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In this paper we present a detailed analysis of the Raman spectral shape of a-AgI crystals as a
function of temperature up to 450'C. With the use of a polarizability model based on the charge-
induced dipole mechanism, which was already introduced to explain depolarization ratios and in-
tegrated intensities, all the spectral features from 0.8 to 250 cm are assigned to the iodine dynam-
ics (acoustical and optical phonons), in agreement with inelastic-neutron-scattering data. Hence we
predict that the central line originating from Ag+ diffusive motions must be confined to the fre-
quency region below 0.8 cm . Some suggestions on the phonon branches are qualitatively derived
from the temperature dependence of the spectral shape.

I. INTRODUCTION

The experimental data already reported' on the Ra-
man spectrum of n-AgI in the frequency range 7—165
cm ' show that both the integrated Raman spectral densi-
ty and the depolarization ratio (which was also found to
be constant versus frequency) were strongly temperature
dependent, decreasing up to 450'C.

In order to explain this unusual behavior we proposed
in a previous paper, hereafter referred to as I, a model, in
which all the observed light scattering is explained by a
simplified charge-induced dipole (CID) mechanism. In
such a way we were able to relate the two measured quan-
tities with the arrangement of the mobile cations in the
possible sites. The observed temperature behavior of
depolarization ratio and integrated intensity were theoreti-
cally accounted for by introducing a correlation in the
spatial distribution of the silver ions, which was destroyed
by increasing temperature. Nevertheless, no attempt was
made in I to analyze the spectral shape, which was tenta-
tively attributed to vibrational dynamics of the iodine
atoms. Different interpretations of this spectrum have
been already given in the literature. Its broad, smooth,
and structureless shape first suggested to Delaney and
Ushioda an explanation in terms of two-phonon scatter-
ing. From the similarity between the spectra in a and /3

phases near the transition temperature, the reduced spec-
tral density was qualitatively assigned to the one-phonon
density of states induced in the first-order Ram an
scattering by the presence of the disordered Ag+ sublat-
tice. Alben et a/. reached the same conclusion by means
of a modified latttice-dynamics calculation, taking into
account the neutron scattering results from Buhrer et al.
On the contrary, Winterlingg et al. tried to decompose
the spectrum below 50 cm ' into two different com-
ponents, both related to the motion of the silver ions: they

suggest that the narrow one is due to the silver jump dif-
fusion and the broader one to its random local motion in
each quasiequilibrium site. The same kind of analysis had
also been adopted by Nemanich et al. on the basis of very
similar experimental data In . the Winterlinglt and
Nemanich works, however, no interest was devoted to the
high-frequency part of the spectrum (which is well above
the Ag+ dynamical range) and to the temperature depen-
dence of both the intensity and depolarization ratio.

In order to clarify this problem, our theoretical pro-
cedure will be adopted in calculating the entire spectral
shape down to the lower observed frequency limit, as well
as the depolarization ratios and integrated intensities of
the different scattering contributions. The theoretical re-
sults will be then compared with the available experimen-
tal data. Our previous measurements have been also ex-
tended to the frequency region 2—250 cm ' for all tem-
peratures, with increased accuracy and resolution, mainly
in the low-frequency part (2—30 cm '). We anticipate
that these spectra are identical to the ones reported by
Winterlingh, so that our conclusions may be extrapolated
with good confidence down to their lower-frequency limit
(0.8 cm ').

II. DISORDER-INDUCED RAMAN SPECTRUM

On the basis of simple physical considerations we have
already assumed that the entire depolarized Raman spec-
trum in cz-AgI is due to the disordered anisotropic polari-
zability induced on each ion by the local electric field of
the surrounding Ag+ charges.

Indeed, thanks to the cubic symmetry of the iodine sub-
lattice, their contribution to the local field cannot be
present on either iodine or silver ions (which we suppose
localized in their quasiequilibrium positions). The relative
motion of the ions will give rise to fluctuations in the lo-
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+ gp» (t)5(r —R, (t)},

where / is the cell index, i =1,2 indicates the iodine in the
primitive cell, and a =1, . . . , N refers to all the silver
ions.

