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On the basis of Rayleigh's method we study the effect of surface roughness on the disper-
sion relation of a Rayleigh wave on an isotropic medium. The stress-free boundary condi-
tions (applied at the rough interface) lead us to an integral eigenvalue equation for the elas-
tic displacement field. That equation reduces to a simpler algebraic equation upon averag-
ing the displacement field over an ensemble of rough surfaces. We obtain explicit expres-
sions for the roughness-induced perturbation of the flat-surface dispersion relation
too(q~~)=c~q~~. (Here c~ is the speed of a Rayleigh wave and q~~ is a two-dimensional wave
vector. ) The real part of this perturbation measures the shift in the frequency away from
coo(q ~~) while its imaginary part measures the lifetime (or the inverse attenuation length) of
the Rayleigh wave. We present detailed numerical results for both the shift and the life-
time. We show that the decay of a Rayleigh wave into bulk elastic waves is a much more
efficient mechanism than its decay into other Rayleigh surface waves. An explanation for
this disagreement with the earlier results of Maradudin and Mills is presented.

I. INTRODUCTION

A Rayleigh wave is a solution of the equations of
motion of a semi-infinite elastic medium, bounded
by a planar, stress-free surface. It propagates in a
wavelike fashion in directions parallel to the surface,
but its amplitude decays exponentially with increas-
ing distance into the medium from the surface. It
is, therefore, a wave localized at the surface of the
elastic medium —a surface wave.

Rayleigh waves are of current theoretical and ex-
perimental interest both because of their utility in
device applications, and because through studies of
their propagation one can examine properties of
solids in the near vicinity of their surface.

As Rayleigh waves propagate along solid surfaces
they are attenuated. An important mechanism for
this attenuation is surface roughness, which is found
in varying degrees on all solid surfaces, even careful-
ly prepared ones. The first study of this attenuation
mechanism was carried out by Urazakov and
Fal'kovskii, ' on the basis of Rayleigh's method. In
this method the surface-localized elastic displace-
ment field obtained from the equations of motion in
the region beyond the maximum amplitude of the
surface-roughness profile is continued in to the sur-
face itself, and the stress-free boundary conditions
are applied to this field along the surface. In a sub-
sequent work Maradudin and Mills used a
Green's-function method to solve the same problem.
Both sets of authors find that the attenuation rate is
proportional to the fifth power of the frequency of

the Rayleigh wave, in the limit that the wavelength
of the Rayleigh wave is longer than the transverse
correlation length of the surface roughness. The
latter is a measure of the mean distance between
consecutive peaks and valleys on the surface. The
frequency variation of the attenuation rate then be-
comes much slower than the catt law as the wave-5

length of the Rayleigh wave becomes comparable to,
or shorter than, the transverse correlation length.

In this paper we examine the propagation of Ray-
leigh waves over a rough surface by Rayleigh's
method. There are two principal reasons for doing
so. The first is that the two preceding studies of this
problem, by Urazakov and Fal'kovskii' and by
Maradudin and Mills, were carried out indepen-
dently by different methods. It is of interest to com-
pare the two approaches to this problem, and the re-
sults to which they give rise, but such a comparison
requires more explicit results from the Rayleigh ap-
proach than are provided in the paper by Urazakov
and Fal'kovskii. The second reason for the present
calculation is the fact that as a Rayleigh wave pro-
pagates along a rough surface not only is it attenuat-
ed but its frequency changes as well. The
roughness-induced shift in the frequency of the Ray-
leigh wave can be obtained by Rayleigh's method,
along with the attenuation. This question was not
studied by Urazakov and Fal'kovskii, however. The
Careen's-function method of Maradudin and Mills
yields the attenuation but not the frequency shift.
Knowledge of the frequency dependence of the
roughness-induced shift in the Rayleigh-wave fre-
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quency provides an additional means for the study
of properties of a solid in the vicinity of its surface
or of the surface itself. Thus in the present work we
will obtain both the roughness-induced frequency
shift and attenuation of a Rayleigh wave.

In order to obtain results that are as explicit as
possible, the work in this paper is based on an iso-
tropic elastic medium, for which most of the calcu-
lations can be carried out analytically.

The outline of this paper is as follows. In Sec. II
we formulate the problem of the propagation of a
Rayleigh wave at the surface of an isotropic elastic
medium in the case that the surface is rough. The
stress-free boundary conditions, applied at each
point of the rough surface, lead us to an eigenvalue
problem for the coefficients of the solution of the
equation of motion for the elastic displacement
field. That eigenvalue problem consists of a homo-
geneous integral equation for the aforementioned
coefficients. The surface-roughness profile —a ran-
dom function —enters the kernel of this integral
equation [which is valid to O(5 ), where 5 is the
root-mean-square departure of the surface from flat-
ness]. Averaging over an ensemble of rough sur-
faces we reduce the eigenvalue problem to a much
simpler algebraic (matrix) equation. From the solu-
bility condition for such a matrix equation we ob-
tain, in Sec. III, the dispersion relation for a Ray-
leigh wave in the presence of roughness. In particu-
lar, we obtain the roughness-induced perturbation

qll of the disper»on relatio n bio(qll ) that apphes
when the surface is flat. In Sec. IV we obtain expli-
cit expressions for the real [v&(q~~)] and imaginary
[v2(q~~ )] parts of hen(q~~ ). The former measures the
shift in the frequency of the Rayleigh wave away
from coa(q~~ ). The latter measures the lifetime of the
wave or, equivalently, its inverse attenuation length.
We present detailed numerical results for both
v, (q~~) and»(q~~). We find that, contrary to the
conclusions of Maradudin and Mills, the bulk-wave
channels provide a much more efficient mechanism
for the decay of a Rayleigh wave than the surface-
wave channel. We address this discrepancy in detail
in Sec. IV and Appendix 8, and show how the
method of Ref. 3, if correctly implemented, yields
results that agree with ours.

II. THE PROPAGATION OF A RAYLEIGH
WAVE ALONG A ROUGH SURFACE

A. Statement of the problem

The normal modes of vibration of an elastic medi-
um are solutions to the following homogeneous dif-
ferential equation:

gL „(x
~
co)u„(x

~

co)=0, (2.1a)

where ci and c, are, respectively, the speeds of the
longitudinal and transverse bulk sound waves.

In the case of an infinite, homogeneous medium,
Eqs. (2.1) (together with the requirement that the
elastic displacement field be well behaved at infinity)
fully define the eigenvalue problem for the normal
modes. Its solutions are the longitudinal and trans-
verse bulk sound waves. In the case of a semi-
infinite medium bounded by a single surface, the
normal modes are those solutions to Eq. (2.1) that
are well behaved at infinity and satisfy the stress-
free boundary conditions at the surface.

In this paper we are concerned with suvface
modes, that is, the solutions to Eq. (2.1) brought
about by the presence of a surface and described by
a displaceinent field that is localized to the surface
region. In the case of a planar, flat surface, the
surface-wave normal mode is the Rayleigh wave.
This wave propagates parallel to the surface with a
(two-dimensional) wave vector q~~, its amplitude de-
cays exponentially into the medium, and its disper-
sion relation is given by

(2.3)

where cia, the speed of the Rayleigh wave, satisfies
the equation

where u&(x co) is the frequency Fourier transform
of the elastic displacement field, and the operator
L p(x

~

co) is given by
2

L ap ( x
I

co ) =co 5a&+ g c~p&~
p p xp x~

(2.1b)

In Eq. (2.1b) we have denoted by p the mass density
of the elastic medium and by c p&„ the fourth-rank
elastic modulus tensor. Unless otherwise specified,
in this paper greek indices denote Cartesian coordi-
nates xi,xz, x3 (or 1,2,3).

