Figures
5(a) and 5(b) show this dependence in a series of

samples including at 7% =0.719 and T* =0.554.

Although there are fluctuations, the temperature

and pressure are more or less constant over the en-
tire relaxation interval for the samples shown in Fig.
4. The histograms in Fig. 4 were taken from a sam-
ple generated near the middle of the time range
shown in Figs. 5(a) and 5(b). By contrast, consider
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FIG. 5. Time dependence of the (a) temperature and (b)
pressure (arbitrary units) for a sequence of molecular-
dynamics runs. The abrupt changes in the fifth curve
from the top at 10*r ~4.6 indicates the onset of crystalli-
zation. The break in the seventh pressure curve from the
top suggests that crystallization may have occurred in this
run as well. (The order of samples is the same from top
to bottom in the two figures.)

the sharp change in the temperature and pressure
curves in Figs. 5(a) and 5(b) found for a supercooled
sample at T*=0.4 that apparently has undergone
crystallization. In a plot of the projection of the
atoms taken at a time well after the sharp change an
fec crystalline configuration can be discerned by eye.
Further tests of crystallization can be found in ex-
amining the radial distribution function. In Figs.
6(a) and 6(b) are shown the radial distribution func-
tions for the samples at 7% =0.719 and T* =0.554,
which are what are expected for a (supercooled)
liquid above the glass transition.”> In Fig. 6(c) is
shown the sample which the first test indicated had
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FIG. 6. (a) and (b) show the radial distribution func-
tions (RDF) for the high- (7*=0.719) and low-
(T*=0.554) temperature samples whose orientational or-
der is displayed in Fig. 4. (c) shows the RDF for a sample

which has crystallized. The extra peak is indicated by the
arrow.
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undergone crystallization (measured a short time
after the drop in temperature and pressure). The
critical difference is that there appears an additional
small peak for the crystallized sample between the
first- and second-nearest-neighbor peaks of the un-
crystallized samples. The temperature, pressure,
and radial distribution function tests have been
found in all our computer experiments to yield con-
sistent checks for crystallization and all samples we
present as bond-oriented models pass these tests as
uncrystallized samples.

More information about the bond-orientational
order can be obtained from the bond-angle correla-
tion functions:

4 i - - -
G)(r)= 21_7;1 mg‘,_I(Q,,,,(r)Q,,,,(o»/Go(r) ,
(4.2a)
where
Go(T)=41(Qu(T)Qx(0)) , (4.2b)

and the angular brackets indicate an average over all
atoms separated by r. The values of Q;,, were com-
puted according to the orientation of that bond with
respect to a fixed external coordinate system. The
angular brackets in Egs. (4.2) then indicate an aver-
age over all bonds separated by r, where the “posi-
tion” of a bond was defined as the coordinates of the
middle of that bond. The correlations are divided
by Go(T), which is just the bond-density—bond-
density correlation function, to approximately ac-
count for effects due to the positional disorder in the
locations of the bonds. The definition of G/(T) in-
sures that it is fixed at unity for all » if all bonds
correspond to exactly the same spherical harmonics.
Since G(T’) tends to a constant for large 7, the limit-
ing behavior of G4(T) and G4(T) is unaffected by
this division.

The correlation functions were measured by asso-
ciating each bond in the periodic box with the ver-
tices of a cubic N XN mesh (typically N =8 or 16
was found to give satisfactory results for the 864-
atom model). The @, were computed with respect
to a fixed coordinate system and assigned to the
eight vertices with a weighting depending on the
bond’s proximity to a given vertex. Partitioning all
bonds in this way led to a set of Q,,, associated with
each mesh intersection point. Correlations for / =0,
4, and 6 could then be computed straightforwardly
and efficiently by fast Fourier transform techniques.
The results for a 7% =0.554 sample is shown in Fig.
7 with the results for a 7% =0.710 sample shown in
the inset. Both samples were prepared as in Fig. 4.
Correlations for both / =4 and ! =6 fall off rapidly
in the high-temperature sample. The decays appear
to be exponential with approximately the same
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FIG. 7. Orientation correlation functions in high- and
low-temperature samples.