The integrated contribution of the iodine dynamics to
the scattered intensity was already evaluated as

Iyy (T) Jyy (T)(u )

where Jyy (T) is defined in Eqs. (3), (5), and (10) of I, and
(u } represents the mean-square displacements of the
iodine nuclei. With the same procedure we may now cal-
culate the integrated scattering intensity related to the
silver dynamics in the first term on the right-hand side of
Eq. (1) as

'Iy, (»=p'g ~«.k T)&'k&fyy &c„.
n, k

(3)

In Eq. (3) we retain the same definitions of I.
A rough evaluation of the ratio between these two terms

is given for the zz configuration and in the low-
temperature region by

2I g2 D6 D2
=2X102 ~ -2~102 (4)

where D is the distance between an iodine and the sur-
rounding d sites. It may be observed that, while the in-
tegrated intensities of these two contributions are of the
same order of magnitude, their ratio must be a linear

cal electric fields: then the Ag+ dynamics will appear in
both Ag+-Ag+ and Ag+-I contributions to the scatter-
ing, while I dynamics will be reflected only in the
second-order contribution. Now the macroscopic polari-
zability Pyy (r, t) (yy'=x, y, z) may be written as

Pyy (r, t)= gpyy (t)5(r Rt—(t)}

function of the temperature because of the temperature
dependence of (u ). Moreover, the depolarization ratio
of the silver contribution is strongly different from that of
the iodine contribution, which agrees with the experimen-
tal value and behaves also differently with temperature.
We write

I„,(180'C)
R (180'C) = =0,I (180'C)

'I, (180'C)'R (180 C) =, = 1.05=R,b, ,'I (180'C)

I„,(450'C)
R (450'C) = = 1.5,I (450'C)

'I (450 C)'R (450'C) =, =0.69=R,b, .'I (450'C)

If the Iyy (cu) contribution is in some way superimposed
to the iodine vibrational density of states, Iyy (co), then
the depolarization ratio measured would be frequency
dependent and the spectral shape would change drastically
with temperature.

Because these conclusions are contrary to all the report-
ed experimental results, we must conclude that the spec-
tral range of the Iyy (co) contribution must be narrower
than 2 cm

As far as the scattering arising from pyy (t) term in Eq.
(1), it is easy to show that its spectral shape has to be the
same of Iyy (co) in the limit of very small exchanged
wave vectors. Therefore the same conclusion derived for
I(co) also holds for this term, definitively excluding that

any observed features of the spectra above 2 cm ' may be
connected with the Ag+ dynamics.

In the next section we try to calculate the spectral shape
arising from the iodine dynamics in order to compare the
theoretical prediction with the experimental data.

III. SPECTRAL SHAPE OF ONE-PHONON SCATTERING IN a-AgI

In order to calculate the spectral response we are interested in, we have to deal now just with the scattering contribu-
tion 'Iyy If we suppose that Ag+ motions to be uncorrelated from the iodine vibrations, the leading one-phonon
scattering term could be written as

""' f dt e' 'g [( U', (t) U', (0)}],„(u;t(t)u, ,, , (0)},
i, I, a,P

(5)

where ( } and [ ],„ indicate, respectively, thermal and configurational averages. Using the approximation
q (x;t —x; I )=q (xt —xI ), the normal-modes expansion of the atomic displacements and the convolution theorem, we
obtain, from Eq. (5),

yy'( ) g j(k) g e ' ' pe (k,j ~

i)e (k,j ~

i') f de'F~~tyj (i, i', l, l', co co')[n (co')—+ I]lmg) (~')
I, I' a, P kjk,j

l, i
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where

Fg& (i,i';l, l';to)= f dte'"'[{ vrr (t)tv'' (0))],„
= f dte'"'F "trt(i, i';l, l';t) .

j is the branch index, k is the phonon wave vector, and
coj.(k) and e(k,j ~i) are, respectively, its eigenfrequency
and eigenvector. D- (tv ) is the phonon propagator,kj
which, in the harmonic approximation reduces to

—k2g2K 2

Irr (to) cc [n (co)+ 1]Jr& g
ECk,j

ImD- /coj(. k) .kj

(13)

giving rise to narrow peaks in the spectrum, which are the
Raman-active phonons for k = q=0.

