
PHYSICAL REVIEW B VOLUME 28, NUMBER 2 15 JULY 1983

Entropy of a point defect in an ionic crystal

M. J. Gillan and P. W. M. Jacobs*
Theoretical Physics Diuision, Atomic Energy Research Establishment,

Harwell, Oxfordshire OXEN ORA, United Kingdom
(Received 21 January 1983)

The problem of calculating the entropy of formation of a point defect in an ionic crystal
is reexamined in some detail. We use two methods of calculation, which we term the
embedded-crystallite and the Green-function methods. In both methods, the crystal is di-
vided into an inner region, which contains the defect and a set of its neighbors, and an outer
region. In the embedded-crystallite method, the entropy is calculated directly from the
determinants of the force-constant matrices for perfect and defective crystals, restricted to
the defect region. The Green-function method, which is expected to be more accurate, ex-
ploits a reformulation of the entropy expression in terms of the Green functions of the per-
fect crystal and the change of the force constants in the defect region. The principal feature
of our calculations is the examination, for the first time in ionic crystals, of the convergence
of the calculated entropy as the size of the defect region is increased. Associated problems,
such as the correct inclusion of the long-range Coulomb contributions and the accuracy of
the Green functions, have also been addressed. The model numerical calculations which we
present are for the case of Frenkel (vacancy and interstitial) defects in CaF2. The majority
of the calculations have been performed with the use of a rigid-ion potential, which allows a
simpler discussion of the technical problems, but we have also investigated the effect on the
results of using a realistic shell model. We show that the convergence of the results is
strongly affected by previously unrecognized fIuctuation effects coming from the boundary
of the defect region; ihese effects are specific to ionic crystals. It is demonstrated that the
boundary effects can be eliminated with the use of a simple subtraction technique, and that
the resulting entropy values can be extrapolated to infinite region size with an uncertainty of
no more than a few tenths of Boltzmann's constant. It is pointed out that in a finite crystal
there is a contribution to the entropy of charged defects from the structure of the physical
surface; this contribution cancels out, however, for neutral sets of defects. We discuss previ-
ous work on this problem in the light of our findings.

I. INTRODUCTION

Experimental measurements of ionic conductivity
and diffusion coefficients for ionic crystals are usu-
ally analyzed in teriris of a defect model, in order to
deteriiiine the transport mechanism. If the pro-1

posed model permits a quantitative description of
the data, numerical values will be obtained for the
thermodynamic parameters of the defects: the ener-
gies and entropies which control their forination,
migration, and association. Independent theoretical
calculation of these parameters is an important field
of endeavor, because it yields an atomistic interpre-
tation of the experimental results, as well as provid-
ing a useful guide in the selection of an appropriate
defect model. In the last decade the calculation of
defect energies has progressed to the point where the
computational procedure (as distinct from the con-
struction of interionic potentials) is now quite au-

tomatic. Available computer codes, such as the
HADEs program developed by Norgett at Harwell,
are of proven reliability and allow the routine calcu-
lation of a wide variety of defect energies. The art
of calculating defect entropies, by contrast, is still in
a rather primitive state. In order to see this, it is
enough to compare some of the recent theoretical re-
sults for the entropy of formation at constant
volume of anion Frenkel defects in CaF2. These
range from the value of —1.55 given by Sahni and
Jacobs through the pair of estimates 4.62 and 5.41
due to Haridasan et al. to the value of 6.4 obtained
by Harding and Stoneham (all in units of
Boltzmann's constant kit). It is hard to avoid the
conclusion that the technical problems involved in
this type of calculation have not yet been mastered.
Our purpose in the present paper is to investigate
these problems in some detail. We shall try to show
what must be done in order to calculate entropies of
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formation in ionic crystals from specified interionic
potentials with a precision of a few tenths of kz, and
we shall present a detailed model calculation in
which this appears to have been achieved.

The high-temperature entropy of formation s~ of
a defect is given, in the harmonic approximation,

8

where co; and co,' are the normal-mode frequencies of
the perfect and the defective crystals; we omit here
the contribution due to any change in the number of
degrees of freedom. The earliest calculations for
ionic crystals " were based on Theimer's assump-
tion' that the frequency changes co,' —co; are all
very small. This assumption is now recognized to be
completely unrealistic, ' and the calculations based
on it are of no more than historical interest. The
more modern approaches to the problem are of three
main kinds. In the first, which we shall refer to as
the embedded-crystallite method, the crystal is di-
vided into an inner region containing the defect to-
gether with a set of its neighbors and an outer region
containing the remaining ions; we shall call the
inner region the "defect region. " The ions in the de-
fect region are free to vibrate, but the others are held
fixed. The co; and co,' of Eq. (1) are then taken to be
the normal-mode frequencies of the defect region in
the perfect and the defective crystals.

A second approach, which we shall call the
Green-function method, was first clearly described
by Mahanty, ' ' though it is implicit in the work of
Maradudin et al. ' In this method the entropy for-
mula is recast in terms of the Green functions of the
the perfect lattice and the changes of the force con-
stants caused by the introduction of the defect. As
before, the crystal is divided into a defect region and
an outer region, but vibrations of the ions in the
outer region are now implicitly included. The sole
assumption is that the force constants are changed
only for ions in the defect region. If this is the case,
the calculation is equivalent to one performed on the
infinite crystal.

In the third approach, which we shall call the su-
percell method, Eq. (1) is directly applied to a
periodically repeated crysallite of the perfect or the
defective lattice. The frequencies co; and m,' are now
those of the phonon modes at zero wave vector in
the reduced Brillouin zone corresponding to the
large unit cell.

The Green-function method has been applied to
calculate the entropy of formation of Schottky de-
fects in KC1 (Ref. 13) and was used by Haridasan
et al. in the work referred to above on Frenkel de-

fects in CaFz. The supercell method was used in
two rather different variants ' to obtain the other
results we have cited for the Frenkel entropy in
CaFz. As far as we know, the embedded-crystallite
method has never been used for ionic crystals,
though it has been used several times for crystals of
neutral atoms.

One of the central issues in this kind of problem
is that of the convergence of the results to a limiting
value as the size of the defect region is increased. In
the case of defect energies, the importance of the
convergence question was recognized in the very
first quantitative study, made over 4Q years ago by
Mott and Littleton. ' More recently, the explicit
demonstration of convergence in the HADEs calcula-
tions has been important evidence for their reliabili-
ty. Discussion of this question for the problem of
entropies in ionic crystals has been conspicuously
absent. However, Hatcher et al. ' have recently
given a thorough discussion of convergence for the
entropy of formation of a vacancy in metals. That
work, which uses both the embedded-crystallite and
the Green-function techniques, shows that over a
hundred atoms must be included in the defect region
before the limiting dependence of the result on the
region size becomes firmly established, and that ex-
trapolation must be used to obtain fully satisfactory
results. The calculations of Harding and Stoneham
on CaFq used a repeating cell containing only 24
ions; the Green-function calculations of Haridasan
et al. for the same system used defect region of 11
ions and 15 ions, respectively, for the vacancy and
the interstitial. There are, therefore, sound reasons
for questioning the reliability of these calculations.