As indicated in the Introduction, in this paper we
confine our attention to the case of an isotropic
medium, for which the elastic modulus tensor is
given by the equation

c p„„=p[(c( 2c, )5—p5„„+e,(5 „5p„+5 Pp„)] .

(2.2a)

Thus in this case we have that

2

L~„(x
~

co)=5~„(co +c, V )+(ci c, )—
xa x!

(2.2b)
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(2.4)

We note that cz & c, and, in general, c, & ci.
In this paper we consider the case that the surface

is rough. The stress-free boundary conditions must
then be satisfied at every point on an irregular sur-
face. Now, in practice, the actual rough-surface
profile is not known in detail. Thus the theoretical
description of the problem assumes that the surface
profile is a random function. One must then solve a
random eigenvalue problem. The simplifying
feature is that one is interested only in average quan-
tities, such as the average displacement field
(uz(x

I

co) ), the average being carried out with
respect to the ensemble of realizations of the
surface-profile function. This averaging procedure
restores both isotropy and infinitesimal translational
invariance in the plane of the flat, nominal surface.
Thus the surface-mode solution to Eq. (2.1) (which
holds for both the actual displacement field and its
average) can still be characterized by a wave vector

qll in the plane of the nominal surface, and its fre-
quency ~&(qll) d~p~~d~ only on the mag»tude
of the wave vector q

The present work deals with the case that the de-
gree of roughness is small enough that a
perturbation-theory approach is adequate. We can
then visualize the physical problem as one in which
the rough profile is a source of scattering for a Ray-
leigh wave. That is, the roughness opens up decay
channels for a Rayleigh wave, namely those provid-

ed by the bulk elastic modes and by other Rayleigh
waves. Thus the Rayleigh wave is attenuated as it
propagates along the surface and its frequency

qll acquires an imaginary part. In addition, the
real part of the Rayleigh wave frequency is shifted
by the roughness relative to the frequency coo(qll)
given by Eq. (2.3). Our objective in this paper is to
calculate the real and imaginary parts of coR(qll ).

B. The boundary-value problem

We assume that the isotropic elastic medium
under consideration occupies the region x3 & g(xll),
where g( x

l l

) is the surface-roughness profile func-
tion. Here xll=xixi+xzxz is the two-dimensional
position vector in the plane of the nominal, flat sur-
face (the plane x3 ——0).

It is convenient to introduce the two-dimensional
Fourier transform of the displacement field
up('qllco I

x3), such that

gL „(qll~(~ I X3», (qll~ I
X3)=0, (2.6)

where the elements of the tensor L „(q lice I
x3) are

given by

u„(x
(

ca)= f e " "u„(qll~ (x3) . (2S)
(2m. )

The equation of motion for u&(qllco I
x3) is readi-

ly obtained from Eqs. (2.1), (2.2), and (2.5); it can be
cast in the following form:

2
2 2 2 d

L~~(qllco I
x3)=5~~ co +c, —qll+

dX 3

+(ci c, ) (1 53—)iq—+5 3
X3

( 1 5@3)iq„+5p3
X3

(2.7)

The solution to Eqs. (2.6) and (2.7) is where we have defined the decay constants
a, (qll I

~) and a, (qll I
co) according to

u](qllco I
x3) (e ~ j +e ~2)

—a,x3
e ' A3, (2.8)

2
az, ~(qll I

~)=
1/2

(60+171)
2

Cl, ~

(2.11)

u, (qlle3 I
x, ) = '

(e '"'~, +e '"'~3)

—cxtx 3+ e ' A3,
&ll

(2.9)

with g~0+ and the provision that Rea&, )0.
We emphasize that the coefficients A &, Az, and &3

are functions of qll and co. They must be deter-
mined by applying the stress-free boundary condi-
tions at the (rough) surfacex3 ——g(xll), namely:

u3(qllco I
x3)=i e' 'Ai— XT i3( I

)""~("ll)I.,=p-. „=
P

(2.12)

+l 8 A2
0,'t

(2.10) where n (
x ll), the unit vector normal to the surface

at each point, is given by
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n(xll)= 1+ ag
"

Bx y

ag(x )
X

Bx i

aPxff}
, 1

BX2
(2.13)

T p(x I
co)=p(cs —2c, )5 pv u(x Ice)

+pc,' u (x Ice)+ up(x
I

co)
C}Xp C}X

T~p( x
I

co) = g capp~ up( x
I
co) (2.14)

For an isotropic medium, making use of Eq.
(2.2a) in Eq. (2.14), we readily obtain the result that

and the stress tensor T p(x
I
co) is, in the general

case, defined by the equation

(2.15)

We now proceed to apply the stress-free boundary
conditions (2.12). For brevity here we shall only
outline the required steps. We substitute Eq. (2.15)
in Eq. (2.12) and make the assumption that the
roughness is small. Here this assumption means
that we can write down expansions such as

up(qffco I
x3 } I „~(-„)——u„(qffco I

0)+ u„(qffco I
x3 )

X3 x3 ——0

1 d+—
X 3

g(x )+
x3 ——0

(2.16)

and obtain meaningful results by keeping terms of up to O(g ). We introduce the Fourier coefficients of the
rough-surface profile, g(Qff) [defined according to Eq. (2.S)], we take the Fourier transform of Eq. (2.12), and
we make use of the result for u„(q ffco I

x3) given by Eqs. (2.8)—(2.10). After considerable algebra, we find that
Eq. (2.12) can be written, to 0 (g ), as

2

II "II ~~ )
q ~ + e' ll "II ~ ~

q
(2m)

2

+ 2 2e P P ', q & AP(2~)2 (2m )

(2.17)

In Eqs. (2.17) we have introduced the 3X3 matrices M' (qff I
co), X(Qff*'qff I

~) and Z(Qff qff I
co), whose ele-

ments we list below:

(0)-Mis (qll I
co)= —2c, as(qll), (2.18a)

(0) ~ 2 CO
2

Mi2 (qll I
co) = —c, (2.18b)

(0)-M]3 (qff I

co)=c, a, (qff ) (2.18c)

M2i (qll I

~)= —2cs as(qff)
(0) 2 9'2

(2.18d)

{0) ~ 2 'V2 2M22 (qff I
co)= —c, 2qff 2 (2.18e)

(0) ~ 2 ~~
M23 ('qff I

co)= —c, a, (qff ) (2.18f)

2
(0) 2 l 2 CO

M3i (qff I
CO) = —

C& 2q ff— (2.18g)
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M33 (qll f

co)=0
2 2

2q)(QII qll)+2q)a((qll)+Q) z (1—2A, )
t

(2.18h)

(2.18i)

(2.19a)

2
+ c, 2

iz Qll'qll I~ = 2qi(QII qll +qi
c

(2.19b)

X»(QII qll ~

co

2c, + + 2
[q (Qll. qll)+q (QIIXqll) +q (qll)],

2 2

2qz(Q .q )+2qza~(q )+gz z (1—2A, )
t

(2.19c)

