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Binding energies of acceptors in GaAs-Al„Gal „As quantum wells
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We present a variational calculation of acceptor binding energies in a GaAs-Al„Ga& „As quantum well.

The calculation includes the coupling of the top four valence bands of both materials in the multiband
effective-mass approximation. Because the quantum-well potential reduces the bulk symmetry, the bulk I 8

acceptor ground state splits into I"6 and I 7 states. The ground-state energies in both symmetries have been
calculated for three barrier heights as functions of well width. These calculations for barrier heights corre-
sponding to x =0.3 are in excellent agreement with the available experimental data.

Early studies of GaAs-A1GaAs superlattices and
quantum-well structures emphasized the energy levels of
free carriers in undoped materials. ' Luminescence from
such material is dominated by the recombination of free ex-
citons. Recently, both experimental and theoretical workers
have begun to pay attention to lightly doped superlat-
tices. ~ In these structures we expect both intrinsic and
extrinsic processes. In particular, we expect luminescence
from bound-exciton recombination, from acceptor to donor
transitions, and from acceptor or donor to band transitions
in addition to free-exciton recombination. The photon en-
ergies resulting from many of these processes have been
calculated using various approximations.

Recently Miller, Gossard, Tsang, and Munteanu have re-
ported photoluminescence resulting from the residual accep-
tor level to conduction-band transition in GaAs-A1GaAs su-
perlattices. The data are only in qualitative agreement with
a calculation of the binding energy of a hydrogenic impurity
in an infinite well. Although this type of calculation should
be reasonable for donors in wide quantum wells, it does not
describe the acceptors appropriately because of the degen-
eracy of the heavy- and light-hole bands. Although the
hole's spatial confinement due to the quantum well lifts this
degeneracy, the impurity potential will still be sufficiently

deep to significantly couple the heavy- and light-hole bands.
This is different from the exciton case where the bands are
usually considered to be completely decoupled. 8 Further-
more, the valence-band structure is not spherically sym-
metric (or even cylindrically symmetric in the superlattice)
necessitating the inclusion of basis states for the wave func-
tion with angular momentum greater than zero. Finally, in
order to calculate the binding energy for a specific acceptor,
a short-ranged core potential must be included.

In this paper, we report a calculation of the ground-state
binding energies of acceptors located in the center of quan-
tum wells of finite depth. We use a multiband effective-
mass approximation (EMA) where the hole envelope wave
function includes both s-like and d-like terms. The con-
tinuity condition is approximately satisfied in a self-
consistent manner. After adding the appropriate short-
ranged potentia1 so that the bulk limit calculation agrees
with the level due to carbon, the binding energy as a func-
tion of well width is in quantitive agreement with the data
of Miller et al. '

We begin with the coupled effective-mass equations for
the ideal acceptor in bulk material. In the case of infinite
spin-orbit coupling, the problem reduces to four coupled
equations. For four coupled bands degenerate at k =0, the
most general acceptor Hamiltonian may be written as

H = (y ) +
2 yp) p' — (p» Jx +py'&y'+ p,'J,') — ( [ pxpy ) t JxJy ) + ( pr pi ) ( JyJi ) + t p, px ) ) &,Jx ))—e 2

where ) ab ) =(ab +ba)/2, mo is the free-electron mass, p
is the linear momentum operator, e /eor is the screened
Coulomb interaction, and yl, y2, y3 are the Luttinger
parameters describing the valence band of the material. The
kinetic energy term can be written in k space as
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In order to adapt this Hamiltonian to the quantum-well
problem, we propose an additional term

0 for Izl ( IV/2

V for lzl ~ IV/2 (3)

where Vis the valence-band discontinuity between the well
material and the barrier material and 8 is the well width.
We are assuming that V is a scalar so H1 does not couple
different bands. Although the single-well nature of H1
makes it more appropriate for completely decoupled quan-
tum wells, this potential will also be appropriate for super-
lattices with thick barriers because the hole is bound and
virtually none of its wave function penetrates the barriers.
In this calculation, we take V =0.15(I5Eg)x, 'o where EEg is
the difference in band gaps at k=p between AlAs and
GaAs and x is the mole fraction of the Al„Ga1 „As bar-
riers.

In order to compare results with experimental data of an
acceptor, we include a short-ranged potential of the form
Hc= Uexp[ —(r/ro)'], where ro ——1 A. . The parameter U
can be adjusted so the bulk binding energy agrees with the
experimental data for a specific impurity.

As in the bulk acceptor problem, we need all even spheri-
cal harmonics in the hole wave function to correctly calcu-
late the ground state. Excellent convergence, however, can
be reached by including only s-like and d-like states in the
hole envelope wave function. In the bulk, symmetry has
been used to reduce the number of d states from 20 (5 &&4

bands) to 2."The presence of the quantum well reduces the
symmetry from Td to D2d by giving the material one pre-
ferred direction. The fourfold degenerate I 8 ground state
splits into twofold degenerate states: I 6 and I 7.