The work to be presented in this paper consists of
a detailed study of the entropy calculation for the
anion vacancy and interstitial in CaFz. The choice
of this system is a natural one, in view of the previ-
ous discordant results. In order to avoid inessential
complications, we use a rigid-ion model, rather than
a shell model, for most of the work. Although a
rigid-ion model is not fully satisfactory for realistic
calculations, the particular model we use is quite
adequate for studying the calculational technique.
This will become clear later in the paper, when we
present some results obtained with a good shell
model. Our calculations are performed by both the
embedded-crystallite and the Green-function tech-
niques, using defect regions containing up to several
hundred ions. We shall see that for ionic crystals in
general the convergence is more complicated than
for crystals of neutral atoms because of fluctation
effects associated with the boundary of the defect re-
gion. A substantial part of our discussion will be
concerned with the elimination of these effects. As
a by-product of this discussion we shall also find
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that the separate entropies of vacancies or intersti-
tials in a finite crystal contain a nontrivial contribu-
tion from the physical surface of the crystal; for-
tunately, this contribution cancels out when we form
the Frenkel entropy. The use of large defect regions
allows us to examine the convergence behavior in
considerable detail and to extrapolate to infinite re-
gion size with an uncertainty of only a few tenths of

sd =S' —S
3N' 3N

+3k'(N' N)—[1—in%/kgT)], (4)

where N and N' are the numbers of ions and co;, co,'

the vibrational frequencies of the perfect and the de-
fective crystals. The second term on the right-hand
side of Eq. (4) comes from the change in the number
of degrees of freedom. Our interest here will center
upon the first term.

In the harmonic approximation, the equation of
motion of the ions may be written in the schematic
form

pe
The plan of the paper is as follows. In Sec. II we

summarize the basic formulas on which the work is
based. Section III describes the numerical calcula-
tion of the force-constant matrix, taking full ac-
count of the long-range Coulomb potentials. Section
IV presents the calculation and results for the lattice
Green functions needed in our entropy calculations;
here we also examine the convergence of these Green
functions to the limiting elastic form at large dis-
tances, which is important later. In Sec. V we apply
the techniques we have developed to the calculation
of the entropies of the vacancy and the interstitial
and we show how the effects associated with boun-
dary may be dealt with. Section VI describes the ex-
tension of our methods to the shell model. In Sec.
VII we summarize our findings, discuss the relative
merits of the various approaches, and assess the va-
lidity of earlier results. The Appendix presents the
arguments which show the existence of the contribu-
tion to the entropy of formation from physical sur-
faces.

II. THE ENTROPY FORMULAS

The vibrational entropy of a crystal containing N
ions is, in the harmonic approximation, which we
assume throughout this paper,

S=kg g [e ' ~ —1]
'=1 kB T

—ln(1 —e '
)

3N

S=kg g [1 ln(Ace;/kriT)]—, (3)

an approximation which is generally valid for tem-
peratures at which defect entropies are experimen-
tally accessible. If we denote the entropies of the
perfect and the defective crystals by S and S',
respectively, then the entropy of formation sd of the
defect may be written

where the sum goes over the 3N normal modes,
whose frequencies are co;; other symbols have their
usual meaning. In the high-temperature limit,
k~ T))fico; for all i, Eq. (2) reduces to

( 4& —co M ) u =0,
where u is the column vector of the vibrational dis-
placements, M is the (diagonal) mass matrix, and 4&

i: the force-constant matrix. The product of the
squared frequencies is therefore given by

where the vertical bars indicate the determinant of a
matrix. This allows us to rewrite Eq. (4) in the
form

sd kB»(
I
MI I@'

I
/

I
M'll@

I
)

+3k& (N' —N) [1—in(i'/kz T )],
where M and M' are the mass matrices and @,@' the
force-constant matrices for the perfect and the de-
fective crystals. In our numerical calculations, we
will be concerned with the entropies of formation of
isolated vacancies and interstitials, which we denote
by s„and s;. The explicit formulas for these cases
are

s, =&„—3k' [1—1n(A'/m ' k~ T)],
s; =&;+3k' [1—ln(i1i/m '~

kii T)],
where

bs„= ——,kgln(
I
@„

I /I @
I
),

bs;= ——,kgln(
I
@;

I
/

I
@

I
) .

Here m denotes the mass of the ion removed to form
the vacancy, or added to form the interstitial, and

denote the force-constant matrices for the
crystal containing the vacancy and the interstitial.
The last terms in Eqs. (8) and (9) for s„and s; will
be of no interest from now on, and we shall consider
only the contributions M„and M;, which depend
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solely on the force constants. However, since the
matrix dimensions of N„and N differ from that of
@, these quantities are not properly defined unless
we specify the units in which the force constants are
to be expressed. In ionic crystals, it is convenient to
express force constants in units of e /d, where e is
the electronic charge and d is the lattice spacing; we
shall assume from now on that this has been done.

The embedded-crystallite method referred to in
the Introduction consists of the direct application of
Eqs. (8) and (9) to a limited region of the crystal
containing the defect. The approximation thus
amounts to deleting those parts of the full force-
constant matrices which couple ions outside the de-
fect region either to each other or to ions within the
defect region.

As was pointed out by Mahanty and Sachdev, ' '
this approximation can be avoided by reexpressing
the entropy formulas in terms of the static Green
functions of the perfect lattice and the changes in
the force constants caused by the introduction of the
defect. This method has been discussed in several
recent papers, ' ' ' ' and therefore we shall sim-
ply summarize the results we need.

Consider first the case of the vacancy. We take
the full force-constant matrix N for the perfect crys-
tal and delete the three rows and columns referring
to the ion which is removed to form the vacancy;
call this truncated matrix N, . The quantity 5N, ob-
tained by subtracting this from the full force-
constant matrix N, of the defective crystal,

a r N+5N; (15)

5N,' =5&;—arp; 'a . (17)

The Green-function method consists of the use of
Eqs. (14) and (16) to calculate the entropies of for-
mation. These formulas follow from the original
equations (10) and (11) without approximation, ex-
cept for the assumption that the elements of 54,
and 5N,' are nonzero only in the defect region. The
same is not, of course, true of the embedded-
crystallite approximation, which should therefore be
less accurate. Needless to say, the two methods
should give the same result for large enough defect
regions.

where 5@; is the change of the force-constant ma-
trix coupling together all the ions except the intersti-
tial, a is the matrix of force constants coupling the
interstitial to all the other ions, and a ~ is the
transpose of a; finally, Lt); is the 3&&3 matrix refer-
ring to the interstitial alone. It is assumed that all
elements of 5@; and a are negligible except those
referring to ions in a limited defect region. The en-

tropy formula may be written in the form '

M; = ——,
'

k ln(
I
I+g 5e'

~ ~P; ~
), (16)

where g is, as before, the matrix G reduced by
deletion of rows and columns referring to ions out-
side the defect region, and 5&,' is defined as

5N, =@,—N, ,

plays the role of the change of force-constant ma-
trix. It is assumed that all elements of 5@„are
negligible, except those referring only to ions in a
limited defect region. Now let G be the static Green
matrix of the perfect crystal,

III. THE FORCE-CONSTANT MATRIX

Both the embedded-crystallite and the Green-
function methods require the calculation of the
force-constant matrix for ions in the defect region of
the perfect and the defective lattices. The elements
of the force-constant matrix for two different ions i,
j are given by'

(13)

and g be the reduced matrix obtained by deleting the
rows and columns of 6 referring to ions outside the
defect region (but not those referring to the ion at
the vacancy site). Then the formula for As, may be
written '

where VJ is the interionic potential for the pair of
ions, r,j =

~

r; —rz
~

is their separation, and a, P
denote Cartesian components. For i =j, the ele-
ments are given by'

As, = ——,k~ln(
~ g ~ ~

(g '), +5@,
~
), (14) gap y gap

j {&i)

where (g '), is the inverse of g, truncated by
deletion of the rows and columns referring to the ion
at the vacancy site.