correlation length, as one would expect for an isotro-
pic liquid. In contrast, G¢(T') appears to approach a
nonzero constant for large r at T* =0.554. There
are however, no persistent correlations in G4(T),
suggesting the absence of crystallization or the cubic
bond-orientational order proposed by Nelson and
Toner.'® When samples did begin to crystallize we
observed immediate significant changes in G4(T).
The correlation function is a useful test of the pres-
ence of bond-orientational order and of its range.
Behavior very similar to that found for G4(T) for
the sample with 7% =0.554 has been found for a
hexatic orientational correlation function in two-
dimensional ‘“Lennard-Jonesium” by Frenkel and
McTague.*

Many samples were analyzed to determine the
orientational symmetry breaking as a function of
temperature. Figure 8 shows the order parameter
Q6(T*) which can be extracted from the asymptote
of G4(r), via

lim G¢(P)=0% . 4.3)
Evidently, Q4(T*) becomes nonzero below

T*=0.626. Above this temperature, we show an
orientational correlation length £4(7*) determined
by exponential fits to G4(T). Each sample was ob-
tained in sequence by quenching the preceding sam-
ple (beginning with T*=1.29) and equilibrating
100007y. Figure 8 suggests a transition to an
icosahedral phase at T, =0.63 indicated by an in-
crease in the orientational correlation length. The
radial distribution function does not change signifi-
cantly through this transition. No anomaly in the
specific heat could be observed as the temperature
dropped below T, but there are large uncertainties
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in T* and in the energy density difference that
makes it difficult to make precise measurements of
the specific heat in computer simulations. Our re-
sults are consistent with either a continuous or a
weakly first-order transition. R

As discussed in Sec. II, the quantity Wy [see Eq.
(2.2)] provides a sensitive way of distinguishing be-
tween icosahedral and cubic order. Well below the
apparent ordering temperature in Fig. 8, at
T* =0.554 we found

W(T*=0.554)=—0.060939 . (4.4)

Although | W¢(T*=0.554)| is about 4.6 times
greater than the value (3.12) characterizing cubic
orientational order, it is only 35% of the value (3.9)
for perfect icosahedral order. In an infinite system,
we would expect that

| We(D) | = | WE™ |
=11/v4199 (4.5)

at all temperatures below a transition to extended
icosahedral order. This deviation from perfect
“icosahedrality” is due at least in part to the effect
of cubic periodic boundary conditions on our small
samples. A degree of cubic order is suggested by the
small signal at / =4 in Fig. 4(b), and the somewhat
larger one at /=8. As discussed in Sec. IIIB,
periodic boundary conditions promote cubic order,
in a way which is enhanced by the presence of ex-
tended icosahedral order [see Eq. (3.25)]. A super-
position of several different icosahedral ‘“domains”
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FIG. 8. Orientational correlation length &¢ (triangles)
and “order parameter” Q¢ (squares) as a function of tem-
perature. The temperature is given both in reduced units
and in units appropriate to liquid argon.

would also lead to a reduced value of | We |. By
“domains” we mean, for example, situations where
the icosahedral order parameter has been twisted up
like a Moebius strip due to the periodic boundary
conditions.

To study these questions further, we have
searched for a preferred coordinate system using Eq.
(2.6). As discussed in Sec. II, it should be possible in
icosahedral samples to find a set of reference axes
such that only Q¢, and Qg4 5 are nonzero. Further-
more, these quantities must obey the relation (2.5).
A search was made for the set of Euler angles which
minimized the Qg,,’s with m not equal to O and *5
in a variety of bond-oriented samples. Then the ra-
tio | Qeo | /| Qes | was computed. For several sam-
ples the ratio agreed to within 10% of the magic ra-
tio indicating a high degree of icosahedral correla-
tion. Other samples were better described as a su-
perposition of icosahedral domains, or a superposi-
tion of cubic and icosahedral order. To test the
domain idea we performed the test on two perfect
icosahedra rotated with respect to one another and
we found that unless the angles were aligned to
within 5% (about a given axis) the special ratio (2.5)
was not obtained. Thus, the samples that passed,
this “rotation test” demonstrated a high degree of
icosahedral correlation over the full volume of the
sample.

The test also serves as a method of distinguishing
icosahedral order from dodecahedral order. The test
not only yields the ratio of the absolute values of
Qo and Qgs, but also their relative sign, in a coordi-
nate system such that Qgs is real and positive. In all
samples that passed the test the relative sign was
found to be negative, corresponding to icosahedral
rather than dodecahedral order.

