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Calculation of potential cutoff for one-phonon atom-surface scattering
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(Received 3 May 1983; revised manuscript received 12 August 1983)

A cluster calculation for Cu(111), Ag(111), and Au(111) shows that the lateral Fourier transform of the
charge deformation due to a displacement of a single surface atom is a Gaussian exp( —02/2g, ). This is

proportional to the scattering amplitude for one-phonon exchange atom-surface scattering and produces a
cutoff in the cross section. The values of 0, are evaluated for the above-mentioned surfaces, explaining
very well the experimental observations. We also find a simple formula that should be useful to experi-
mentalists in calculating the cutoff.

Inelastic atom-surface scattering has been proved to be a
very efficient tool for the study of surface phonon disper-
sion relations. ' However, the knowledge of the projected
phonon density of states (u2(Q, ru)) is not sufficient to
determine the one-phonon cross section. Here Q and cu are
the lateral momentum and the phonon frequency, respec-
tively, and ( ) indicates the ensemble average. In addition,
the coupling matrix elements between the incident particle
and the atom displacement u l at the surface play an impor-
tant role. Considerable work has been done on the atom-
surface inelastic coupling potential. For metals, the experi-
ments have shown a rapid decay of the cross section near
the Brillouin-zone (BZ) edge. 2 3 In addition, no phonons
have been observed beyond the first BZ.4' However, for
alkali-halides Brusdeylins, Doak, and Toennies' have ob-
served phonons up to the second BZ. Several mechanisms
have been proposed for explaining the above experiments:
(i) the size effect of the incident particle and the correlation
of the atom displacements in the surface unit cell;6 (ii)
reduction of the Debye-Wailer exponent due to coupling
between the atom wave vector and the cross-correlated sur-
face atom displacements (iii) the softness of the atom-
surface interaction potential;s and (iv) the charge deforma-
tion due to atomic motion, which is also related to the soft-
ness. '

In this paper we calculate for the first time the cutoff
parameters due to charge deformation, by using a cluster of
atoms. We also present simple analytical formulas for the
determination of the softness parameter and of the cutoff
parameter Q„which reproduce with good accuracy the
values obtained with the full calculation.

In order to proceed, we take the Esbjerg-Norskov' He-
surface interaction potential

the surface atoms, where the surface states and the bonding
effects are negligible. In fact, for the typical thermal ener-
gies E; of the incident atoms ( & 30 meV) the turning point
is in the range 7—8 a.u. We notice that the averaging effect
of the He atom on the surface charge density at the experi-
mental incident energies E; is a minor correction. '

The one-phonon exchange interaction potential is

(2)

where I labels the atoms and uI the relative displacements.
By using a superposition of atomic charge density p, ( r ) in
formula (1), we have

(3)

where r I is the position vector of the 1th atom. We believe
that the use of atomic wave functions in the evaluation of
Eq. (3) is also reasonable for inelastic scattering: For small
atomic displacements, the modification in the charge profile
should be dominated by the wave functions of the displaced
atom. Equation (2) is evaluated at the turning point z, of
the He atom for a fixed E;. It can be shown" ' that for
large values of z the repulsive part of the potential' can be
written as

p'( r ) = E;exp I
—p[z —zc —D (R) ])

V(r) =~p(r)

where n =375 eV/a. u. p( r ) is the surface charge density
averaged with the atom electrostatic potential and r = (R,z)
is the position vector. In the case of elastic-scattering ex-
periments on Cu(110), Ag(110), and Au(110) (1 &&2) it has
been shown that formula (1) works well" when the charge
density is calculated with Clementi and Roetti atomic wave
functions. ' The reason why a superposition of atomic
charges can be used in formula (1) is that the impinging He
atom experiences the charge density at large distance from

where p is the softness parameter'5 and D(R) is the corru-
gation function. The turning point z, (R) is the value of z
for which Eq. (3) becomes equal to E; (in our case 17.5
meV) for a fixed R. The corrugation is measured with
respect to z, evaluated at R=0, i.e. , D(0) =0. With this
choice za is equal to z,(0). We remark that D(K) depends
also on the atomic positions r &.

We have evaluated p( r ) with a 30-atom cluster. With
this charge we have obtained the values of the turning point
and of the corrugation Da(R) for the atoms in the ideal lat-
tice positions. In addition, we have evaluated the new turn-
ing point and the new corrugation D +sR) for a given dis-
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FIG. I. Corrugation profiles and their derivatives BD(R1/85 for
Ag(111) and R along [112]. Curve A: Do(R) +zo. Curve 8:
DH&R) +zo. Curve C: BD(R)/BS. In (a) 8 is along the z direc-
tion, in (b) 5 is along R. In both cases, 5=0.1 a.u. The inset
shows the surface geometry.

placement 5 of the atom in r ~
=0. The calculation has

been carried out for the (111) surfaces of Ag, Au, and Cu
using the s atomic wave functions" for [112] and [110]
directions of symmetry and E;=17.5 meV. Typical exam-
ples are presented in Figs. 1 and 2 for Ag. As can be seen
in Figs. 1 and 2 the amplitude of the corrugations is much
smaller than the value of the turning point z,. In the same
figures are presented the calculated derivatives r)D(R)/Bh
for 5 along z and R. In the former case the derivative is a
Gaussian of the type exp( ——0,2R2) and in the latter case

r)D(R)/rlB is the derivative of the same Gaussian divided

R (a.u. )

FIG. 2. As in Fig. 1 for R along [110].

by p.
We can now write the gradient of the potential with

respect to the atomic displacement 5 as

F(K ) E p(z zo) (jD(R)
85

The softness parameter p can be determined by matching
the logarithmic derivatives of formulas (1) and (4) at the
turning point z,. The values of p and of the turning point z,
for R=O are summarized in Table I, together with the
values of 0,. We found that p varies in the unit cell less
than one over a thousand, indicating the validity of the fac-
torization of the potential in Eq. (4). We also notice that
our results remain unchanged to within 1% by varying o, in
the range 300-750 eV/a. u.