For the interstitial, the procedure is slightly dif-
ferent. Let the full force-constant matrix for the de-
fective crystal be partitioned in the form

where the sum goes over all other ions. The deriva-
tives of the potential in these equations are to be
evaluated at the equilibrium positions of the ions,
i.e., at the fully relaxed positions, in the case of the
defective lattice. It should also be noted that al-
though we require the force-constant matrix only
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for ions in the defect region, the diagonal elements
4;;p depend on the positions of ions outside this re-
gIOIl.

The interaction potential between ions i and j is

Z;ZJ e
V;J.(r)= ' ' +V'J(r),

r

where Z; is the charge on ion i in units of the mag-
nitude 1e

1

of the electronic charge, and V'J is the
short-range potential. The force-constant matrix is
therefore the sum of Coulomb and short-range
parts, which are given for i &j, by

the point ionic charges at their actual positions in an
extended region surrounding the defect region and
the above Gaussian charge distributions in the same
region; (iii) the difference f;'', which is the same as
in (ii), but for the point charges and charge distribu-
tions outside the extended region.

The total charge density Q'"(r ) which gives rise
to the potential g~" is

Q'"(r ) = g Z; 1e 1(g/v ~) exp( —g 1

r —r;
1

),

(25)

SI
~ osaP ~ V

~ ~

fJ aP
rlJ

~a~P g)s ]]—r "r" V"'J ~J ~J

ZiZJ e
O'J' p= 3' (5-p 3r 'Jr-p)—,

rij

st

(21)

(22)

where the sum goes over all sites of the perfect lat-
tice, whose positions are r, . The choice of g, which
specifies the width of the Gaussians, is discussed
below. The potential g'" has the periodicity of the
lattice, and can be expressed as a sum over the
reciprocal-lattice vectors G:

P='Z; 1e1 —
p g;(r;) .

r, rP
(24)

Following the usual Ewald method, we break up the
potential P; into the following three contributions:
(i) the potential f'" due to a set of Gaussian charge
distributions centered on the sites of the perfect lat-
tice; (ii) the difference g';"' of the potentials due to

where r,j is the unit vector from ion j to ion i and
Vz' and VJ" denote the first and second derivatives
of VJ with respect to the magnitude of r. If we
know the equilibrium positions of the ions, the
evaluation of these off-diagonal elements of the
force-constant matrix for either the perfect or the
defective crystal is straightforward.

The calculation of the diagonal elements @;;p re-
quires more care. Consider first the short-range
part N'; P, given by

~s aP ~ Cs aP
El ~ 1J

J (~)
This must be evaluated by taking the sum over all
ions in a larger region containing the defect region;
we shall call this the "extended region. " Since the
short-range potential falls off rapidly with distance,
it will generally be sufficient to make the radius of
the extended region larger than that of the defect re-
gion by a few lattice spacin s.

The Coulomb sum @;,being of infinite range,
cannot be calculated in this simple way. Instead, we
use the familiar Ewald strategy. ' Since the ideas
involved are so well known, we shall merely sketch
the procedure. Note first that the elements @'; p

can be expressed in terms of the electric potential
g;(r;) at ion i due to the charges on all the other
ions:

@(1)(r )
4~le

I

Uc
S(G)G — 2iecx r e —G~/4/2

0 (~0)
(26)

where the structure factors S(G) are given by the
SUIIl

S(G)= QZ„e (27)

over ions in the primitive cell, whose volume is U, .
The difference potential P,' '(r ) can be written

down immediately,

p(z)(~) y J

Z~ 1e 1erf((1 r —rj 1)

(28)

where the first sum goes over all ions actually
present in the extended region of the perfect or the
defective crystal, and the second over all regular lat-
tice sites in the same region of the perfect crystal.

A similar formula holds for the difference f,' '

coming from ions beyond the extended region, but
this contribution can, in fact, be dropped if g is
chosen large enough. Since the ions are distant, the
error function may be replaced by unity, and f;'' be-
comes the potential due to the set of dipoles
ZJ(rz —r J). In the defective lattice, the equilibrium
displacements 5r~ =rj —r J are dominated by the
dielectric response of the crystal to the charge on the
defect, so that the set of dipoles represents a spheri-
cally symmetric radial polarization. This polariza-
tion gives a uniform electric potential g,'

' in the de-
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feet region, which, on differentiation with respect to
position, yields no contribution in Eq. (24).

The final expression for &0,' p is now obtained by
inserting the formulas (26) and (28) into Eq. (24):

4+Z;e
C,C, aP

lf
Uc

Ga p t G f
& G2y4g2

G(~0 )

Z 2j -g-p(5 p 3r,—jr;j)
J (+&) &J

where

—gZ;Zje [5 pt, (p,&)+p,jpjt2(p j.
J

(29)

O

Pij ri rj

and the functions t&( p) and t2(p) are given by

(30)

ti(p)= e ~i' —erf(gp) P
L

t2( p) = 3 erf(gp) — (3+2$ p )e P

(31)

Zd e
P(r )= (1—~p ')

p3
(32)

where Zd is the net charge of the defect, ep is the

The sums over j in Eq. (29) go over all ions (except i)
and all regular lattice sites (without restriction) in
the extended region.

In principle, the value of the Gaussian width
parameter g is arbitrary, but in practice it is chosen
so that both the reciprocal-lattice and the real-space
sums can be taken to convergence without excessive
computational labor.

In order to calculate the force-constant matrix for
the defective crystal, we need to know the relaxed
equilibrium positions of all the ions in the extended
region. As in previous work, ' we have used the
HADES computer program to obtain these positions.
The principles of this program have been described
before, but we wish to recall the main points, for
the purpose of our later discussion. In the HADES
calculation, the crystal is divided into an inner re-
gion I containing the defect and an outer region II.
The ions in region I are iteratively relaxed to their
zero-force positions. The positions of the remaining
ions are obtained, following Mott and Littleton, ' by
treating region II as a dielectric continuum. The
electric polarization in region II is thus given by

static dielectric constant of the bulk crystal, and r is
the vector distance from the defect. The ionic dis-
placements in region II are calculated from P on the
assumption that the polarization is shared equally
between the cation and anion sublattices. ' For ex-
ample, in the case of CaFz, in which there is one cat-
ion of charge +2 and two anions of charge —1 in
the unit cell, the equilibrium displacements 5r+ and
5r of ions in region II are given, for the rigid-ion
model, by

Zd Uc
5r+ = —5r = (1—ep ')

16~ r3
(33)

TABLE I. Parameters of short-range interionic poten-
tials for CaF2 due to Dixon and Cxillan (Ref. 25).

674.3 eV
1808.0 eV

0.336 A
0.293 A

109.1 eVA6

The point we wish to emphasize is that the equilibri-
um positions we use in the calculation of the force
constants for the defective lattice correctly allow for
the dielectric response of the lattice to the charge on
the defect, though they do not include the long-
range elastic response. The equilibrium displace-
ments fall off with distance as r, cations and
anions being displaced in opposite directions. As we
shall see, this has important consequences for the
convergence behavior of our results. It should be
noted that the HADES region I has no particular rela-
tion to the defect region used in our entropy calcula-
tions.