Curiously enough, different molecular-dynamics
samples required nearly equivalent sets of Euler an-
gles in order to minimize the Qg,’s with
m=£0, + 5,-5. Furthermore, the Euler angles that
were found by the random search corresponded to a
rotation about one of the original coordinate axes
(aligned with the periodic box) by an angle
tand=1/7 where 7t is the ‘“golden ratio,”
7=(V541)/2. To understand this result, recall
that the 12 atoms on the surface of an icosahedron
actually lie in three mutually perpendicular rectan-
gles (see Fig. 9). If one tries to place a sample with
extended order of this kind in a box (such as the
periodic box used in the molecular-dynamics runs)
the icosahedron will evidently try to orient itself
such that each rectangle is parallel to a side of that
box. Each rectangle has sides with lengths in the
golden ratio. As a result, the fivefold symmetry axis
of the icosahedron, which corresponds to one of the
diagonals of the rectangles, is rotated by an angle
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FIG. 9. View of the 12 atoms making up the surfaces
of an icosahedron, together with their decomposition into
three orthogonal rectangular planes.

tan0=1/7 from the z axis of the box. It appears
that the periodic boundary conditions weakly influ-
ence the developing icosahedral bond-orientational
order in much the same way as a weak magnetic
field can influence the magnetization in a ferromag-
net near the Curie temperature. The periodic box
cannot cause the icosahedral ordering, however;
long-range correlations are required to transmit the
information about the icosahedral orientation from
a surface to the center of the box. Any orientational
order induced directly by the periodicity must, of
course, be cubic.

As discussed above, this coupling to the periodic
boundary conditions limits the perfection of an em-
erging icosahedral state. An analogous suppression
of noncrystallographic ‘“amorphon” clusters by
periodic boundary conditions has been emphasized

|

by Hoare.!! From this point of view, the amount of
icosahedral order we do observe in our supercooled
samples is remarkable.

C. Icosahedral ordering field

To eliminate domain effects and to counteract in
an interesting way the periodic boundary conditions,
we repeated our simulations of 864 particles using a
Lennard-Jones potential augmented by an
icosahedral direction-dependent part. Although
direction-dependent, this pair potential is transla-
tionally invariant,

6
2 h6,m z,m(er:¢r)

m=—6

f(r) . (4.6)

Here, (6,,4,) are the polar angles of the line joining
two particles measured with respect to an external
coordinate system. In the special coordinate system
discussed at the end of Sec. IV B [i.e., one obtained
by rotating by 6=tan~!(1/7) about one of the coor-
dinate axes of the periodic box], we have

hem=he(0,—(+)172,0,0,0,0,1,0,0,0,0,(-)"/2,0), m =—6,—5,...,0,...,+6. 4.7)

The function f(r) smoothly cuts off the icosahedral-
ly symmetric angular part of the interaction beyond
r=1.2. Cooling with h4=0.05 produced a nonzero
icosahedral order parameter at all temperatures, as
one might expect. The response was quite weak
above T, however, and much larger values of Qg
were produced below this temperature. After
quenching to a temperature, 7%=0.523, the sample
was equilibrated 3000 steps under the influence of
the modified LJ potential and then another 3000
steps under the influence of the ordinary LJ poten-
tial. During this process the temperature rose to
T*=0.536. (Had h¢ been turned off sufficiently
slowly, one might have expected the temperature to
decrease, in analogy to adiabatic cooling of spins in
a magnetic field.) The state achieved in this way
(via a fast quench) had quite extended correlations
(see Fig. 10) in G (r) yielding an estimate of Q4 more
than twice as large as obtained without the
direction-dependent potential. The nonzero Qg
that remained reflected the icosahedral symmetry of
the perturbation as found by rotating the Qg,,’s so as

[
to find the special ratio or by computing the W;’s.
These results are consistent with a picture of
icosahedral domains aligned by first cooling with
h¢, and then remaining aligned after turning off this
perturbation. The sample at T7%=0.536 was eventu-
ally quenched to 7*=0.05, where it remained
icosahedrally oriented (without a substantial increase
in Q¢) and noncrystalline for some 30000 time
steps.