(2.19d)

2c, 22qz(Q .
q )+qz 2q 2 (2.19e)

2
cg 2

q~(QII qll +q~a&(qll ) qz(QII x q (2.19f)

z a~(qll )
2(QII qll)+2qll (2.19g)

Ct

ag(qll )

(Qll && qll)3

z a~(qll )
co = —c,

z Qll qll + qll

2

2q)(Qll. qll)+q)a((qll)+Q) z (1—2A, )
t

(2.19h)

(2.19i)

(2.20a)

zlz(QII qll I
~)= —c~ 2q&(QII qll)+ 2

CO

z
t

(2.20b)

Z13(QII qll I
~)=ct qz

q (Qll qll)+q (Qllxqll) +,(qll) (2.20c)

z al(qll )
zz~(QII qll I

~)= —ct

, a, (qll)
Zzz(QII qll I

~)= —ci
CO

2

2

2qz(QII. qll)+qzai(qll )+Qz
t

2 2
2qz(QII qll)+ 2

(2.20d)

(2.20e)

, a, (qll) — q&

g 2

2 2

2(QII qll)+ qll z
2cg

(2.20f)

(2.20g)

2
cg

2
z a, (qll)

2

(Qll qll)+qlla'«ll )
Cg

(2.20h)

(2.20i)
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We note that in Eqs. (2.18)—(2.20) we have simplified the notation by setting at, (qll ~

co) =ai, (qll), and we
have called c, /ct =A, .

We now equate to zero the coefficients of exp(iqll. xll) in Eq. (2.17). We thus obtain the following homo-
geneous integral equations for the coefficients A ( qll i

co):
2

g~."(I(q(g(~»(» q(g(~&+ Xf,P q((
—k»» ~(q» "» (~»(("» (~&

P p (2m)

2 2

+ g f,f, g(g(()g(qll +II k(()Z,p(QII'"ll (~)dp(kll (~&=o
(2m. ) (2~)

(2.21)

where we have made the definition (M"'+M)A =0 . (2.25)

F Ii(qll, kll f

co)=X p(qll —kll, kll /
co) . (2.22)

In conclusion, the stress-free boundary conditions
given by Eq. (2.12) have led us to the eigenvalue
equations (2.21) (a=1,2, 3) for the three unknown
functio ns A~(qll I

~) [see Eqs (2 8)—(2 10)]
complications posed by Eq. (2.21) are twofold.
First, it is an integral (matrix) equation. Second, the
Fourier coefficients g(Qll) of the surface-roughness
profile are random variables. However, as we shall
see below, the problem simplifies considerably be-
cause (as mentioned in Sec. II A) we do not need the
coefficients A (qll ~

to) themselves but rather their
average (A ( q ll ~

co) ) over the ensemble of realiza-
tions of the surface profile.

PA (qllco ix3)=(A~(qllco ix3)) . (2.23)

It is also convenient to introduce an operator Q
according to

C. The eigenvalue problem for the average
coefficients (A (qll~ I

X3})

In this section we transform the integral equation
(2.21) into a simpler algebraic equation for the aver-
age coefficients (A~(qllco

~
x3)). As we shall see

below explicitly, this simplification is possible be-
cause of the fact that averaging over an ensemble of
rough surfaces restores the translational invariance
in the plane of the nominal surface.

This averaging is formally carried out by the
operator P defined such that

Note that M in Eq. (2.21) is an integral, random
operator.

We apply the operator P to Eq. (2.25) from the
left. Noting the identity A =(P+Q)A, we have the
result that

(M"'+(M))(A)+PMQA =O. (2.26)

We obtain an expression for QA (the fluctuating
component of the variable A) by acting on Eq. (2.25)
from the left with the operator Q. We thus have
that

QA = —(M"'+QM)-'QM(A & . (2.27)

Substituting Eq. (2.27) in the last term of Eq. (2.26)
we obtain the result that

(M' '+ H)(A ) =0,
where we have made the following definition:

(M ) PM—(M'"+—QM) 'QM . -

(2.28)

(2.29)

We next expand the inverse matrix in Eq. (2.29) and
keep only terms up to those quadratic in M. We
thus have that

W = (M ) —(M (M"') -'M )

+(M)(M"')-'(M) . (2.30)

We now make use of the results given by Eqs.
(2.28) and (2.30) in Eq. (2.21). This leads us to the
result that

g f d k(([5(q(( —k(()M'(I(k(((ra)
P+Q =I, (2.24)

where I is the identity operator.
The demonstration that follows is simplified by

writing down Eq. (2.21) symbolically as

+H &(qll, kll /
co)](AP(kll

/
ni)) =0,

(2.31)
where we have called

2

, (~(Qll)Pqll —
Qll

—kll))Z p(Qll, 'kll
f

)(2~)'

(2.32)
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In Eq. (2.32) we have kept terms up to O(g ) and
have made use of the fact that, since we measure the
coordinate x3 from the plane of the nominal flat
surface, we have that

(g(xII)) =0 . (2.33)

At this stage we must make an assumption about
the statistical properties of the rough surface. We
follow usual practice and assume that the surface-
roughness profile is a stationary stochastic process,
i.e., we assume that

(g(xII)g(xII)) =5 8'(
f xII —xII f

) . (2.34)

In Eq. (2.34) we have denoted by 5 the root-mean-
square departure of the surface from flatness. Note
that W(0) =1.

In terms of the Fourier coefficients g(QII), Eq.
(2.34) becomes

(P(kII)P(kII)) =(2~) 5 g(kII)5(kII+ kII), (2 35)

where g (k
II

) is the two-dimensional Fourier
transform of the correlation function ~(

l

x
II l

).
With the assumption given by Eq. (2.35) it follows
that

g [M~p(qII f
~o)+ H~p(qII f ~o)](Ap(qII

f
ro)) =0 .

P

(2.41)

For convenience in the presentation, the explicit ex-
pressions for the elements of H~p(qII l

co) are given
in Appendix A. The eigenvalue problem given by
Eq. (2.41) is solved in the next section.

III. THE DISPERSION RELATION
OF A RAYLEIGH WAVE PROPAGATING

ON A ROUGH SURFACE

The dispersion relation of a Rayleigh wave propa-
gating on a flat surface is given by Eq. (2.3). When
the surface is randomly rough, Eq. (2.41) constitutes
the eigenvalue problem for the coefficients
(A~( q II l

co) ) of the displacement field given by Eqs.
(2.8)—(2.10), averaged over the ensemble of realiza-
tions of the surface-profile function. The condition
for nontrivial solutions ((A )&0) to Eq. (2.41) is
given by (in matrix notation):

det[M' (qII co)+ H(qII l

ro)]=0 . (3.1)

~ 0 qII II l
~ 5 qll kll ~ P qll I

~»
where, with the definitions

and

XR p(qII, kII I
~)

p, v

(2.36)

(2.37)

(2.38)

For a given value of the wave vector qII, the solu-
tion to Eq. (3.1) defines the frequency of a Rayleigh
wave, co&(qII). As indicated in Sec. II, the simple
determinantal equation given by Eq. (3.1) was ob-
tained because of the fact that our averaging pro-
cedure restores infinitesimal translational invariance
in the plane of the nominal surface. Moreover, the
solution co~(qII) must depend only on the magnitude

qll of the wave vector qll ( " av g'"g
stores isotropy in the plane of the surface).