In order to determine the D2d trial wave functions as has
been done in the Td symmetry, we need to couple the four-
fold degenerate valence band with the s-like or d-like en-
velope wave function. Each wave function will then be a
product of either an / =0 or l =2 polynomial and a spin-

2

spinor. In the bulk, the four spin- —, spinors are simply the
four degenerate I 8 states. In order to determine how these
spinors transform in the D2d double group, we must con-
struct both the Td I 8 states and the D2d I 6 and I 7 states by
coupling the spin-2 hole with the I =1 valence band. In

D2d, D1/2 &D1= I 6+2I 7, where DI is the Lth representa-
tion of the full rotation group. One of these I 7 states is
split off by the spin-orbit coupling leaving I 6+I 7 (each
doubly degenerate). A detailed analysis of the coupling us-
ing the coupling coefficients found in Ref. 12 reveals that

I 7
' ' I '/ I '/ I 8

' I6 '/ and
Therefore the I 7

' s-like state under D2d is

S
0
0 (4)

0

which is identical to the I"8 s state under Td.
To find the d states, we must consider the product

(r, +r7) x(rI+r3+I'4+I5) since in the Dq„group, a d
state splits into I 1+I3+I"4+I 5. We find

(r, +r, ) x(r, +r, +r, +r, ) =sr, +sr, .

Thus there will be five doubly degenerate d-like states of

each symmetry. First, we will consider the I 7 solution. Be-
cause we may choose either the I )i~ or I 7

'i~ states, and al-
ready have the I 7

' s state, we will find the five I 7

like states. They are
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Since the Hamiltonian contains terms like (k~k, +ik, k )rbut
no (k~k, —ik, k„)-like terms, the 5I'7 'i~ state is not coupled
to the other states and can be discarded. Therefore we in-
clude the single s state and the first four d states presented
above. Similarly, for the I"6 solution, we find a I"6 s-like
state and five d-like states but ignore the fifth. These states
can be obtained from those listed above by simply exchang-
ing the first and second components and exchanging the
third and fourth components.

All of these wave functions are automatically continuous
across the interface. If we were using a Hamiltonian in
which the effective-mass parameters were different in the
two materials, such a choice of basis would result in the
Hamiltonian matrix being non-Hermitian. As it stands now,
however, this problem does not exist. It would be prefer-
able to define the basis so that the continuity condition is
satisfied and use the parameters of each material in its own
spatial region. Because of the multiband nature of this
problem and because of the reduced symmetry, this method
would be extremely cumbersome. Rather, we take the
difference in band structure and dielectric constant into ac-
count by solving the problem twice: once assuming the
parameters of the one material, another time assuming the
parameters of the other material, and then interpolating
between the two. This should be a good approximation
since the valence-band parameters and dielectric constants
do not differ much in the two materials.

For each symmetry we solve the EMA Schrodinger equa-
tion Hp = Ep by expanding the acceptor wave function p in
a basis set containing five types of states described in (4)
and (5). For each type of basis state, we use seven aniso-
tropic Gaussian-type wave functions, so that
( r ls) =exp[ —n;(x +y +p, z )], where the u; are chosen
to cover a large physical range. The parameter p, is an an-
isotropy factor which allows the wave function to be
compressed in the z direction. Similarly, ( r lz~)
= z~exp[ —n;( ~k+~y+p, z~) ], etc. Since there are five
types of states and seven values of o.; for each type, solving
Schrodinger's equation for a given symmetry and for a
given p, means solving a 35 &&35 secular equation. This is
done numerically with the use of a high-speed computer.
The value of p, is varied until the energy E is minimized.
The resulting lowest-energy eigenvalue is the variational ac-
ceptor ground-state energy as measured from the bulk
valence-band edge. In order to calculate the binding energy
for the acceptor, we also calculate the quantized heavy- and
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light-hole subband edges as measured from the bulk
valence-band edge using the same Hamiltonian with the im-
purity potential excluded. The I 7 acceptor binding energy is
the difference between the I 7 acceptor energy and the
highest heavy-hole subband edge, and the I 6 acceptor bind-
ing energy is the difference between the I 6 acceptor energy
and the highest light-hole subband edge.

As previously noted, in order to account for the differ-
ence in effective-mass parameters and dielectric constants in
the two materials, the problem is solved twice for each well
width and barrier composition. We define f~ as the fraction
of hole envelope wave function in the GaAs assuming the
GaAs parameters, and f2 as the fraction of hole envelope
wave function in the GaAs assuming the A1GaAs parame-
ters. The actual fraction of hole wave function in the
GaAs, f, requires f= ff~ + (1 f)f2. T—hus f= f2/
(1+f2 —f~). The actual binding energy then is
E = fE~+(1 f)E2 whe—re E& is the energy assuming the
GaAs parameters and E2 is the energy assuming the Al-
GaAs parameters.