We now give some details about our rigid-ion cal-
culations on CaF2. The model we use is that due to
Dixon and Gillan. ' The ions bear their full ionic
charges and the short-range potentials have the nor-
mal Buckingham form:

V;j(r) =A;je " C;1lr—
The cation-cation short-range potential is set equal
to zero: A++ ——C++ ——0, as is the cation-anion
dispersion term: C+ ——0. The remaining parameters
are given in Table I. This model has been shown to
give a good account of the bulk crystal properties
and of the anion defect energies of CaF2. ' In all
the present calculations, the Vj were set equal to
zero for r & 1.5d, where d is the anion-anion
nearest-neighbor separation. The HADES calcula-
tions used regions I containing 12 and 13 symmetry
classes of ions for the vacancy and the interstitial,
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respectively. For the computation of the force-
constant elements, the Gaussian width parameter
was chosen so that gd=2. 2. With this choice, it is
sufficient both for the Coulomb and the short-range
contributions to take the radius of the extended re-
gion to be greater than that of the defect region by
2d and to restrict the reciprocal-space sum to G's
for which

~

G
~

d/n&. 6. 1, which then includes some
250 reciprocal-lattice vectors. The results to be
presented were obtained with an extended region of
radius 6.1d, which includes about 1400 ions for both
the vacancy and the interstitial problems. We have
made test calculations to check that variation of g
and further extension of the sums have no signifi-
cant effect on the results.

IV. THE GREEN MATRIX

The elements of the Green matrix G may be ex-
pressed as an integral over wave vectors q in the
first Brillouin zone by the standard formula

U

g
e„q,J e„q,Je (, )e~(, )*

(2~) j (m~m~~ ) co( qj )

iq r

where K,K' designate the sublattices of the two ions
concerned, whose vector separation is r, m„ is the
mass of the ion on sublattice K, and co(q,j) and
e,(q,j) are the frequency and polarization vectors of
the phonon whose wave vector is q and whose
branch index is j. For practical computations, the
integral is replaced by a sum over the points of a
uniform mesh in reciprocal space,

e, (q,j)eg(q, j)*
(m, m, )'~2r(l( q, j)2

where N is the number of mesh points in the Bril-
louin zone; the prime on the summation indicates
that the I point q =0 is to be omitted. We have
used this formula to calculate the required elements
of the Green matrix. In previous work, ' ' we have
used an alternative procedure which involves calcu-
lating the imaginary part of the frequency-

g g(r )=, j d()y g(()=m/2, ()),
8m. r

(37)

where 0 and P are the polar and azimuthal angles of
a unit vector K with respect to the direction of r; for
cubic crystals (such as CaF2) the dependence of y ~

on the Cartesian components K of K in the crystal
axes is given by

dependent Green functions and then using the
Kramers-Kronig relation to obtain the static quanti-
ties; we now believe that this has no advantage
over the direct use of Eq. (36). The phonon frequen-
cies and polarization vectors were calculated from
the interionic potentials described in the preceding
section, using the standard methods of lattice vibra-
tion theory. The results we shall present are for the
lattice spacing d =2.722 A, which is the zero-
temperature value for CaFz obtained from experi-
ment.

In order to assess the accuracy of the results, we
have made calculations for different values of the
mesh length Aq, which we express in terms of ~/d,
the distance from the zone center to the zone boun-
dary in the (100) direction. The dependence of the
results on Aq is shown in Fig. 1 for three representa-
tive Green functions. As we expect, the limiting
dependence is linear in hq. From this kind of study,
we conclude that for the r=0 elements a mesh
length of b,q=0.05 (equivalent to 32000 points in
the zone) yields an accuracy of -2%. However, the
accuracy becomes rapidly worse as r increases and
for r =2 it is no better than 10%. For large separa-
tions r &6 the results are virtually meaningless.
This situation is, of course, familiar from previous
work on nonpolar crystals.

At large separations, the lattice Green functions
must tend to the elastic Green functions, ' which
we denote by g ~(r ) (these are independent of sub-
lattice). It should be possible, then, to avoid the
necessity of calculating the G„~(r ) for large r by re-
placing them by the g ~(r ). In order to do this con-
fidently, we must first examine how the numerical
values of these two quantities are related. It has
been shown by Schober et al.z that the g ~(r ) are
given by

y'(-) =
c44 +dK~

CK~Kp

(c~+dK )( (g+C4d4p) K1+c
5=1
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FIG. 1. Dependence of static lattice Green functions G„„on the mesh length Aq used in the Brillouin-zone summation.
The units of b,q are vr/d (the distance in reciprocal space from the zone center I to the zone boundary X in the [100] direc-
tion) and the units of the Green functions are (e /d')

where c;~ are the usual elastic constants and d and c
are

d =C11 —C12 2C44 (39)

C =C44+C12

We have evaluated the elastic Green functions from
these equations, using values of the elastic constants
calculated from the interionic potentials.

Since rg ~(r) depends only on the direction of r, it
is convenient to compare this quantity with rG„(r ).
In making this comparison, which we present in
Table II, we have used values of the lattice Green
functions extrapolated to zero mesh length, Aq=O;
it should be borne in mind that this extrapolation
becomes rather uncertain for large r. In some direc-
tions the convergence of the lattice Green functions
to their elastic counterparts is surprisingly rapid.
For all the cation-anion functions listed, as well as
for the cation-cation and anion-anion functions in
the (111) direction, the elastic Green functions
would provide a good approximation even at the
closest separation. Convergence is somewhat less ra-
pid in the (110) directions, but even so the lattice
and elastic functions agree to —5% beyond (2,2,0).
Only for the (100) direction is the convergence rel-
atively slow.

What we have actually done in the entropy calcu-
lations is to replace the lattice Green functions by
their elastic aproximation for all separations r & 2d.
As we have seen, this involves an error of only a few
percent in most cases. The effect of the rather
larger errors in those elements for which this is not
true should be suppressed by the fact that there are
relatively few of them. In addition, since the pertur-
bation due to the defect is fairly well localized, we
may expect that the accuracy of the Green functions
is in any case less important at large separations.

In concluding this section we should mention that
we have made extensive checks of the correctness of
the Brillouin-zone results by calculating the lattice
Green functions with an entirely independent
method. This method exploits the fact that G,g(r )

is the harmonic response of the displacement of the
ion ~ in direction a to a unit force applied to ion a'
in direction P. The calculation consists of taking a
region in the perfect crystal and applying a force to
the ion at the center. All the ions in the region are
then iteratively relaxed to their new equilibrium po-
sitions. This calculation can be done without diffi-
culty for regions of radius up to Sd. This allows the
calculation of the r=O Green functions to an accu-
racy of about 1%. Initially, we hoped that this
method might provide a more economical alterna-
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TABLE II. Comparison of lattice and elastic Green functions, G;~~ and g ~. Separation r is

expressed in units of anion-anion nearest-neighbor separation d; Green functions are expressed
in units of (e /d )

(100) direction

(110) direction

( 111) direction

Other directions

Ion pair Separation r

(100)

(200)

(200)

(300)

(400)

(500)

(600)

(110)

(110)

(220)

(220)

(330)

(330)

(440)

(550)

1 1 1

(———)2 2 2

3 3 3
(———)

2 2 2

(222)

(222)

(333)

(444)

3 1 1

(———)2 2 2

3 3 1

(————)2 2 2

5 3 1

(———)2 2 2

5 3 3
(————)2 2 2

5 5 1

(————)2 2 2

5 5 3
(———)

2 2 2

0.132

0.064

0.144

0.129

0.114

0.110

0.096

0.065

0.045

0.068

0.059

0.064

0.059

0.059

0.057

0.057

0.053

0.053

0.055

0.053

0.053

0.053

0.068

0.061

0.065

0.062

0.063

0.055

rg

0.084

0.060

0.055

0.073

0.059

0.068

0.062

0.059

0.057

tive to the Brillouin-zone technique. Unfortunately,
this hope was not fulfilled. Nevertheless, the results
we obtained fully confirmed the correctness of our
previous calculations.