Since H( q
I I l

~o) itself has been determined only
to O(5 ), with the aid of Eqs. (2.37)—(2.40) we
rewrite Eq. (3.1) to 0 (5 ) in the form

detM' (qII )+5 T X(qII l
co)=0, (3.2)

where

we have that

)& [[M' '(kII
l
~o)]

)(, Y p( k
I
I', q

I I
f

co ) (2.39)

«II l
~)+~ (3.3a)

with

X '
(qII f

co)=[cofM' '(q
f
co)] M" '(q

l
ro)

~~P( q II l
~)=5 ~~P qll l

~ +5 M~P qll l
~) '

(2.40)

We stress that the result given by Eq. (2.36) con-
stitutes the statement that translational invariance
has been restored by the averaging. Substituting Eq.
(2.36) into Eq. (2.31) we obtain the following alge-
braic equation for the average coefficients
(3 ( qII cg) ):

(3.3b)

In Eq. (3.3b) cofM' ' is the matrix of the co-
factors of M'0', and (cofM' ') T is its transpose.

We remark that our notation emphasizes the fact
that, although the matrices on the right-hand side of
Fq. (3.3b) are functions of the full wave vector qII,
the "self-energy" &(qII I

~) d~p~nds only on the
magnitude qII of qII. (Th&s is shown explicitly
below. )
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z(qll ) =~0(qll )+ (qll ) ~ (3.4)

Since Eq. (3.2) is correct only to 0 (5 ), we need a
result for A(o(qll ) only to the same order of accura-
cy.

Now, from the definitions given by Eqs. (2.18)
and (A3) it follows that

detM' '(qll I a))=iqIIA(qII I
co) . (3.5)

Thus from Eqs. (2.3), (2.4), and (A3) we have that

detM ( qll I o20(qll ))=0 (3.6)

We can obtain an explicit solution of Eq. (3.2) for
roz (qll ) by introducing the roughness-induced per-
turbation b,io(qll ) of the flat-surface dispersion rela-
tion coo(q

I I
) =c~ q II, according to the equation

2

(qlll~)] 13 qll 2c
(0) T 1 3 2

Ct Cg

(3.10b)

&&[cofM' '(q
I
co)]

)E', R(qll kll I
(o) (3.9)

We recall that the elements of the matrix
R(qll, kll I

co) are given in Appendix A. The ele-
ments of the matrix [cofM' '(qll

I
co)] are obtained

from the definition of M' '(q
I
co), given by Eq.

(2.18). We have that

[cofM (qll I
co)] 1.12——— qlla, (qll)q12, (3.1()a)

(0) 7 2E 3

Ci

Expanding Eq. (3.2) in powers of b,co(qll) and keep-
ing only the leading term, we are led to the follow-
ing concise result for Aro(q

TrX(qll I coo(qll))
Aro(qll ) = —5

[ ofM (q, ll~)] 2. 12=(0) T l

Ci

CO

q1 2 (3 10c)
t

detM (q
CO co=coo(qll )

(3.7)

From the real part of b, (o(qll ) we obtain the shift in
the frequency of the Rayleigh wave and from its
imaginary part we obtain its attenuation length.

We note that one convenient feature of the result
given by Eq. (3.7) is that we only need to evaluate
the diagonal elements of the matrix X. [In fact,

bas we now show, only the 11 and 22 elements of X' '

contribute to our final result, to O(5 ).] From Eqs.
(3.3b) and (A2) we can easily show the result
that (recall that B '=(cofB) /detB):

co) = —,
' de™(qll I

(o)

a((qll )

x a', (qll) , (3.8)

0 0 a(qll)

which, in view of Eq. (3.6), implies that X"(qll
I
co)

does not contribute to the result for Aco(qll ) given by
Eq. (3.7).

We now consider the evaluation of the trace of
X' '(q

I
co). Substituting in Eq. (3.3b) the definition

of the matrix M' '(qll
I
(o) [Eq. (2.38)] we have that

I

J

[cofM (qll I
io)] 23 — 2qlla/(qll)a, (qll),

(0) ~ T 2 3

t

(0) T ( 1) +'
[cofM (qll I

ro)] 3.12——

(3.10d)

)&detM' (qll I

(o

[cofM' '(qll
I
co)] 33 —0 .

(v= 1,2), (3.10e)

(3.10f)

From Eqs. (3.9), (3.10e), and (3.10f) we readily
conclude that

233'(qll
I
co) detM(qll

I
(o) (3.11)

Thus X33'(qll I
co) does not contribute to the result

qll gtven by Eq. (3.7).
The explicit evaluation of the two remaining ele-

ments on the diagonal of X' '(qll I
ro) is rather

lengthy. For brevity we give here only the result we
obtained for their sum upon setting (o =(oo(qll ). [We
note that in the derivation of Eq. (3.12) some alge-
braic manipulations were necessary in order to iden-
tify some terms which are proportional to 4(qll I

(o).
Those terms do not contribute to Eq. (3.12).] We
have that

2 2cz 3 d kll

c, (2m)

c21 5
d kll F2(qll, kll)

c4 II (2 )2 I qll II I g(k
(3.12)
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{3.13)

where we have defined the functions F, (qll, k)l) and F2(qll, kff) by the following equations fnote that
e'( q If,

' k
If I

cc)) is given by Eq. (A5)]:
2 T

c~ ~(qff'klf I
o) 2+

Ct Ct c, 2k
1/2 2cg ~ (qff+klf)+ 1 —-

2 e (qff', klf Igloo)
Ct kffa, (kff I coo)

—+ Cg CR

Ct
I

Cg

1/2
cg (x&(kfl I

cubo) 2 2 2 2+ 2 2 f qlf klf ~ qfl'kll I ~o +

2

2 2 2 2 2kll 2 qll f qll ll)~ qfl'kll I~o)+2qll (3.14)

In order to obtain explicit results for
g( I qfl

—kff I
). Here we follow standard

gives us the following form for its Fo«i«

g( I qff
—klf I

)=%a exp

hey(qlf) we need an explicit, analytic expression for the function
practice and assume a Gaussian form for W{

I x)l —xff I » w»ch
transform:

(3.15}

The parameter a introduced in Eq. (3.15), "the transverse correlation length, " is a measure of the average dis-
tance between successive peaks and valleys in the rough-surface profile.