We study GaAs-Al„Ga~ „As quantum wells with three
different alloy compositions: x = 0.05, x =0.30, and
x=1.0. The Luttinger parameters and dielectric constants
are taken to be"

ep = 12.35, y~ =7.65, y2 =2.41, y3 = 3.28

for GaAs and

E'p =9.80, y~ =4.04, y2 =0.78, y3 = 1.57

for A1As. For the alloys, we use a linear interpolation
between those of GaAs and of A1As for all four parameters.
The calculated acceptor binding energies as measured from
the appropriate hole subband edge are shown for the three
alloy compositions and both symmetries (1'6 and 17) as
functions of the well width in Fig. 1. In all cases, there is a
characteristic well width which maximizes the acceptor bind-
ing energy for a given symmetry. This is due to the finite
barrier and is similarly seen in quantized donor ' and exci-
ton calculations. For smaller alloy compositions, we find
that the maximum occurs at larger values of the well width.
Hence, to experimentally detect the position of this max-
imum, the quantum well with smaller alloy composition will
be a better choice.

As the well width approaches zero, the acceptor binding
energy for both symmetries approaches that of the acceptor
binding energy in the bulk A1GaAs, since with zero well
width all that is left is bulk A1GaAs. Increasing the well
width from zero, the symmetry is lowered and this single
level splits into the I"7 and I 6 levels; the wave functions of
the two levels are predominantly derived from the heavy-
and light-hole bands, respectively. The binding energy
tends to be greater and its maximum occurs at a larger well
width for the I"6 solution than for the I 7 solution. This is
understandable since the I6 energy is measured from the
highest light-hole subband which is always greater in energy
than the highest heavy-hole subband from which the I 7 en-
ergy is measured. Of course, the total I 6 energy is also
greater than the total I 7 energy, but usually the difference
in subband energy is greater than this difference. Therefore
the I 6 binding energy is usually greater than the I 7 binding
energy except for very small well widths ( ~40 A) where
the I 6 binding energy is slightly lower. For well widths
greater than about 200 A, the total acceptor energy is essen-
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FIG. 1. Energies of the center-doped ideal acceptor ground
states as functions of well width for three barrier heights and both
symmetries. The I 6 binding energy is measured from the top of
the light-hole subband and the I7 binding energy is measured
from the top of the heavy-hole subband.
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FIG. 2. Energy of the I 7 center-doped carbon-acceptor ground
state as a function of well width (solid), the infinite barrier hydro-
genic binding energy of Ref. 2 (dashed), and experimental data (cir-
cles) of Ref. 3 for the x =0.3 barrier height.
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tially the same as in the bulk, but the I 6 and I 7 binding en-
ergies are still somewhat different because of the difference
in subband energies. Thus, for wide wells, the I 7 or r,
binding energy is essentially the bulk acceptor binding ener-
gy plus the heavy- or light-hole subband energy measured
from the bulk valence-band edge. Finally, as the well width
approaches infinity, the acceptor binding energy for both
symmetries converges to 27.1 meV. The described splitting
of the original I"8 solution cannot, of course, be described in
a hydrogenic calculation.

For comparison with the data of Miller et al. for a carbon
acceptor, the core potential was added to the Hami1tonian as
described: H, = Uexp[ —(r/ro)'] By .the use of U=8.00
eV and ro= 1.0 A, the calculated bulk binding energy was
the same as the experimentally measured value (26.0 meV).
The x=0.30 case was again calculated with H, included.
The I"

7 symmetry solution along with Miller's data and
Bastard's2 hydrogenic calculation using an infinite well is
shown in Fig. 2. As expected, the infinite-well calculation
predicts deeper binding than is actually observed. By
correctly including the top four valence bands and allowing
the wave function to penetrate into the finite barrier, the ac-
ceptor binding energy is substantially lower and in excellent
agreement with the data. We are presently experimentally

measuring the acceptor binding energy for quantum wells
selectively doped on center and on edge using molecular
beam epitaxy (MBE). We expect to extend this theory to
allow the calculation of off-center acceptor binding energies.

Summarizing, we have calculated the acceptor binding en-
ergy for center-doped GaAs-Al„Gai „As quantum wells
over a range of x and well widths. The calculation is varia-
tional in the EMA using a flexible basis and includes the
coupling of the top four valence bands. After including the
short-ranged potential appropriate for the carbon acceptor,
the agreement of the calculation with available data is excel-
lent. More detailed results including the energies for
several different acceptors will be reported in the future.
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