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Dielectric constant, effective charges, and piezoelectric constant
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We present the results of an ab initio calculation of the macroscopic dielectric properties of GaAs. The
electronic dielectric constant, the effective charges, and the piezoelectric constant are calculated at several
finite wave vectors in the density-functional approach, and these results are extrapolated to zero wave vec-
tor. The extrapolated values for the dielectric constant and the effective charges are in excellent agreement
with experiment: e =10.9 (experiment, 10.9), and le&l =2.32 (2.16). The extrapolated value of the
piezoelectric constant also is in good agreement (aa/e2)et~ = —0.14 ( —0.16), although the uncertainty is

large.

Although many properties of a crystal can now be calcu-
lated from first principles using the density-functional
method, those properties involving the long-range part of
the Coulombic field are not so easily obtained. The reason
for this is that quantities such as the electronic dielectric
constant, the optic-mode effective charges, and the
piezoelectric constant are defined by taking a small wave-
vector limit. In the density-functional approach the small
wave-vector limit means calculating with supercells which
become infinite in size, a clearly impossible task. Yet the
density-functional method is by far the easiest theoretical
tool available which allows one to calculate these properties
from first principles. The essential difficulty is to find a way
to take the limit correctly to obtain those quantities which
measure the response to Coulombic fields.

To the present, there have been several techniques which
have been applied to calculating these small wave-vector
responses, Two similar calculations' have obtained results
for the electronic dielectric constant and the effective
charges. These calculations have used a finite-sized cell to
calculate the response to various perturbations. The ap-
proximate macroscopic response is obtained by averaging
the local electric field over a small region of the supercell to
obtain an approximation to the macroscopic field. The diffi-
culty with this approach is to show that the average electric
field obtained with the finite-sized cell is close to the true
macroscopic one —i.e., that the average electric field does
not change as the supercell size changes. Another approach
is to use perturbation theory. With perturbation theory, it
is possible to take the short wave-vector limit analytically.
However, the results are of questionable accuracy, due to
the use of the local density approximation to the exchange-
correlation potential. None of these approaches has been
used to calculate the piezoelectric constant.

In this paper we present the results of calculations of the
electronic dielectric constant, the effective charges, and the
first ab initio calculation of the piezoelectric constant of
GaAs. We calculate these quantities at several finite wave
vectors, and then extrapolate to the limit of zero wave vec-
tor. This method, though less elegant and more costly in
terms of computation time than other techniques, suffers
from fewer computational and theoretical uncertainties. In
addition, calculation of the piezoelectric constant is possible.

We choose our wave vectors to be in the [111]direction,

p(q) =e 'q " Jte ~'y'"(r)u d r (2)

Here, I'~ is the charge density induced by the displacement
of a single atom, u~ is the displacement vector of the pho-
non, and q is the wave vector of the phonon. (We adopt
the convention that repeated Greek indices are to be
summed. ) Taking the limit of small q, we obtain the con-

with magnitudes such that the supercells in the density-
functional calculation are X times larger than the normal
unit cell of GaAs, i.e. , q =1/W (1,1,—1) in units of 2'/ac.
We present results of the calculations for X= 2, 4, 6, and 8.
The magnitudes of these values of q are the smallest that
can be obtained using supercells of these sizes, and the
direction is chosen to maximize symmetry while still allow-
ing the calculation of the piezoelectric constant. The super-
cells contain 2X atoms.

The electronic dielectric constant is obtained by applying a
weak external potential of wave vector q and calculating the
self-consistent charge density with the usual techniques of
the density-functional method. The dielectric constant is
simply the ratio of the external perturbation to the total
electrostatic potential:

t 1
4~ p(q)

OO

~pert

Note that since the charge density is of order q, we can ex-
pand the real part of the dielectric constant near q =0 in a
simple power series in q . We do the extrapolation by fit-
ting the results to this power series to obtain a functional
form of e valid near q =0.

The effective charges and piezoelectric constant are some-
what more complicated. In Refs. 4 and 5, Martin and co-
worker showed that the piezoelectric constant and the
dynamic effective charges can be obtained from the dipole
and quadrupole moments of the change in charge density
induced by the displacement of individual atoms. One can
extract these moments from a density-functional calculation
as follows. Consider a longitudinal "phonon, " in which
from each unit cell only the atom located at A~ in the unit
cell is displaced, e.g. , the Ga atoms in GaAs. Then, the to-
tal induced charge density at wave vector q can be obtained
from the charge density induced by the displacement of a
single atom:
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e"'~ p(q) =( —iq ) „r F"„(r)u„d'r

+( —iq )( —iq~) J r r&F"„(r)u„d~r

= —(iq )(eL ).,.u,

+ (iq ) (iq p) (QL, ) p, u, . (3)

Note that if we could calculate p(q) for small enough q, we
could read off directly the moments of F", and hence the
longitudinal effective charge, from the real and imaginary
parts of the charge density. However, as we shall see, cal-
culating with a q small enough implies supercells so large
that computation becomes impractical.

We define q-dependent moments as follows. We choose
u to be parallel to q, so that the phonon is longitudinal, i.e.,
u =a08/2 (1,1, —1). Plugging q and u into Eq. (3) and us-
ing the symmetry of the GaAs, we find that a q-dependent
longitudinal effective charge and quadrupole moment can be
written

eL = — Im[er' p(q)]
NOp
3+5

aAN2
6~'S

As was the case with the dielectric constant, the q-

dependent moments are smooth functions near q =0. We
can obtain the macroscopic limit by calculating these mo-
ments at various N, and then fitting the results to a simple
polynomial in powers of q2 (equivalently, powers of 1/N2).