With the assumption given by Eq. (3.15}, we can carry out the integrals over the angular variable in Eq.
(3.12) in closed form. Substitution of Eqs. {3.13)—(3.15) in Eq. (3.12) yields the result that

P

2 2
(b) . aTrX (qff I coo(qll)) = —z

2 q
f I

exp

a 2k
J(1)(

I
k )

('

a kff J' '{qlf Ikff)

t

where
I)(z)

(qfl I klf }=ao(qfl)Io(z)+
I2(z)

+a2{qff I kff },2
J)(z) I2(z)

~o qll I kll )+o z)+") qll I II + 2{qll I kll) 2

(3.16)

(3.17)

(3.18)

{3.20)

Jo(z), Ir(z), and I2{z) are modified Bessel functions, and we have called z=——,a qffklf. The coefficients
ao(qfl ), . . . , b2{qff I kff ), introduced in Eqs. (3.17) and (3.18) are defined by the following equations:

2
'

2
cR

a()(qff) —
2 2 2 (2 A )qff (3.19)

' 1/2 4

ag(qff I klf)= 1 —— 4k + 4 q
a&(kff I

Cc2o)

2
'

2
Z 2 2 j CZ

2 2 qll+ '2(1 —X )kll+ 2
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2 1/2

az(qll f kll)= —4 1—
Cg

4 2 1/2
CR CR

bo(qll I kll) =
4

Ct Cg

1/2

1—

CR+ 2c,

4

~t(kll
f
~o) 16(1—&')'kll+, qll

Cg

ct t ( k
I I f too )

2 2 2
2 CR CR 2 2 CR

qll&I(kll f
coo) —2 2 —

z (1 —A )qll 2
II z q

Ct Cg Ct

(3.21)

(3.22)

2
CR

bg(qII fkll)= —
z

2—
2

2

1/2

1—
2

2
' 1/2

bz(qll f kll ) =4 1 —
2

Cg

2 2
CR

2k
I I 2 q

I I

2k
I I

+
Ct Ct

4 2

coo) 16(1—A, )kll + 4. qll + 8 (1 k )qllkllz
Ct Cg

2

I I

+
Cg

(3.23)

(3.24)

Finally we substitute Eq. (3.16) in Eq. (3.7). [Recall Eq. (3.3a) and the comment that follows Eq. (3.8).] We
obtain the result that

2/2 a
Eco(qll ) = cgqll exp

88) 4

a2 2

egp — g

2+, qll «llkll exp-
'

a k

6(kll f coo(qll))
(3.25)

1

(2—cR /ct )

where we have made use of Eqs.
2

2—
2

(3.5) and (A3) and have defined the coefficient B~ according to
3 2

—4 1+A,' 1 —2
C

(3.26)

In the next section we present a detailed analysis of
Eq. (3.25) which, as indicated b'fore, gives the ef-
fects of surface roughness on the dispersion relation
of a Rayleigh wave.

given by

1(qll ) =c~ r(qll ) =
2vz(ql

I
)

(4 2)

IV. NUMERICAL RESULTS

As a prelude to our numerical analysis of Eq.
(3.25), it is convenient to extract explicitly the real

[v&(q
I I

)] and imaginary [v2(q
I I

)] parts of Are(q
I I

),
defined such that

(4.1)

Since the energy carried by a given elastic mode is a
quadratic function of its displacement field, the
lifetime r qll of a Rayleigh wave of wave vector q
eq~~ls [2v,(qll)] The attenuation l~~gth l(q
defined as the distance over which the energy of the
Rayleigh wave decays to 1/e of its initial value, is

where cz, the speed of the Rayleigh wave (equal to
its group velocity to zeroth order in the roughness)
is defined by Eq. (2.4).

It is possible to obtain explicit expressions for the
separate contributions to v2(qll ) from the individual
decay channels opened up by the surface roughness.
(These channels are bulk elastic waves of both polar-
izations and other surface Rayleigh waves. ) The key
point to note in this connection is that for kll =qll
the denominator of the second integral in Eq. (3.25)
vanishes, i.e. [see Eqs. (3.5) and (3.6)],

(4.3)

From a physical viewpoint, Eq. (4.3) is a reflec-
tion of a process in which a Rayleigh wave of wave
vect r qll and frequency co&(qll is elastically scat-
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tered by the roughness into another Rayleigh wave
with the same frequency»d wave vector qll such
that

I qll I =qll (Note that the wave-vector differ-
ence q II

—q
I I

zs supplied by the surface roughness. )

Now, according to Eqs. (2.11) the frequency rp is
to be interpreted as having a small positive imag-
inary part, i.e., co=ro+iri, with ri~O+. We then
have that

1

6{kl
—t 'tr sgllB

&
5(k (4.4)

where 8& is defined by Eq. (3.26) and sgnx=+1 for x&0. Note that, when substituted in Eq. (3.25), the
second term in Eq. (4.4) immediately gives one contribution to v2(qll), namely that due to the surface channel
(see below).

To complete the determination of v&(qll ) and v2(qll) from Eq. (3.25) we need to obtain the real and imag-
p~~t~ o t"e unc io» J (qll I kll)»d J' (qll I kll } defined by Eqs. (3.17)»d (3.18), «spectively. F«m

these definitions and the expressions for the coefficients appearing in them„Eqs. (3.19)—(3.24), we see that the
real and imaginary parts of J"'(qll

I kl ) and J' '(qll I kll) are directly determined by the functions
a~ t{k

I I
I cop(ql

I
) },defined by Eq. (2. 1 1). For our present purposes it is convenient to write down the equation

8
as, t{kff I too(qll }}=ekll —

qll Pit(kll I
too(qll)) —ie (4.5)

where we have introduced the functions f3&t(kll I tpo(qll)} and y~t(kll I coo(qll)} given by

2 CA 2

L
Clt

yg, t(kll I
top(qll))=

2 1/2

2 qll
C) t

(4.6)

In Eq. (4.5) 6(x) denotes the unit step function. Note that in the kll intervals in which the step functions in
Eq. (4.5) are nonzero, the functions P~ t and y~ t are real.

Next we note that c«ct &c~. T"e unctio n ~ kll I
too qll)) c» t"erefore be separated into its real and ima-

ginary parts according to

kll I ~o(qll })= — 4k fly'(kll I ~o)yt(kll I
~o)+ 2k II—

CR 2

Ct

'2

+(kfl
I Cop(qfl )), kll &(c~/cq)qll (4.7a)

b, {kll I Coo(qll)) =—
2 2

2kll —
2 qll +z4kflpj(kfl

I
cop)yt(kll

I
Cop)

= —[6'"(kll
I ~o(qlf) +zA' '(klf

I ~o(qll (4.7b)

2

6{klf I
t'op(qll ))=4kll fly(kff

I
t'op)pt(kll

I
t'op) —2kll-

t
kll ) (Cg /Ct )qll (4.7c)

Note that the last interval is the one to which Eq. (4.4) applies.
The above results and definitions provide all the necessary ingredients to obtain v~(qll) and vz(qll). These

functions can be written as follows:
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22CZ (2 kll
v)(qll)=~ ~ qll exp — dkllkll exp

8JP) 4 0 4 f1 qll ~ kll +

+B qll k
Cg

+B f4(qll ~ kll}
C~

+ exp
(2 k

0(q k

(4.8)

z
v2(qll ) =tz 5 q II

exp
881

t2 q, (ct( lc hgll a2k
J dk~~k~~ exp — —' t, (q~~~ [ k~~~)+e k~~—

+ B qll kll ~3(qli ~ kll }
C~

2

+ 2 sg118) exP
ct

(4.9)

In Eqs. (4.8) and (4.9) we have made the following definitions (for brevity we do not show the arguments of
most functions):

2
2 (aj (b) (c) (a) (b) (b)

fo(qll lkll}= 2 qll (bo'+ptbo +pub()' )I()(z)+(b(' +p, b) ) +ptb2
Cg z z'

(,)
I1(z)

f1(qll I kll ) =&oIO(z)+~ 1'

(4.10a)

(4.10b)

1
f2(qll f kll)= a) +(22

t z z'
2

f3(qll Ikll}= ——,qll „,, „,; ~ (bo +Otbo }I()(z)+b)'(1) (a) (c) (,)
I) (z}

z

g(2) b(b)I (z)+b(b) +b(b)I1(z) I2(z) '