For stronger icosahedrally orienting perturba-
tions, we found weaker but extended correlations in
G4(T) as well, although the radial distribution func-
tion indicated an absence of crystallization. This
peculiar effect results from the interaction of the
icosahedral order parameter and periodic boundary
conditions discussed in Sec. III B. Figure 11 shows
the correlation function and radial distribution func-
tion for the sample that was relaxed under the
strong potential. The coupling hg was reduced in
five equal increments each followed by 1000 time
steps of equilibration (all done at a roughly fixed
temperature). The results are shown in Fig. 11(a).
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FIG. 10. The orientational correlation function Gg(r)
obtained by cooling in a small icosahedral field, turning
this field off, and then equilibrating (solid line). For com-
parison, we show G(r) for a sample cooled at the same
rate without an icosahedral field (dashed line). Both sam-
ples were cooled more rapidly than in the low-temperature
sample shown in Fig. 7.

Note the extended correlations in G4(T). The sam-
ple was then relaxed a further 4000 time steps and
the results are shown in Fig. 11(b). Note that G4(T)
has been reduced. Compared to the correlation
functions in other samples, the icosahedral correla-
tion in these samples appears to be enormous. The
radial distribution function [Fig. 11(c)] appears to be
somewhat distorted compared to a sample cooled in
the absence of the icosahedral perturbation.

D. Dependence on quench rate,
density, and sample sizes

The degree of bond-orientational correlation is
sensitive to the quench rate used to cool the sample
from the high-temperature state. The samples dis-
cussed above were quenched at the “slow” rate of
10'?2 K/sec. We found that the slower the quench
rate, the greater the icosahedral correlation for a
given number of molecular-dynamics steps. In par-
ticular, for a sample sequentially quenched to
T*=0.508 from a temperature of 7*%=1.29 with a
“fast” quench rate of 10'* K/sec, no measurable
orientational correlations were found after 30000
molecular-dynamics steps. The sample was reheated
to a temperature of T7*=0.667 (above the apparent
critical temperature for the transition to the oriented
phase), and slow-quenched again at the old rate to
T*=0.525. The sample then showed typical
icosahedral bond-orientational correlations (see Fig.
8) for that temperature. Of course, experimental
samples are quenched at rates much slower than we
can simulate. The fact that we reproduce our origi-
nal results with a sample that has been “fast-
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FIG. 11. (a) Correlations Gg(r) (solid) and Gu(r)
(dashed) obtained after cooling in a strong icosahedral
field. The nonzero asymptotic for G4(r) is due to the in-
teraction between icosahedral order and the periodic
boundary conditions. (b) Gg(r) (solid) and G4(r) (dashed)
for the same sample after the strong field was totally re-
moved and the sample further equilibrated. (c) RDF for
the sample in (b).

quenched”, reheated somewhat, and then ‘slow-
quenched” is encouraging.

Samples have also been run in which the initial
density was changed from 0.973 to 1.053. In Fig. 12
is shown the phase diagram for LJ liquids and one
observes that this change in density represents a sig-
nificant shift in the melting temperature from
T*=0.701 to 1.30. A SQ series of samples contain-
ing 864 atoms was produced beginning from
T*=1.51 to T*=0.753. Beginning at a critical tem-
perature of T*=1.15, the bond-orientational correla-
tion function was found to approach a nonzero
value asymptotically. The behavior of the higher-
density samples was virtually identical to the origi-
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FIG. 12. Phase diagram for a Lennard-Jones liquid
(adapted from Ref. 42). The arrow shows the thermo-
dynamic path taken on most of the runs discussed in this
paper (p*=0.973). Qualitatively similar results were ob-
tained upon supercooling at a higher density, p*=1.053.

nal samples and the ratio of the critical temperature
to the melting temperature was found to be approxi-
mately 0.9 in both cases.

We have performed many tests with samples of
different sizes. An extensive study of runs carried
out on 600 particles, while maintaining the density
p*=0.973 gave results qualitatively similar to those
reported for the 864-atom models. We have also
performed some experiments with a larger 1200-
atom model. The 1200-atom model was too large to
perform detailed tests of the behavior of the correla-
tion function as a function of temperature, but sam-
ples were generated below the critical temperature
(0.626) for the 864-atom model that exhibited long-
range bond-orientational order according to the
orientational correlation functions.