V. ENTROPY CALCULATIONS

We have used the methods described above to
make numerical calculations of the entropies of for-

mation b,s„and M; of vacancies and interstitials in
CaFq using the rigid-ion model. Since we wish to
study the convergence of the results as the size of
the defect region is increased, we have made calcula-
tions for a wide range of region sizes. It turns out
that in order to assess the convergence adequately,
results must be obtained for regions containing up to
several hundred ions. The need to store and manip-
ulate the large matrices involved makes heavy
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demands on computing power unless full use is
made of point-group symmetry. Standard group-
theoretic techniques allow one to construct the
force-constant and Green matrices directly in
block-diagonal form, in which each block is associ-
ated with one of the irreducible representations of
the point group. The symmetries of the vacancy
and the interstitial are described by the tetrahedral
group T~ and the full cubic group O~, which have,
respectively, S and 10 irreducible representations.
The use of symmetry reduces the dimension of the
matrices typically by a factor of 3 for the vacancy
and a factor of 6 for the interstitial.

Our results for As, and hs;, calculated both by
the crystallite and by the Green-function methods
are presented in Fig. 2, where they are plotted
against the reciprocal of the number of ions in the
defect region. The calculations were performed for
a value of the anion-anion separation d equal to
2.722 A. As we noted in Sec. II, the numerical re-
sults depend on the units used for force constants:

6—
Vl

C3

28O
e23 12

~ . 1g 10
0

16

bs,'"'= ——,k~ln(
~

I+g'"'54,''"'
~P; ~

), (41)

where g'"' and 5C&,''"' are the matrices of perfect-
lattice Green functions and of force-constant
changes for this defect region; the matrix P; is in-
dependent of n. It may readily be shown that the
change in entropy M "+ ' —M "' when we add an
extra class is given by

~(n+ () g (n)
l

ln
~

I+y(n+ 1 )(5@&(n +) 5q) (n)
)

(42)

We use units of e /d throughout. The results are
surprising and disconcerting. The fluctuations
caused by changing the region size are so large that
satisfactory extrapolation is quite impossible. This
is true of the results obtained by both methods, but
the trouble is worse for the Green-function method.
Here the entropy can change by as much as 1k& as
we pass from one region size to the next, even for re-
gions containing as many as 100 ions. It is clear
that our attempt to master the calculation of entro-
pies of formation will have failed unless we can
tame the erratic behavior of the results.

In order to understand this behavior, it is instruc-
tive to consider the entropy change caused by ex-
panding the defect region by the addition of a single
class of equivalent ions. For the interstitial, the
Green-function expression for the entropy hs "' for
a defect region containing n classes of ions is

where y'"+" is the Green-function matrix in the
subspace appropriate to n + 1 classes of ions of the
system whose force-constant matrix is @+5@,''"',
which we may write as

( y(n + )()
—( (g(n +) )

l
— (+5@i(n) (43)

15
peI-'k e

18o o g
0

~ 13
16

Now for large n the difference of the two 5@ ma-
trices in Eq. (42) will be small, so that we can ex-
pand the logarithm to first order to obtain

~ (n+ 1) g (n)
1

20
0

o10

I

0.01

o6
I

0.02
I

0.03 (44)

FIG. 2. Entropies As„and As; for vacancy and intersti-
tial plotted against the reciprocal of N, the number of ions
in the defect region. Filled and empty symbols indicate
results obtained using the embedded-crystallite and the
Green-function methods, respectively. Numbers attached
to symbols show number of classes of equivalent ions in
the defect region.

where we have used the fact that the logarithm of
the determinant of a matrix is equal to the trace of
the logarithm.

Equation (44) allows us to study in some detail
the contributions to the difference bs "+"—hs "'
and the corresponding quantity for the vacancy.
Note first that the elements in the difference of 5@'s
describe the coupling between ions within the extra
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class and between these ions and those in the origi-
nal region of n classes. Inspection reveals that the
largest of these elements are for the coupling of ions
in the extra class with nearby ions of opposite
charge in the original region. Since such pairs of
ions are far from the defect, the difference between
y'n+" and g'"+" represented by Eq. (43) should be
unimportant, and we can replace Eq. (44) by

(n+1) g (n)
l E

hs = ——,kgln
~

I+g 5@ (46)

This can evidently be calculated numerically using
the same technique as for the case of the defect.
However, it is convenient to retain only that part of
As which is linear in the displacements. This can be
done by supposing all displacements to be multiplied
by the same factor A, , making a power series expan-
sion ln k:

Tr[g(n+1)(5@~ (n+1) 5@((n))] b,s =As'A, + —b.s"A, +. . .
2 (47)

Since we know the elements of g, we can use this
formula to estimate the expected changes of b,s; as
we add classes to the defect region. Our estimates
suggest that the contribution from pairs of ions near
the boundary accounts entirely for the irregular
behavior of our results.

In the light of this, we can give a general reason
why difficulties of this kind should arise for ionic
crystals and not for the crystals of neutral atoms
studied by Hatcher et al. ' and other workers. In
both neutral and ionic crystals, the equilibrium dis-
placements fall off with distance as r . In the neu-
tral case, the displacements are associated solely
with the elastic response, but in the ionic case they
are dominated by the dielectric response, so that in
the one case the radial displacements are all of the
same sign, but in the other the signs are opposite for
oppositely charged ions. As we have emphasized in
Sec. III, the displacements used in our calculations
correctly include this effect. It follows that the 5N's
for nearby ions fall off as r in the neutral case,
but only as r for ions of opposite charge in the
ionic case. Since the number of ions near the boun-
dary increases as r, the occurrence of convergence
problems in the ionic case might possibly have been
foreseen.

The key point which leads to the resolution of
these problems is that the boundary effects do not
depend on the presence of the defect itself, but only
on the long-range distortions it causes. In particu-
lar, exactly the same effects would be found if we
tried to calculate the entropy change due to a distor-
tion of the perfect lattice, provided the distortion
had the same long-range form as in the defective lat-
tice. In order to substantiate this idea and see how
to exploit it, we have made calculations for the dis-
torted perfect lattice, which we now describe. Let us
introduce in the perfect-lattice ionic displacements
which are identical to those of the ions in the defec-
tive lattice. The displacements give rise to changes
5N in the force-constant matrix and hence to a
change in the entropy, which is given by

and keeping only the term As'. lf we make a similar
expression for 54,

5C =A,5C '+ —,A.'5l "+.. .

then b,s' is given by

hs'= ——,k~ Tr(g 5@') .

(48)

Since the displacements near the boundary are small,
the boundary effects of interest will all be contained
in b,s'. The main reason for keeping only the linear
term will become apparent later, but we note here
that the trace formula of Eq. (49) allows us to calcu-
late bs' without diagonalizing, or even storing, large
matrices; this means that we can go to much larger
defect regions than was possible in the defect calcu-
lation. In addition, the collecting of terms in the
trace can be organized in such a way that a single
calculation suffices to obtain bs' for all sizes of de-
fect region up to some maximum. In practice, we
have avoided the explicit calculation of 5@' by
evaluating b,s' by the trace formula with the full 5N
but with A, set equal to 10 and multiplying the nu-
merical results by k '; this procedure serves to ex-
tract the linear term bs' with sufficient accuracy for
present purposes.