(4.10c)

(4.10d)

2
1 (a) (,)

I)(z)
f4(qll ~ kll } 2 qll — b()' E()(z)+b

ct d(kll /
coo) z

(4.10e)
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(b) ) (b)
g)(qII f

kII)= — a) +az
z z'

2
R 2 1 (1) (b)

gz(qII ~
kII)= —

z qII,„,,
5 y, b I (z)+b) +bz

z z'

+ g(2) (b(a)+P b(c))I ( )+b(a) 1)(z)

(4.11a)

(4.11b)

where

2
1 (~) (.) (b) (b)

(y&b p +y(bo )Ip(z) +ytb ) +yibz
c, b, (k

II I
coo) z z' (4.11c)

4
CR

II
+

C,

2 I 2
(a) z

z z qII+

1/2
(b)

Ct

4

2(1 —X )klI+ (4.12a)

(4.12b)

az '(qII ikII)= —4 1—
2

' 1/2

2
Ct

2

kII 'kII+
Cg

16(1—iP) kI + q
I

2 2
CR

b'"«II ~kII) 2
z
t t

1/2
(b) CR

Ct

2

z qll (4.14a)

(4.14b)

b(c)(

b (0)(

4

Ct

CR

bz'(qII fkII)=4 1—

1/2
2

CI
('

2
CR 22 — 2k II—
C

1/2

2

1/2 2

z II fl + z ql I

Cg Cg

2 2

2k
II + z qllz

Ct

4 2

16(1 + )kfI+ g qII+8 z (1—A. )qIIkIfz
t

(4.14c)

(4.15a)

(4.15b)

(4.16)

The parameter Bz introduced in Eq. (4.24) is given by
2 2

8,= . .. 2—,(1+1, ) ——2+ —,CR 2 1 CR

(2 —c~lc, ) c, 8 2

2 3

C
(4.17)

The principal-part integral that enters Eq. (4.8) is
defined according to

QO

Let us first consider the shift v&(qII ) given by Eq.
(4.8). It can be written conveniently in the form

+f, dk„

(4.18)

(4.19)co)(aqII ) .
coo(qII ) a

Thus the ratio of the shift ~, (qII ) and the frequency
a)o(qII)=cgqII of a Rayleigh wave propagating on a
flat surface is given by the product of the "univer-
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sal" function cp&(aq ) and the ratio (5/a) (which
characterizes the rough-surface profile).

In Fig. 1 we give the result for —co&(aqll) that is
obtained carrying out the integrals required in Eq.
(4.8) numerically. The frequency shift turns out to
be negative for all values of aqll. As shown in Fig.
1, it has an extremum for aqll ) 1, a result that was
to be expected on physical grounds. The sharp in-
crease of —co~ for larger values of aqll has the fol-
lowing origin. It is easy to show that, for example,
the last integral in Eq. (4.8) is of the form

Q2
cp2(aqll ) . (4.23)

Note that, in terms of co2(aqll ), the inverse attenua-
tion length [Eq. (4.2)] is given by

We now turn to the analysis of v2(qll), given by
Eq. (4.9). As was done above in the case of v~(qll ),
it is useful to rewrite &2(qll ) as

00 XP dx x exp —zp —x
cR /ct 2

(4.20)
1

(4.24)

where f(x) is a bounded function of x =kll/qll with
a simple zero at x = 1. Here we have called

zp ———,(aqll )2 .

We can rewrite the integral (4.20) according to
00 2 00

P dx =P dx + dx
cR /c cR /c 2

(4.21)

(4.22)

(We recall that the ratio cR/c, is always smaller
than unity. ) In the first (second) integral on the
right-hand side of Eq. (4.22) the argument of the ex-
ponential that enters Eq. (4.20) is positive (negative).
Thus, while the second integral is vanishingly small
for zp &~1, the first one grows exponentially in that
limit. This exponential blow-up is compensated for
by the overall factor of exp( —zp/2) that enters Eq.
(4.8). However, these are also factors of zp in the
definition of co&(aqll). They account for the rapid
increase of the magnitude of ~& aqll «aq
as shown in Fig. 1.

cp2 '(aqll ) =Czpe 'G(zo),

where we have called
2

7T CR

81&~ l&2 c,' '

(4.25)

(4.26)

with 8& and B2 defined by Eqs. (3.26) and (4.17),
respectively, and zo by Eq. (4.21). The function
G (zp ) is defined by

From the discussion following Eq. (4.2) we readily
conclude that the terms involving integrals in Eq.
(4.9) give the contribution to cp2(aq

ll
) due to the bulk

channels [co2 '(aqll )], while the last term in Eq. (4.9)
gives the corresponding contribution from the sur-
face channel [co& '(aqll)]. Now, in order to estab-
lish as detailed a comparison as possible with the
work of Maradudin and Mills (see below), it is use-
ful to display fully the latter contribution to
co2(aqll). After a little algebra, we obtain the result
that

G(zp) =G&(zo)+G2(zp),

where

(4.27)

0.7
I

0.4-
CT
O
—03-
3
I

2
CR

G&(zo) =—4 1—
Cg

4(1—A, ) Ip(zo)

—4(1—A, )
2 Ii(zo)

ZO

I2(zp)
3 2

ZQ
(4.28a)

0.0
0.2O. I 0& 2,0 5X& l0.0

FIG. 1. Shift in the frequency of a Rayleigh wave due
to surface roughness as a function of the product aq~I.
Note that the acutal shift (in units of cRqll) is given by
v&

——(5 /a )co~ [see Eq. (4.19)].

I~(zo) I2(zp)
G2(zo) —=CoIo(zo)+C& +C2

ZQ ZQ

(4.28b)

The coefficients introduced in Eq. (4.28b) are de-
fined by the equations
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2
CR

Co= z
C~

2

2—,(1+A,')
C, Cg

0.8—

—2(1—A, ) 2—
2 2

2 (4.29a)

0,7

0.6
2

1
c,

1 2—
2

2
CR

2

2 2

2+ ZQ
Cg

0.5

2
CR

Cp ——4
c,

2

1—
Cg

Zo o

2

+8(1—A, )zo
C

(4.29b)

(4.29c)

0.4

0.2

O. i

In Fi~s. 2 and 3 we show the results we obtained
from coz '(aqll)' ru~ (aqII), and their sum, co&(~qII).
In agreement with earlier results, it is straightfor-
ward to show that ruq(aqII) —(aqII) for aqII 0.
The main new qualitative feature of our results is
that cuz }»cuP'. Thus the effect of surface rough-
ness on the lifetime of a Rayleigh wave (or on its in-
verse attenuation length) is due almost entirely to
the decay of the Rayleigh wave into bulk sound

I 0-I

p 0
2

I

4 6 IO

FIG. 3. Same as Fig. 2 but for larger values of the
product aqI~.

waves. This result is in direct contradiction with the
earlier results of Maradudin and Mills. The result
that is obtained from Ref. 3 for ru' '(aq ) is

o~ (aqll)=Czoe G&(zo) .-(S) 2 ~o
(4.30)

-/
/

"/

(

Io
0.1

I

0.3 0.5 0.7 0.9 l.5

FIG. 2. Imaginary part of the perturbation due to sur-
face roughness of the Rayleigh-wave dispersion relation
[cf. Eq. (4.23)] for small and intermediate values of the
product aq~I. The figure shows that the contribution to
co~(aq~~ ) from the bulk channels (coP'} dominates that due
to the surface channel (coP'}.