For the evaluation of the inelastic scattering amplitudes

TABLE I. Values of z,(0), p, and 0, obtained from the cluster calculation. z, , p, and Q, are the approxi-
mated values of Eqs. (7) and (11).

z, (a.u.) z, (a.u. ) P (a u. ') p (a.u. ') g, (a.u. ') 0, (a.u. ')

CU

Ag

Au

8.04

8.00

8.09

7.26

7.54

7.59

1.06

1.15

1.10

1.17

1.12

0.38

0.39

0.39

0.39

0.40

0.39
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we need the 8 Fourier transform of the gradient, 8

that is,

Fq(Q, z) =PB exp( —Pz) exp( —Q'/2Q, ') (8 along z)

(6)

in Eq. (4). Similarly it can be easily verified that the gra-
dient of Eq. (10), with respect to the motion of the atom, is
formally similar to the gradient given by Eq. (5), after the
identification

Q, =(p/z, )' '
Fo(Q,z) =iQB exp( —pz) exp( —Q /2Q~) ( 5 along R)

where B =2mE;exp(pzo)/AQ, 2 and A is the area of the sur-
face unit cell. These equations represent the most impor-
tant result of this paper. They state that the cross section is
proportional to a Gaussian in Q for shear-vertical vibrations,
while it is proportional to the same Gaussian times Q for
longitudinal vibrations. We have previously shown that
these factors determine the fast decreasing of the cross sec-
tion at large Q because the projected density of states and
the matrix elements, connected with the softness of the po-
tential, decrease less rapidly.

The evaluation of D(R) over the entire unit cell requires
a cluster calculation. However, approximated values z„p,
and Q, can be obtained by considering the charge density of
a single atom. In fact, z, is so large for the energy E; under
consideration, and the wave functions are so rapidly decay-
ing in this region, that z,(0), p, and Q, are mainly deter-
mined by the properties of a single atom. The formula that
is a very practical one is as follows:

(1) Take only the two outermost components of the s
wave functions, i.e., for Ag those with the two smaller ex-
ponents among the 5s electrons.

(2) Calculate the approximated turning point z, created by
this charge.

(3) Calculate the logarithmic derivative along z of the po-
tential defined by Eq. (1) with the approximated charge and
match to the logarithmic derivative of a potential of the type
exp( —pr) evaluated along the z direction. By using atomic
wave functions in the form of Clementi and Roetti' we ob-
tain

with

p= [2g —2(n —1)/z ]

4o+(6o+6i) exp[ —(4i —4o) z,]((i/6)" +'/2cico
(8)1+2exp[ —(6 —(o)zi] (0i/0o)" ""ci/co

V( r ) ~exp[ —p(R +z )' ]

where p and z, have been determined before. Since
R ((z, for all the values of interest of R, Eq. (9) can be
expanded as

V( r ) ~ exp( —Pz) exp( —PR'/2z, ) (10)

This potential has the same factorized form of the potential

where c~,co and (~, go are the coefficients and the exponents
of the outer ns electron wave function. As an example, for
Ag in the Ss2 state (Clementi and Roetti, '2 p. 233)
(o = 1.041 86 a.u. ', (t = 1.650 08 a.u. ', co =0.51023,
c i =0.394 85) .

(4) Our potential at the turning points reads

All the approximated values are given in Table I and the
comparison with the full cluster calculation is good for p
and Q„which are the physical parameters that define the
interaction.

The same analysis can be carried out for the alkali halides.
For example, in He/LiF(001) a good estimate of the turn-
ing point is obtained by summing the ionic radius of F
(2.3 a.u. according to Tosi and Fumi") to the atomic radius
of He (2.02 a.u.), that is, z, =4.32 a.u. Consequently
p=1.7 a.u. ' and Q =0.66 a.u. '. We observe that the
value of Q, for LiF is much larger than the values of Table
I relative to metals. Therefore, in LiF the phonon exchange
can be detected over several Brillouin zones. '

In conclusion, we have proved that the Esbjerg-Norskov
potential, which works well" for the interpretation of the
diffraction data of Cu, Ag, and Au, presents a cutoff that
reduces the cross section of the one-phonon exchange in-
teraction. This cutoff factor has a Gaussian form
exp( —Q2/2 Q,~) . This Gaussian arises from the two-
dimensional Fourier transform of the gradient of the charge
associated with the motion of a single surface atom. We
notice that this cutoff is not due to the correlate motion of
the atoms in the surface unit cell. 6 The cutoff is just associ-
ated with the deformation of charge produced by a single
moving atom and exists because of the softness of the po-
tential; in other words, the He atoms are sampling the weak
tail of the exponentially decaying wave functions.

Another interesting point concerns the size of the in-
cident particles which modifies the values of o. in the poten-
tial. By using Ne atoms instead of He, the value of o. be-
comes larger. '9 Consequently, z, increases and Q, de-
creases. This explains why in Ne/Ni(111) the surface pho-
nons are observed only up to —of the BZ (Ref. 3) while in

He/Ni(111) surface phonons are detected over the entire
BZ but not beyond 0

We finally remark that the cutoff factor could also explain
the asymmetry of the measured spectra in metals, with
respect to phonon gain or loss in energy and momentum.
In fact, in the one-phonon cross section the kinematic con-
dition selects surface phonons with different values of Q, so
that processes with large Q are strongly damped by the cut-
off.
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