Our numerical results for bs' for perfect-lattice
distortions corresponding to the vacancy and inter-
stitial are shown in Fig. 3. The fluctuations of b.s
with region size are very clear. We also find that
the sign of the fluctuations is directly connected
with that of the ionic charge in the last class to be
added. This is expected from the analysis we have
given: The 5@'s for the coupling of cations in the
last class with anions in previous classes will be
roughly equal but opposite to those for the coupling
of anions in the last class with previous cations.
This suggests that the behavior of bs' should be
paralleled by that of the net charge Q in the defect
region, or better, by that of Q Ir, since the relevant
5@'s fall off as r . The comparison presented in
Fig. 3 amply supports this notion.

If our analysis has been correct, the fluctuations
in the results for the distorted perfect lattice should
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FIG. 3. Linear term As in the entropy of distorted perfect lattice corresponding to (a) vacancy and (b) interstitial, plot-
ted against the number of classes of equivalent ions in the defect region. Also shown is the total charge Q of the ions in
the defect region divided by r, where r is the radius to the furthest class of ions.

be almost identical to those for the defective lattice.
Then the fluctuations in hs, and As; may be largely
eliminated by subtracting the appropriate As'; we
shall write Zs„:—As, —b,s' and hs; =As; —hs'. This
subtraction can be performed immediately for the
Careen-function method, using the results for As'
just presented. The discussion of the distorted per-
fect lattice may be repeated for the crystallite
method, except that hs is now given by

hs = ——,ksin(
I

N'
[
/

I

@
[ ), (50)

where N' and N are the force-constant matrices for

the defect region of the distorted and undistorted
perfect lattice. As before, we have extracted the
linear term bs' by performing the calculation with
the true displacements multiplied by the factor
A, = 10, and scaling the results up by the factor

Our numerical results for Zs, and Zs; are shown
in Fig. 4. The dramatic improvement in the regular-
ity of their behavior is very evident. The uniformity
of their dependence on X ' is now sufficient to al-
low an extrapolation to infinite region size with an
uncertainty of only —+0. 1k&. What is more, the
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TABLE III. Comparison of entropy results (without
subtraction of b,s') obtained by using calculated lattice
Green functions for all separations and by using the elas-
tic approximation for r ~ 2d. The defect regions contain
43 and 47 ions for the vacancy and interstitial, respective-
ly.

As;

Full-lattice
Green functions

Replacement by elastic
Green functions for r ~ 2d

4.83

4.85

—1.71

—1.61

8 7

-2
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I

0.01
(

002
I

0.03

FIG. 4. Entropies As, and Lv; for vacancy and intersti-
tial after subtraction of the corresponding distorted
perfect-lattice term 4s', plotted against the reciprocal of
the number of ions in defect region. Filled and empty
symbols show results of embedded-crystallite and Green-
function calculations, respectively. Numbers attached to
symbols show the number of classes of equivalent ions in
the defect region.

crystallite and Green-function results extrapolate to
the same values within this uncertainty. This agree-
ment provides valuable confirmation of the techni-
cal correctness of the calculations; it also indicates
that the errors committed in replacing lattice Green
functions by elastic Green functions are not serious-
ly influencing the final answers. On this last point,
we might mention that for the vacancy and intersti-
tial defect regions containing, respectively, 43 and
47 ions, we have repeated the calculations of bs„
and M; using calculated lattice Green functions for
all separations instead of replacing them by their
elastic approximation for r & 2d. The comparison of
the results, which we show in Table III, indicates
that replacement of lattice Green functions by their
elastic counterparts affects the entropy values by
only -0.1k+.

Although the results shown in Fig. 4 are very en-
couraging, it is not quite clear that we are at the end
of the problems. Indeed, it might be thought that
we have succeeded only in transferring the difficul-
ties from one place to another: The subtracted
quantities M' are as poorly behaved as the original
results, and we have no means of knowing their true
limiting value; surely, at least, some correction
ought to be applied to the results for b,s, and hs; to
compensate for the effect of the subtraction? This
question is fully discussed in the Appendix, where
we show that the quantities b,s, and b,s; correctly
give the entropies of formation at constant volume
for a large finite crystal, except for the omission of a
contribution associated with the real surface (as op-
posed to the artificial boundary of the defect region).
This surface teiiii is proportional to the charge on
the defect and cancels out when we add hs„and As;
to obtain the Frenkel formation entropy sF (and,
more generally, when we construct the total forma-
tion entropy for any neutral set of defects). The
conclusion is, then, that the subtraction of hs' not
only eliminates the large fluctuations but also can-
cels a spurious contribution associated with the use
of a finite defect region in a formally infinite crys-
tal. It would, therefore, be a mistake to attempt any
correction for the effect of this subtraction.

Our extrapolated numerical results for the vacan-
cy and interstitial entropies and the Frenkel entropy
are summarized in Table IV. Their significance in
relation to other theoretical and experimental results
will be discussed in Sec. VII. The point we wish to
emphasize here is that our aim of deriving the entro-
pies from the interionic potentials to a precision of a
few tenths of k~ appears to have been achieved.

VI. SHELL-MODEL CALCULATIONS

Rigid-ion potentials are good enough for the
study of computational methods, but when it comes
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TABLE IV. Extrapolated results for vacancy and in-

terstitial entropies Xs„and Ks; and for the Frenkel entro-

py sF =Xs, + Zs; calculated using the rigid-ion and shell
models for CaF2.

Rigid-ion model
Shell model

4.8
4.0

—0.8
—0.8

40
3.2

ap ap
+ccij =ki ~ij ~ap+ @ccij

ap ap
+ssij =ki ~ij ~ap+ @ssij

ap ap
+csij = ki ~ij ~ag+ @csij

(51a)

(51b)

where k; is the core-shell spring constant for ion i
and the interionic potential terms C&„,j, etc. are
given, for i&j, by

ap
CclJ

a
ssEJ

X;Xje
3

CC/J

Y;Ye
3 j

wa wp
(~ap 3~ ccij r ccij ) ~

(5 p
—3r„;Jr(;j)

(52a)

a
C$1J

ys
&J wa wP

~a@ ~ ssij ~ ssij
~ssij

2X;YJe
3 (~ap 3~ csij r csij )

~csij

~ssij
(52b)

(52c)

Here X;. and Y; are, respectively, the core and shell
charge for ion i, and rcc,j is the separation between

to calculations which are to be compared with ex-
periment, it will always be preferable to use good
shell-model potentials. We therefore wish to
demonstrate here that the techniques we have
developed can be extended to the shell model. There
appears to us to be no essential difficulty in making
shell-model calculations with either the Green-
function or the embedded-crystallite methods, but
we have confined ourselves to the latter, since it is
simpler to use and seems from the discussion of Sec.
V to be entirely satisfactory.

We use the shell model in its standard form, in
which the core and shell for each ion are coupled by
an isotropic harmonic spring, the Coulomb interac-
tions operate between the core and shell of every ion
and the core and shell of every other ion, and the
short-range interactions operate only between the
shells on different ions. The force-constant matrices
~%' „4„,and ~%, describing the coupling of cores to
cores, shells to shells, and cores to shells are thus
given by

the core of ion i and the core of ion j, etc. For i =j,
we have

e,,j,', = —g (e,,~, +c,g, ), (53a)
j («)

e,g= —g (c,,I', +c„j,') . (53b)
j (&i)

The quantities N„;; are zero by definition, since the
interionic potentials themselves give no coupling be-
tween core and shell on the same ion.