Comparing Eqs. (4.25) and (4.30) we see that they
differ by the presence of the function Gz(zo) in the
definition of G(zo) [see Eq. (4.27)]. Now, it turns
out that the functions G~(zo) and Gz(zo) are of the
same order of magnitude and of opposite sign. Thus
the contribution from the surface channel to co& or
l ' is drastically reduced, compared to the results of
Ref. 3, and the decay into bulk modes is the more
efficient mechanism provided by surface roughness
for the attenuation of a Rayleigh wave.

The origin of this discrepancy is explained in de-
tail in Appendix 8, where we also indicate how the
method of Ref. 3, if correctly implemented, does
give rise to results for the attenuation length which
agree with those obtained in the present work.

We finish this paper by giving a few representa-
tive numbers for the shift vt(qII) and the mean free
path l(qII). Assuming a ratio 5/a=0. 3, we have
that the relative downward shift of the frequency of
a Rayleigh wave is 0.4% for aqII=0. 1, 2% for
aqII=1.0, and 5.8% for aqII ——10.0. As for the
mean free path l(qII), assuming the rather typical
values co = 10 sec ' and c~ ——3 X 10 cm sec
for which we have q

I I

=333.33 cm ' (the corre-
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sponding wavelength is A, =2~/qlf—-0.02 cm), we
obtain the results that 1=2.6X10 cm for aqfl =0.1,
1=0.42 cm fo«qfl =1, and 1=0.02 cm for
aqlf =10.0. (Note that while in the first case 1))A,,
in the last one 1=A,.) Of course, the mean free path
is reduced if we increase the ratio 5 /a . However,
in the context of our perturbation theory, values of
this ratio much greater than the one used in this ex-
ample are not expected to be meaningful.
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APPENDIX A

2

p(kff i
co)=2k

ff
—

2
—2ai(kff )a, (kff ),

t

CO

«qfl kff I
~) =2(qfl kff)—

t

(A4)

(A5)

d2Q
1 ~

we have the simple results that

M~('(qff
/

co)= ~a((qfl)M~('(qff
/
co),

2 (qlf I
~)= —a'(qll )M"2'( qlf I

~)

M 3 (qlf /

)= —,a, (qff )M 3 (qff /
ro)

(A 1)

(A2a)

(A2b)

(A2c)

where a=1,2, 3 and the elements of the matrix

trix H(qff l
~) is def'ned by Eq (240)

The matrices M"(q
~

ro) and M' '(q iso) entering
that equation are defined by Eqs. (2.37) and (2.38),
respectively.

We consider first the matrix M' '(qf ice). We
note that because g(QI

I
) depends only on the magni-

tude of the wave vector Qfl, all the terms linear in

Qlf in the definition of Z'
p(QII qlf I

~) [se Eq .
(2.20)] give a nonvanishing contribution to the in-
tegral in Eq. (2.37). Moreover, the remaining terms
in Eq. (2.20) are independent of Qff. Thus noting
that the condition 8'(0) =1 implies that

B&(qff, kff i
co) =k2(qff. kff)+k&(qff X kff)3

CO—k2
C

ez(qff', kff [
co) =k&(qff. kff) —k2(qff X kff)3

CO—ki

(A6)

(A7)

A&(qff, kff i
co)=2k&(qff kff)+2qikff(1 —2A. )

M
(A8)

A~(qff, kff iso)=2k2(qff. kff)+2q kff(1 —2A, )

CO—k2 2 (A9)

With these definitions, we can express the ele-
ments of the matrix R(qll'kll l

co) as follows (for
brevity we suppress the explicit reference to the fre-
quency ro from most functions):

2c, e(qff, kff)
X If)3

2
c~ As(qlf', kff)

g(k

~2 a, (kff)
2 2 ( qll I I

~( ql I I I
+

cg kff Ct (A10)
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—e(qll, kll)6g(qll, kll) q, (1—2A, )
Xk +

2

t

R i3(qll, kll i
co) =

2
2

2 (qllx "ll)3—(qll "II) + 2 'qll "II)
k Ila, (kll ) Ct

P

c, Ag(qll, 'kll) p(kll) 2 ~2 ~~ e(qll, kll)a, (kll)
2 I I I I 2 2

kll

(A11)

+

c, Ag(qll, kll) e( qll, kll)at(k+
i

( qll X
k ll)3 at(&ll )1 (kll ) 2ct' k

(A12)

2
Ct 6(qll', kll)

2

+

qz(1 —2k )at(qll)+ 2 (qllxkll)3a, (k

at(kll ) ~ ~ Q)

2 2 q fl I I
q

I I
~

I I

) + 2c, kll Ct
(A13)

ct E(qff', kff)e2(qff, kff) q2(1 —2A, )
R22(qll, 'kll

f
co) = 2 (qll X kll)3+

qll klla, (kll) at(qll )

2

2
t

g (qll, kll) p(kff)+ «k'
) ( )

~ll~«ll II z
ct

k
2 qll k II)

ct k)
f

(A14)

R23(qll, kll i
co)=

2
2

8 (qll, kll)
fl 3+ 2 'qll X "II 3

—(qll "II '+
k Ila, (kll ) Ct

at(k
2 Zct' k

(A15)

2

II
+ 2

t

ct
R3g(qll, kll i

co) = i—
2

+l 1 co
; kll)at(&ll )at (kll )

—f3(kll) ~ kll(1 —2& )+(qll kll)e(qll, 'kll)
f

(A16)
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2

8 32 ( q
I I,

' k
I I

/

co ) = —ic, q
I I

e( q
I
I,
' k

I I

) +i
(kll I

~)

2+ 2 q II q ll~
k

II 2 q II
k

c,
(A17)

833(qll, kll /
co) = ic,—qll(qll && kll)3+i +

Ct
(A18)

We note that the results given by Eqs. (A10)—(A18) consist of two different types of terms, namely those
that have the function b, (kll co) in the denominator and those that do not. This point is of relevance in Sec.
IV, since for a given value of the wave vector kll, the root of the equation b, (kll co) =0 occurs at the frequency
c00(kll) of a Rayleigh wave propagating on a flat surface. [This statement can be easily verified using Eqs.
(2.3), (2.4), and (A3).]

APPENDIX 8

In this appendix we explain the discrepancy between the result obtained in this paper for the inverse attenua-
tion length of Rayleigh waves propagating on a rough surface and the corresponding result obtained by Mara-
dudin and Mills. 3

The boundary conditions (2.12)—(2.14) can be expanded in powers of g(xll) to yield a set of effective boun-
dary conditions on the surface x3 ——0 instead of on the true surface x3 ——p(xll). To first order in p(xll) these ef-
fective boundary conditions are (a= 1,2, 3)

Catv
P, V

Bu&(x
i
co) 2 Bg(xll) Bu&(x

i
c0)

CasjMV
BXv x3 ——0 Bxs c)x

8 u„(x
i
co)

Ca3pv
X3 Xv

x =03 x =03

(B1)

In what follows the summation index 5 will be understood to assume only the values of 1 and 2. Since the van-
ishing of the left-hand side of this equation expresses the stress-free boundary conditions on the planar surface
of a semi-infinite elastic medium, we see from Eq. (B1) that the effects of surface roughness can be expressed
as the presence of nonzero stresses, given by the right-hand side of Eq. (B1), acting on the planar surface
x3 ——0.