V. ORIENTATIONAL ORDER IN MODELS
OF METALLIC GLASSES

A. Finney model

Dense-random-packing models, inspired by the
original work of Bernal,®> are often used to model
structure in metallic glasses. The Finney model, in
particular, was created by pouring 8000 hard
spheres into a bladder with a roughened interior and
filled with hot wax. The bladder was kneaded to
simulate annealing, the wax allowed to cool, and the
particle coordinates measured.?* These initial condi-
tions were then relaxed in a Lennard-Jones potential
by a conjugate-gradient computer program which
seeks a local minimum in the potential energy. The
radial distribution functions obtained from the re-
laxed Finney model agree well with x-ray diffraction

data from metallic glasses.'*
Figure 13 shows the quadratic invariants Q; ob-

tained by averaging over spherical pieces of the re-
laxed Finney containing 853, 1753, and 3701 parti-
cles. Although still visible for 3701 particles, the
bond-orientational order decreases steadily with
averaging volume. For the 3701-particle sample we
found W6-O 038429; about 3 times larger than the
cubic value (3.12), but only 22% of the value (3.9)
for a state with perfect icosahedral order. It seems
likely that orientational order in the relaxed Finney
model vanishes in the limit N — «, suggesting the
view that this particular dense-random-packing
model is macroscopically much like an isotropic
liquid. Also shown in Figure 13 are the Q,’s ob-
tained from our most orientationally ordered (but
noncrystalline) molecular-dynamics simulation of
864 particles (T*=0.55). These signals are more
than twice as large as those in the 853-atom Finney
model. It is possible, of course, that the Q; obtained
from molecular-dynamics simulations also became
systematically smaller in the limit of very large sam-
ple sizes.

Hoare'' has suggested that the hard-sphere initial
conditions of most dense-random-packing models
represent artificially ‘“jammed” configurations
which are inaccessible to particles cooled under lab-
oratory conditions in a soft potential. From this
point of view, it is interesting that our ‘best”
molecular-dynamics sample has more than twice the
orientational order in the corresponding Finney
model. One might expect even more orientational
order in liquids supercooled at the very slow rates
available in the laboratory.

Qp —— MD (T=055)N=864

ecoe Finney, N=853

0.20 ——-- Finney, N=1753

eeeee+ Finney, N=3701
0.16
0.121-
0.08+

7-'.'.'.'.'1 f
8 10

FIG. 13. Orientational order in the relaxed Finney
model as a function of averaging size. The solid lines
show histograms for a well-ordered molecular-dynamics
sample with approximately the same number of particles
as in the 853-particle Finney model.
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B. Amorphon clusters

dense-random-
11

Alternatives to  hard-sphere
packing models have been reviewed by Hoare.
Upon relaxing various clusters designed with a high
degree of (noncrystalline) symmetry, one can obtain
particle aggregates with anomalously low energies.
Although different from hard-sphere dense-
random-packing models, large clusters of this kind
also give reasonable agreement with the radial distri-
bution functions observed in metallic glasses.!!

Figure 14 shows histograms of Q; and W, ob-
tained by summing over bonds in three of the clus-
ters discussed by Hoare. The clusters are a 13-atom
icosahedron, a 43-atom “icosadodecahedron,” and a
127-atom “rhombicosidodecahedron.” Starting with
particle coordinates with the appropriate symmetry,
these structures were relaxed using a conjugate-
gradient computer program. The degree of
icosahedral orientational order which results is quite
striking, especially when compared with the Finney
model. Surface bonds were included in the averages;
it is interesting to contrast the result for the simple
icosahedron with those displayed in Fig. 2(a), where
surface bonds were excluded. The magnitudes of
the Q; and W) (and the sign of the W;) oscillate
with cluster size.

We find it remarkable that the 1212 near-neighbor
bonds in the rhombicosidodecahedron, for example,
add so coherently. Prior to relaxation, the large
clusters exhibited rather poor signals, despite their
overall icosahedral rotational symmetry. After re-

13-atom Q*
icosahedron

[ORN S
% —— {
2 4 6 8 10

43-atom Q,
icosadodecahedron
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"2 4 6 8 10
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2 4 6 8 10

FIG. 14. Orientational histograms for several of the
amorphon clusters discussed in Ref. 11.

laxation, the only significant spherical harmonics
which survive the averaging procedure occur at /=6
and /=10, as required for perfect bond-orientational
order (see Sec. III). The values for Q,, Q4, and Qg
were of order 1072° in the 43-atom cluster and of
order 107! in the 127-atom cluster. The values of
the symmetry parameters were