As the cores vibrate, the shell positions adjust
themselves so that the net force acting on any shell
is always zero. Then the effective force-constant
matrix for the cores is

(54)

The embedded-crystallite formula for the defect en-
tropy has exactly the same form as Eqs. (10) or (11):

lsd ————,kiiln(
~

~V /
~

4
~

), (55)

where d stands for U or i and 4 and ~P are the effec-
tive force-constant matrices for the perfect and the
defective crystals. The calculation of the diagonal
elements @„~; and @„~ is done exactly as for the
rigid-ion calculation, by using the Ewald method for
the Coulomb contributions and summing over an ex-
tended region. The value of the Gaussian width
parameter g, and the ranges of the real and recipro-
cal space sums are kept the same as before. As in
the previous calculations, we use group theory to ex-
ploit the symmetry.

We have performed the calculations at the lattice
spacing d=2.722 A (Ref. 28) using the shell model
of CaF2 described by Catlow and Norgett (model
I). The equilibrium positions of the cores and shells
were calculated with the HADES program, using the
same sizes of region I as before.

Our numerical results for the entropy show the
now expected fluctuations and we use the subtrac-
tion method to eliminate them. In calculating the
linear term M' in the entropy of distortion of the
perfect lattice, we use the displacements in the de-
fective crystal of both cores and shells, scaled down
by the factor A, = 10, multiplying the results as
usual by A.

' to obtain M'. The values for M„and
h,s; are shown in Fig. 5, where we compare them
with the rigid-ion values. The variation of the en-
tropies with region size is qualitatively very similar
for the two models. It turns out that the extrapolat-
ed results for the interstitial are essentially identical,
but in the case of the vacancy the introduction of
the shell model lowers the entropy of formation by
0.8kii. The extrapolated results are summarized in
Table IV.
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VII. DISCUSSION

We believe the main achievement of the present
work has been to gain an understanding of the rath-
er subtle technical problems involved in calculating
entropies for defects in ionic crystals. We have
found that the straightforward application of both
the Green-function and the embedded-crystallite
methods is vitiated by spurious effects associated
with the surface of the defect region. These effects
are peculiar to ionic crystals, since they are connect-
ed with the long-range dielectric response of the lat-
tice to the presence of the defect. Fortunately, it has
been possible to eliminate these effects by perform-
ing a fairly simple subtraction. This technique
yields results which vary regularly with the size of
the defect region and which can be extrapolated to
give final results with a residual uncertainty of only
a few tenths of kz, which is certainly adequate for

FIG. 5. Comparison of rigid-ion (circles) and shell-
model (squares) results for entropies Zs, and Zs; of vacan-
cy and interstitial calculated using embedded-crystallite
method. Plot is against the reciprocal of the number of
ions in the defect region. Numbers attached to symbols
show the number of classes of equivalent ions in the de-
fect region.

all practical purposes.
Our findings have implications for the earlier cal-

culations of Jacobs and co-workers, which used the
Green-function method. ' ' Although those calcu-
lations represented an important first attempt at the
problem, they cannot now be regarded as very satis-
factory, for a number of reasons. Firstly, the full
Coulomb contribution to the force constants was not
handled correctly. ' Secondly, the defect region in-
cluded only first and second neighbors of the defect;
the present work shows that such a small region is
not adequate. Thirdly, it was not recognized that
serious uncertainties can be caused by the surface
fluctuations we have discussed.

We can also comment on the calculation of the
Frenkel entropy for CaFz by Harding and Stone-
ham, which used the supercell method. This calcu-
lation, which used exactly the same shell-model po-
tential as we have used for the calculations of Sec.
VI, yielded the result sF =6.4k&. Since our calcula-
tions show that the correct result is (3.2+0. 1)k~, we
must conclude that the method, as applied by Hard-
ing and Stoneham, is not very reliable. The reason
is presumably that the repeating cell they used con-
tained only 24 ions, which would also be inadequate
in the methods we have used. It is likely, then, that
the supercell method would give satisfactory results
if considerably larger cell sizes could be used. The
same remarks about cell size apply to the calculation
of Sahni and Jacobs. '

Our work leads us to draw conclusions about the
relative merits of the Green-function and the
embedded-crystallite methods. Our results show
that the Green-function method yields a better rate
of convergence, at least for the system we have stud-
ied. For example, for a defect region containing
about 100 ions, the Green-function method gives a
Frenkel entropy which is within about 0.2k& of the
extrapolated result, whereas the crystallite result is
still in error by about 1k+. Against this advantage
must be set the fact that the Green-function method
is very much more laborious to apply. In the
present work, a large amount of both human and
computer time has been spent in checking the accu-
racy of the many Green-function elements and in
studying their convergence to the elastic Green func-
tions. If calculations were to be made for a com-
pletely different material, it would probably be felt
necessary to repeat many of these checks. The crys-
tallite method, by contrast, is virtually automatic,
apart from the need to study the convergence with
respect to the size of the defect region. Its inferior
rate of convergence is also not a very serious disad-
vantage, since there appears to be no problem in
making adequate extrapolations Our con. clusion is
that it will be preferable in the future to use the
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embedded-crystallite method. Nevertheless, for the
purpose of exploring the technical problems and of
establishing that our calculations are free of mis-
takes, we have found the Green-function method in-
valuable.

Finally, we comment on the comparison between
our results for the Frenkel entropy of CaFz and the
experimental value. Our results refer to the entropy
of formation at constant volume, whereas the exper-
imental values are for constant pressure. The large
correction which must be added to the constant
volume result to convert it to constant pressure has
been discussed in previous papers. ' It is shown
there that this correction has a value of about 5k&
for CaF2, but that this is subject to an uncertainty of
at least +1kii. Applying this correction to our
shell-model result, we arrive at a constant pressure
sF of (8+1)kii. This is to be compared with the
most recent (and, we believe, most reliable) experi-
mental value for CaF2 of 5kii. ' Our theoretical re-
sults, therefore, seems to be definitely too high.
However, it is too early to conclude that there is a
serious problem here. In the first place, there is al-
ways some uncertainty in the value of an experimen-
tal entropy that has to be derived indirectly by a
model-dependent analysis. In the second place, the
sensitivity of our results to the interionic potentials
needs more careful study. Even the shell-model po-
tentials we have used are unsatisfactory in one
relevant respect: They predict a vacancy migration
energy which is too low by a factor of 2. Since
this migration energy should be correlated with the
force constants of the anions neighboring the vacan-
cy, we would expect the vacancy entropy to be re-
duced by the use of better potentials. In the third
place, the size of the correction from constant
volume to constant pressure needs to be reexamined.
We hope to return to these matters in a future paper.
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APPENDIX: THE SURFACE CONTRIBUTION

The calculations perforri|ed in this paper refer im-
plicitly to an infinite crystal, since there is no men-
tion of any physical surfaces. Real crystals are of
finite size and have surfaces, so we need to ask what
is the relation between entropies of defect foririation
in finite and in infinite crystals. This discussion has
a bearing on the subtraction we have used to elim-
inate the fluctuations associated with the boundary
of the defect region. We shall be able to decide
whether any correction is needed to compensate for
this subtraction.