We are thus led to seek a solution of the equations of motion (2.1) in the elastic medium that now satisfies
the boundary conditions (81). For this purpose we introduce a Green s tensor D p( x; y ~

co) as the solution of
the inhomogeneous equation

gL „(x
~
co)D„&(x;y

~

co)=6 p(x —y), x3) 0 g3) 0
P

that satisfies the boundary conditions

(B2)

(B3)Qca3pv Dpy( x ~ y I
co

V Xv
=0, a=1,2, 3

g f d x[U (x
I

~)l.,„(»
I
~)V„(»

I

~)—V, (»
I

~)l.,„(»
I
~)U„(x la)l

a,p

p~
x3 ——0

on the surface x3 ——0, together with exponentially decaying or outgoing wave boundary conditions as x3~ 00.
The following generalization of Green's theorem is valid for any two vector functions U(x

~

co) and V(x
~

co)
defined within and on the boundary of a volume V whose surface is denoted by X (Ref. 6):

f dsnpc p„„(xIUco)„v„(x Im) —v, (x Im) &x(» l~)
& a, P,p, v V V

where n is the unit vector normal to the surface X, directed from inside the volume V to outside it.
If we now let the volume V be the half-space x3 )0, the surface X consists of the plane x3 ——0 and a hemi-

sphere in the upper half-space whose radius is allowed to become infinite. Then, with U (x
~

co) =—u (x
~

co)
and V (x

~

c0) =D ~(x;y
~

m) for fixed y and y, we obtain from Eq. (B4)
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u „(y (
xu) 8( y ) = ——g fd'x

((
u ( x

(
m)gu 3„„D„„(x; y (

cu )

—D r(x;y I
co)gc 3p u (x

I
co)

x3 ——0

(85)

ag(x~~) au„(x I~)
ur(y [

cu)= —Xfd x((Dr (y;x
[

cu)
) o Xgu x„„

p a Xs X

a2u„(x
I
co)

Ca3pv X

P, V X3 Xv
(Bj)

x3 ——0

The result given by Eq. (87) is a particular solution of the equations of motion of an elastic medium that sat-
isfies the effective boundary conditons (81). To it we can add any other solution of the equations of motion.
If we wish to study how a Rayleigh wave on a flat surface is scattered by surface roughness, we choose for this
additional solution ur '( y I

co), which satisfies stress-free boundary condtions on the flat surface x3 ——0

au„'"(y
I
~) =0, a=1,2, 3 (88)Catv

P, v O'V
y =03

and represents the incident Rayleigh wave. With some changes of variables we thus have as the integral equa-
tion describing the scattering of a Rayleigh wave by surface roughness

r

where e„(y) equals unity if y is in the volume V (y3 &0) and vanishes otherwise. Since we are seeking a dis-
placement field u(x

I
co) that is exponentially localized to the surface x3 ——0 (a Rayleigh wave), the integral

over the hemispherical surface in the space x3 & 0 gives no contribution to the right-hand side of Eq. (84) in
the limit as its radius becomes infinite.

Equation (85) can be simplified by noting that the first term on the right-hand side vanishes (for y3 &0), in
view of the boundary condition (83) satisfied by the Green s function D p(x;y I

co). We next use the fact that
the Green's tensor is symmetric,

D p(x;y
I

ro)=Dp (y;x I
co), (86)

and the result given by Eq. (Bl) to rewrite Eq. (85) for y3 & 0 as
r

1 ag(y~~) au,
u (x

I

co)=u' '(x
I
co)+ —g d y)~D~p(x;y

I

co) I~ o ggcp&r„
p p

a ur(y I
co)

g, v y3
——0

(89)

We can now compare this equation with the one that provided the starting point for the analysis by Maradu-
din and Mills. Equation (2.7) of their paper, rewritten in time-independent form, is

u ( x
(

cu ) = u '" '
( x

(

cu ) —g f d 3y D y( x; y (

cu )I y'r'( y )u y ( y (

ra ), (810)
Py

where the operator L p'r'( y ) is given by

1——&(y3)pep»„g( y ~~)

y3 ——0

1 aur(y I
co)

+ Xf d'y D y(x yl ~)(y(yo, )X'utu~
3'y, v

L p (y) = ——5(y3)gcp5 — ——5'(y3)gcp3 g(y~~)
a

p s ys y p ay
When Eq. (811) is substituted into Eq. (810) we obtain

(x
I
~)+—& d'y~~D. p(x, y I

~) Iy, =op +cps~
(0)- ag(y~~) au

pp sr ays

(811)

a ur(y I
co)+ —2 d'y((D p(x y l~) ly =oXcp, Py)()

p p
' "= „„"' ay„ay„ y3 ——0

(812)
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A comparison of Eq. (812) with Eq. (89) reveals
the following. The first of the integral terms on the
right-hand side of each of these equations is the
same. The second integral term on the right-hand
side of Eq. (812) would agree exactly with the corre-
sponding teria' on the right-hand side of Eq. (89) if
the projective property of the delta function,

df(y3)
&'(y3)f(3 3)= —&(y3) (813)

-y =03

were used, and only the factor Bur( y ~

co)/By„
played the role of the function f (y3) in Eq. (812).
Indeed, this is what should have been done in Ref. 3,
because Eq. (810) was obtained by applying a
Green's-function approach to an inhomogeneous
partial differential equation in which

—gL "r'(x)ur(x
~

ro)

plays the role of the inhomogeneous, or source term.
If this source term had been transformed first with
the use of Eq. (813), to represent a boundary condi-
tion on the plane x3 ——0, and then the differential
equation had been converted into an integral equa-
tion with the use of Careen's function, the first two
integral ternis on the right-hand side of Eq. (812)
would have coincided with the corresponding terms
on the right-hand side of Eq. (89). As it was, the
second integral term on the right-hand side of Eq.
(812) was transformed with the aid of Eq. (813) in

Ref. 3 with the product D &(x; y ~

ro)t)u (y
~
ro)/t)y„

playing the role of the function f(y3). In this way
terms containing

r)D p(x;y
~

co) r)ur(y
~

co)

~y 3 By„ i y 03

were introduced into the right-hand side of Eq.
(812) that have no counterpart in Eq. (89). Finally,
the third integral term on the right-hand side of Eq.
(812) has no counterpart on the right-hand side of
Eq. (89). Since this term represents a modification
of the equations of motion in the region of space oc-
cupied by the elastic medium, which in fact require
no modification, rather than an (effective) boundary
condition, it should not have appeared on the right-
hand side of Eq. (812) in the work of Ref. 3.

It is thus the fact that additional terms [beyond
those that appear on the right-hand side of Eq. (89)]
are incorrectly present on the right-hand side of Eq.
(812) (which was the starting point for the work in
Ref. 3) that accounts for the differences between the
results of that reference and those of the present pa-
per for the attenuation of Rayleigh waves on a ran-
domly rough surface. Indeed, if Eq. (89) is solved
for the scattered wave in first Born approximation,
and the inverse attenuation length is obtained by a
conservation of energy argument, just as this was
done in Ref. 3, the result obtained coincides exactly
with the result, Eq. (4.24), obtained here. The de-
tails of that calculation will be presented elsewhere.
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