We=—0.169752 ,

R (5.1)
W,,=0.093967 ,

for the 43-atom cluster, and
We=0.169 686 , (5.2)

W,,=0.093925 ,

for the 127-atom cluster. The magnitudes of W(,
and W), are almost identical to the icosahedral
values quoted in Table I. The magnitude of Wy, in
particular, differs by at most 0.04% from the num-
ber,

| Wisos | =11/v/4199

predicted by Landau theory [see Eq. (3.9)].
Measuring bond-orientational order evidently al-
lows one to quantify an important difference be-
tween dense-random-packing models and large
amorphon clusters. The results for the 127-atom
rhombicosidodecahedron, in particular, show that
icosahedral bond order can propagate. As discussed
in Ref. 11, this cluster can be viewed as an
“icosahedron of icosahedra,” with each 13-atom
subunit bonded to its neighbors by octahedral
bridges. Evidently, the octahedral “connective tis-
sue” does not impair the ability of icosahedral order
to add coherently across the entire structure. Mea-
surements of bond order in even larger clusters, in-
cluding those obtained via computer simulations of
glassy condensation'? would be quite interesting.

C. Twisted orientational order

One more variant on orientational order seems
worth mentioning. As pointed out by Bernal,?
tetrahedra can be packed periodically in one dimen-
sion to form a twisted helix with three strands. (See
Fig. 15). He finds these helixes throughout his
dense-random-packing models. A straight average
over the bonds in a spiral chain consisted of 72
tetrahedra gave numerically small Q,’s for all /, with
the most prominent signals at /=2, 6, and 10. A
much larger signal could presumably be obtained by
averaging

O ()= 3 DY, (a(T),B(T),Y(2) Qi (T ,
" (5.3)
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FIG. 15. Spiral packing of tetrahedra discussed by
Bernal (Ref. 25).

where the Euler angles a(T), B(T), and y(T) are
chosen to untwist the spiral.

It is possible to imagine bulk analogs of this one-
dimensional spiral state. With the icosahedral order
parameter at each point, we associate a set of
orthogonal planes via the construction illustrated in
Fig. 9. States such that the orientations of these
planes twist slowly in space are possible. The Bernal
spiral repeats itself after about ten near-neighbor
spacings, suggesting a pitch which is at least com-
parable to the size of our molecular-dynamics simu-
lations.

VI. CONCLUSIONS AND SPECULATIONS
ON THE GLASS TRANSITION

It is always difficult to draw firm conclusions
based on small samples like those studied here. Ata
minimum, we hope to have demonstrated that the
bond order parameters provide a useful way of
quantifying and testing ideas about orientational or-
der in liquids. It also seems clear that there is an
orientational correlation length £¢(7T) which begins
to exceed the range £r of translational correlations
in supercooled Lennard-Jones liquids at about 10%
below the equilibrium melting temperature (see Fig.
8). The symmetry of the orientationally ordered
state which develops has a large icosahedral com-
ponent. The increase of the /=4 and 8 parts of the
Q; histograms at low temperatures suggests that
some cubic orientational order is present as well.
Our data is consistent with attributing this cubic or-
der to the interaction of an icosahedral order param-
eter with the cubic periodic boundary conditions.
The coupling between icosahedral order and periodic
boundary conditions predicted by Eqgs. (3.25) and
(3.26) was confirmed by introducing an icosahedral
term into the pair potential. We cannot, however,
completely rule out an intrinsic state with mixed
icosahedral and/or cubic order. Such a state would
occur if both 7, and r¢ in the free energy (3.18) be-
come large and negative.

The bond order in the relaxed Finney model was
weaker than that observed in our “best” orientation-
ally ordered molecular-dynamics runs. This obser-
vation lends support to the suggestion by Hoare!'!

that the hard-sphere initial conditions of the Finney
model are unnaturally jammed, and inaccessible to
real liquids upon supercooling. It should be em-
phasized, however, that the relative proportions of
the Q)’s in the Finney model are rather similar to
those observed in our computer simulations. One
cannot, of course, appeal to periodic boundary con-
ditions to account for the ‘“cubic” signals at /=4
and 8 in this case.