In the actual density-functional calculations, we use the
local ionic pseudopotentials for Ga and As that others have
used, and use the local density functional for the
exchange-correlation potential, V,„(r)=0.8

2
[3n(r)/m]'i~.

Qther local approximations of the exchange-correlation po-
tential appeared to make little or no difference. The calcula-
tion was carried out for supercells of size 2, 4, 6, and 8
times the normal unit cell. In each case, approximately
339 XN wave vectors were used. The wave functions were
found using a method similar to that of Bendt and Zunger
(Lowdin perturbation was not used), and the number of
special points used was two for N=6 and 8, and four for

nection between the total induced charge density and the di-
pole and quadrupole moments of F~:

N =2 and 4. For the dielectric constant the magnitude of
the perturbing potential was 10 a.u. , which was found to
be well within the linear-response region. Similarly, the
magnitude of the displacements, 5=0.005, was also found
to give a linear response. Up to ten iterations were needed
to make sure that the charge density was sufficiently con-
verged.

The results of the calculations are shown in Table I, along
with the results of the extrapolation and experimental
values. The extrapolation was done by fitting the results for
N =4, 6, and 8 to a simple polynomial of order 2 in 1/N2,
e '(0) +b/N2+c/N4. The results for N=2 were not used
in the extrapolation, since the results indicated that N =2
was not sufficiently close to q =0 for the simple power-
series expansion around q =0 to be valid.

The extrapolation of the results for the dielectric constant
agrees with the experimental result with an error of less
than 1%, 10.9 in both cases. (We have used e ' as the
function to be extrapolated, since & is a smooth function
of q2 near q =0.) Note that even at the largest N, the error
in the value of e ' calculated at that N, is more than S%.
This indicates that the extrapolation is needed for accurate
results. Kunc and Resta' obtain a dielectric constant
between 13.6 and 11.9 with the uncertainty due to the finite
size of the supercell. (They used a supercell 8 times larger
than the normal unit cell —equivalent to our N =8.)

The results for the longitudinal effective charge are al-
most as good, differing from the experimental results by
less than 8%. Noteworthy, however, is the fact that the ex-
trapolated values of the effective charges satisfy the acoustic
sum rule' (the sum of the effective charges must be zero)
to within 1%, in spite of the fact that even at the largest N
the sum rule is clearly not satisfied. Again, this indicates
the need for the extrapolation. As expected, our results
give the Ga effective charge as positive. (The sign of the
effective charge cannot be determined from experiment. )
The transverse effective charge is simply obtained by multi-
plying the longitudinal effective charge by the electronic
dielectric constant, and our result is 2.32, compared to the
experimental 2.16. This result is essentially the same as
Kunc and Resta's result of 2.27. ' Qur result differs some-
what from the result obtained by Kunc and Martin for the
longitudinal effective charge, 0.166. We believe that the
latter result was incorrectly calculated, as the electric field
was apparently obtained from the self-consistent potential,
which includes not only the electrostatic terms, but also the
exchange-correlation terms, which do not contribute to the

TABLE I. Results of density-functional calculations at finite wave vectors and the extrapolation to q =0 using a polynomial fit, and ex-
perimental results. Question marks indicate experimental results not known. (The sign of the effective charges is not known. )

Ga As

Expt.

0.3103
0.1530
0.1059
0.0971
0.0917
0.0916

—0.912
0.474
0.296
0.253
0,213

?0.197

1.82
1.41
1.44
1.47
1.55

?

—2.89
0.136

—0.0215
—0.0986
—0.214
?0.197

—0.882
—0.548
—0.766
—0.747
—0.649
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electric field. These terms vanish in the long-wavelength
limit, but contribute roughly 30% of the total potential for
the cell size considered in Ref. 2.

The longitudinal quadrupole moment is also listed in
Table I. While the individual quadrupole moments cannot
be determined from experiment, the sum of the quadrupole
moments does contribute to the piezoelectric constant.
From Ref. 4 the piezoelectric constant is given by

( QL, '+ QL", ')
e ao

where ( is the internal strain parameter. Using our values
for eL' and 0I, together with the recent first-principles calcu-
lation~ of (, we obtain —0.14 for (ao/e )e~4, compared to
—0.16 from experiment. This apparently excellent agree-
ment is deceiving, because the piezoelectric constant has
two large and opposite contributions, and the theoretical
value of the internal strain parameter is not very certain.

There are two conclusions to be drawn from this work.
First, one now has a method of calculating from first princi-
ples the piezoelectric constant, as well as the electronic
dielectric constant and the effective charges. Nowhere in
this work have we used any parameters beyond the local
ionic pseudopotentials.

Secondly, we have demonstrated that long-wavelength
limits are not reached with q vectors at which the density-
functional method is feasible. For example, to calculate the
effective charges without extrapolation, while satisfying the
acoustic sum rule to only 10%, requires N to be —22. The
computer resources needed for such a calculation are orders
of magnitude greater than those required for this paper.
Thus the extrapolation saves a tremendous amount of com-
puter time.
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