We begin by showing that the entropy of forina-
tion of a single-charged defect in a finite crystal
contains a contribution which depends on the de-
tailed properties of the surface. This rather unex-
pected fact may be demonstrated by a simple and
general argument. Let us take an ionic crystal in
theiirlal equilibrium and let us change the charge on
one of the ions by an infinitesimal amount 5q, the
change being made reversibly at constant tempera-
ture and volume. Since any external forces at the
surface do no work, the change in the Helmholtz
free energy 5F is just the work done in bringing up
the extra charge from infinity to the ion in question:

5F=5«q), (Al)

the temperature derivative being taken at constant
volume. There will, in general, be a contribution to
& g) from the surface: Since the cations and anions
at the surface have different equilibrium relaxations
from the perfect-lattice positions there must be an
electrical double layer at the surface, and this will
give rise to an electric potential in the interior of the
crystal. Since the strength of the double layer will
generally be temperature dependent, it follows from
Eq. (A2) that there is a genuine surface contribution
to 5S. It should be noted that for a given strength
of the double layer, the potential in the interior does
not depend on the size of the crystal, so that the
contribution to 5S exists even for crystals of macro-
scopic size. It does, however, depend on the crystal-
lographic nature of the surfaces and on the shape of
the crystal and the position of the ion with respect
to the surface (except for a spherical crystal). Since
a defect can be formed by a sequence of infini-
tesimal changes, it follows that the entropy of for-
mation contains a surface contribution which is
given by

(A3)

where & P) is the thermal average of the electric po-
tential at the ion. The associated entropy change is

(A2)
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where q is the net charge on the defect and (g ) is
the surface electric potential at the position of the
defect.

The temperature dependence of (P ) is evidently
a consequence of anhariiionicity, since it stems from
the variation with temperature of the mean positions
of the ions at the surface. It might be thought, then,
that the contribution M, although real, is ir-
relevant to the calculations of this paper, which
treat lattice vibrations as harnionic. This is not the
case, as we now show. Let the displacement of ion i
from its zero-temperature equilibrium position be
denoted by rl;. Then the difference between (g )
and its value at zero temperature is

A(P )=—g q;(f;) r;Ir,', (A4)

where (f; ) is the thermal average of the displace-
ment, q; is the charge, and r; is the position of ion i
with respect to the defect; the sum g goes only
over ions near the surface. It follows that

=q g q;(i)(rl; )IBT) r;Ir; . (A5)

Consider now the effect on the entropy of a crys-
tal of introducing a set of small external forces f;,
again at constant temperature and voluine. These
forces may be represented by adding to the Hamil-
tonian a term equal to

~=—gf; rj;, (A7)

so that the work done (i.e., the change in free ener-

gy) is

5~= —g f, .(~, ) . (AS)

Then the entropy change is

5S= g f,'a(q, )yaT . (A9)

Qne contribution to this is the change of surface en-

tropy 5S:

5S = g f, -B( i1)/(j T, (A10)

which is identical to Eq. (A6). This gives us a clear
physical interpretation of the surface contribution to
the entropy of defect formation: It is the change of

Now the quantity f;=qq;r;Ir; is just the electro-
static force exerted by the defect on ion i, and we
can write

f;B(f; )ydT .

surface entropy caused by the electrostatic forces ex-
erted by the defect on the surface ions, forces which
may be regarded as "external. "

The physical reason for this change of surface en-
tropy is clear: The effect of the forces is to change
the equilibrium positions of the ions at the surface;
the change of positions entails a change in the force
constants and hence a change in the entropy, even
when calculated in the harrlionic approximation.
From this it is plain that the surface contribution
does fall within the scope of our harilionic calcula-
tions. If we had done for the finite crystal what we
have done for the infinite crystal, that is perforined
hariiionic entropy calculations for the fully relaxed
defective and nondefective systems and taken the
difference, we would have picked up a surface con-
tribution of exactly the kind we have described.

We can now give a partial answer to our question
about the relation between the entropies of forma-
tion in finite and infinite crystals by saying that the
result for the infinite crystal omits a surface contri-
bution which is present for the real finite crystal. It
is clear that this omission does not matter for most
applications. The only property of the defect which
enters the surface contribution is its net charge, so
that if we are concerned with the sum of the entro-
pies for oppositely charged defects (e.g. , Schottky
and Frenkel pairs) the surface terms cancel out.
However, there are situations where the individual
entropies are required, for example in the analysis of
the thermopower of ionic crystals. In such cases,
the techniques developed in the present paper would
not suffice, and the surface contribution would have
to be considered separately.

We now wish to complete the answer to our ques-
tion by considering the foririation entropy in a finite
crystal when the surface term is removed. Recall
that for the infinite crystal we calculate the limit for
a large defect region of the defect entropy b,s minus
the entropy hs' calculated for the distorted perfect
lattice; as before, we write b,s =—b,s —b,s'. Now con-
sider the same calculation done for the finite crystal.
We denote by Mr, „ the total entropy of formation
(including the surface contribution) for the finite
crystal, and by Mr, „ the entropy change for the non-
defective finite crystal caused by the distortions
present in the defective crystal, keeping as usual
only the term linear in the distortions; we then write
Asr, „=bsr,„—hsr, „. We shall argue that (i) bs and
b,sr, „are the same if the size of the defect region in
the infinite crystal and the size of the finite crystal
are large; (ii) the quantity MI;„ is exactly the surface
contribution with nothing else added. This will al-
low us to conclude that the As we have calculated is
the entropy of formation for the finite crystal, with
the surface contribution omitted,



M. J. GILLAN AND P. W. M. JACOBS

(A11)

The correctness of assertion (i) is almost self-
evident, since the effect of the subtractions M' and
MI;„ is to cancel contributions to the entropy from
regions far from the defect (and, in particular, from
regions near the surface). However, a full proof
would be tedious and we shall merely sketch an ar-
gument which could be elaborated if necessary. Let
us suppose the firute crystal to be divided into two
regions by a boundary which encloses the defect and
which is distant on the atomic scale from both the
defect and the surface. For the outer region, the de-
viation M& of the force-constant matrix from that of
the perfect crystal can be assumed linear in the ionic
displacements, since these are very small. Since they
are also identical for the defective crystal and for
the distorted perfect lattice, the M&'s are also identi-
cal, except insofar as they depend on the presence of
the defect in the inner region. To this extent, then,
the contributions to Asr, „and bsI;„ from the outer
region cancel exactly. The only difference between
the 6@'s which need to be considered here is that
due to the charge on the defect which introduces a
difference between the on-site elements of the two
5N's which falls off only as r . However, this
difference is traceless in the Cartesian components
and so does not contribute to this order in r ', ex-
cept perhaps for ions near the surface. This means
that the difference of the 5&&'s contributes to order
at most r for ions in bulk and r for ions near
the surface of the outer region, so that the contribu-
tion to Est;„ from this region is negligible for a large
crystal. On the other hand, the contribution to Asr, „

from the inner region is the same as bs for the infin-
ite crystal, since the vibrational properties of the
inner region will be unaffected by the presence of
the distant surface. We thus arrive at assertion (i):
bs=bsr, „.

Now consider assertion (ii), that Est;„=As . The
small displacements in the perfect lattice may be as-
sumed to be produced by a set of small external
forces f;. But we already know the effect on the en-

tropy of such forces: It is given by Eq. (A9). But
the derivative 8(g;)/"r)T, being taken at constant
volume, is zero for all the ions in the bulk: The
mean position of an ion in the bulk of a perfect crys-
tal is independent of temperature at constant
volume. It follows that the sum can be restricted to
ions near the surface:

since the external forces necessary to maintain the
distortion near the surface must be exactly the quan-
tities qq;r;/r; appearing in As . This demonstrates
the assertion.

In summary, we have shown that the entropy of
formation bs calculated in the body of the paper is
equal to the entropy of formation at constant
volume Mr, „ for a finite crystal with the omission of
the contribution hs coming from the (real) surface.
Note that there is no correction to compensate for
the subtraction As'. Note also where the condition
of constant volume enters: In the present scheme it
enters in the discussion of MI;„, where it allows us
to set c}(ri; )/BT=O for the ions of the bulk.
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