In contrast to the Finney model, the orientational
order observed in the amorphon clusters discussed
by Hoare!! is really quite striking. The symmetry is
almost perfectly icosahedral, suggesting that this sort
of bond order can propagate without difficulty
across a 127-atom cluster, for example. The
icosahedral order seemed unaffected by the octahe-
dral “bridge units” used to connect neighboring 13-
atom icosahedra. If confirmed by experiments on
larger clusters, this would be an important observa-
tion. An analogous result holds for disordered pla-
nar ball-bearing arrays.® Here, information about
the orientation of hard-sphere hexagons can pro-
pagate for large distances, relatively unimpeded by
the disorder.

There may, in fact, be an intrinsic limit on the
size of the icosahedral orientational correlation
length &, due to “frustration effects.” In three di-
mensions, one maximizes the local density by form-
ing tetrahedral packing units. Forming icosahedra
(composed of 20 such units) is an imperfect solution
to the problem of packing these tetrahedra, since the
bonds at the surface of a 13-atom cluster are about
5% longer than the bonds connecting surface atoms
to the center. In some sense, this mismatch is what
ultimately prevents a space-filling (hard-sphere)
icosahedral solid, with an infinite translation-
correlation length £r. It is possible that long-range
icosahedral orientational order is prohibited as well.
Presumably, the maximum allowed &4 is comparable
to or larger than the size of the samples studied
here.

Kleman and Sadoc* have proposed a description
of the glassy state which starts in curved space,
where a perfect icosahedral solid is possible. They
then map this crystal into ordinary flat space by in-
troducing a minimal number of disclination-line de-
fects. Since the observed translational correlation
length in real glasses is quite short, one might more
profitably start with a state with perfect icosahedral
orientational order, but very little translational or-
der. The low-temperature description of such a
state is very similar to that developed for cubic or-
der in Ref. 16. (The hydrodynamics of icosahedral
fluids is also similar to that sketched for cubic fluids
in this reference.) With the local icosahedral order
parameter one associates an orthonormal triad
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(T,m,1) corresponding to some preferred coordi-
nate system. Low-energy excitations from the
ground state are described by a slowly varying vec-
tor of rotation angles 6(T) about these three refer-
ence directions. The corresponding long-wavelength

free energy is
Fi=7 [d’r{K,|TXx6()|?
+K,[V-6(D)], 6.1)

where K, and K, are analogous to Frank constants
in a nematic liquid crystal.! One now introduces the
topologically stable disclination-line defects associat-
ed with (6.1). In the language of homotopy theory,*’
their law of addition is given by the homotopy

group
m[SO3)/Y], (6.2)

where Y is the icosahedral subgroup of SO(3). These
disclinations would have a lower energy than dis-
clinations in an icosahedral solid. Also, they need
not be accompanied by the grain boundaries which
presumably occur in an icosahedral solid with dis-
clinations.

We conclude with a scenario suggesting how
icosahedral bond order might be related to the glass
transition. Even if long-range icosahedral order is
possible in liquids, it seems unlikely that

172
47
2 iQ()mlz
=—6

13, > (6.3)

Qs(T)=

can even approach the value it would have in a “per-
fect, icosahedral solid,” say Q¢=1. Because of frus-
tration effects in flat space, there may be a max-
imum value,

Omax <1, (6.4)

bounding Q¢(7T) from above. One can simulate
frustration in a lattice model of interacting icosahe-
dra via the Hamiltonian

6

(i,jdm=—6
+ X 2 K(T)m Qem(T1)Q%m (T)) .
i#j j

(6.5)

Here r; denotes a site on regular lattice, and the sum
in the first term of (6.5) denotes a sum over nearest-
neighbor pairs of sites. The positive interaction en-
ergy J in the first term tends to align neighbor
icosahedra, described by the Qg (T;).?> Frustration
is modeled by the much weaker longer-range in-
teraction K(T};) in the second term, which we take
to vary randomly in sign, in analogy with spin
glasses.*® The coupling J favors a transition to an
orientationally ordered state, which could occur well
above any glass transition. The random long-range
part, however, acts like a temperature-dependent
random field of strength

R (F)= 3 K (T Qbm(T)) . (6.6)
J#i

This field becomes stronger as Q¢(T) increases.
Such a “feedback” of extended orientational order
into a random field may prevent long-range order
entirely, and will certainly limit the maximum possi-
ble orientational parameter. One might sxpect
lengthy relaxation times just prior to the suder
parameter reaching its maximum possible value
Qrax at an intrinsic glass transition temperature 7.
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