The partial disorder may be taken into account by a fin-

ite value of X, and with
i q ~

&&
~

k ~, Eq. (10) can be
written in the simple form

D- (to)= li.m 2t01.(k)/[to —toj(k)+2itve]—=D-„.( cv) .j 6 0+ kj IV. COMPARISON BETWEEN THEORY
AND EXPERIMENTAL RESULTS

Owing to the slow motion of the Ag+ ions, we may write,
in this case,

F~~trt (i,i', l, l', tv) =5(tv)F r~& (i,i', l, l', t =0) . (8)

F~~~ is connected with the quantity J&z already intro-
duced in I by the relation

Jrr ——g gF rtrt
(i,i;1,1;t =0) .

i, l a, P

In I we treated the scattering equation assuming no corre-
lation between the local electric field on two different
iodines; on the other hand, in order to calculate the fre-
quency dependence of the scattering intensity, we need go
beyond this approximation.

In Appendix A we show, by introducing a model corre-
lation function between different scatterers and making
use of Eq. (8), that Eq. (6) becomes

In order to obtain the Raman spectral shape by means
of Eq. (13) we need the phonon dispersion relations, a
value for the parameter K and an adequate choice for the
propagator D- (to). Inelastic-neutron-scattering data'

kj
are available at T=300'C up to 40 cm '. In this frequen-
cy range all the excitations of the crystal are shown to be
transverse- and longitudinal-acoustical (TA and LA)
waves. We conclude that the optical-mode contribution
could be present only above this frequency and then we
will try to fit the spectrum for co &40 cm ' using only the
acoustical (acous) contribution,

&rr (to)=&rz'"'(to) =Irr (tv)+Irr (co), co &40 cm

(14)

Neutron data indicate that a linear dispersion relation and
harmonic propagators can be adopted for the longitudinal
branch at all k values up to E which we approximately
evaluate as 0.25 A ' (see Appendix A). Hence,

Irr (to) ~ [n (co)+1]
—

~

k —q ~

2/2K~xg'
k,j

ImD- (tv)/a)J(k)Jrr, .kj

(10)

Ir~y' ~ G Jrr [n (cv)+'1]tv e
L

where G" =0/nCt and fl .is the volume of the sample.
The same experimental data show the TA branch to be

strongly anharmonic; the simplest choice for D (to) cankj
be given by the overdamped classical oscillator response
function"

where k is a wave vector related to the typical correlation
length of the polarizability derivatives. This quite general
expression shows the effect of the polarizability disorder
on the Raman spectrum. Actually, full disorder in the
scattering amplitudes implies K greater than the
Bri11ouin-zone edge K~ and allows all the (k,j) modes to
participate to the scattering process; hence in the harmon-
ic approximation, the intensity Irr (to) may be written as

Irr'(to) cc [n (to)+ 1]p(to)/co

In ordered crystals, on the other hand, k —+0, and

D -„".(tv) =2toyp, ( k )Dr~/[tv' —tvyp, ( k )+ital r~( k )], (16)

where cozz(k) and I r~(k) are derived from the reported
neutron data, and Dzz represents an adimensional oscilla-
tor strength. We assume D~A to be k independent be-
cause the ratio I rz(k)/corz(k) is constant versus k up to
K.

The transverse contribution can be therefore explicitly
calculated,

(cv) ~ G Jrr [n (co)+ l]toW(to X)

Irr (co) cc [n (to)+1]g CPr 5(to —toj(q))/co, (12) with 6 =2Dy~/~ Cz-, and

M(to, K)=Cz. f dkk e " I &&(k)/[[(~ —tvrz(k)] +tv I r&(k)j . (18)
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I

50 IIcm
FIG. 1. Solid dots denote experimental Raman scattering normalized by the appropriate Bose-Einstein population factor

n(co, T)+1. From 2 to 30 cm ' the spectral resolution was 0.2 cm ', and above 30 cm ' it was 2 cm '. Solid line plots the acousti-

cal spectral density as obtained by Eq. (19): a at T=300'C and b at T =380'C.

The whole acoustical reduced spectral density can now be
written as

acous
J&z (ro) = ~Jrr co[e +GW(ro, K)],

[n (co)+1]

(19)

and this expression can be fitted to the experimental spec-
trum for co & 40 cm ' using two parameters:
6=2(CL, /CT) DTA, completely free, and K limited in the
wave-vector interval 0.2—0.3 A ', in agreement with its

K
(A-}

0.26-

estimate car11cd out 1n Appcnd1x B.
In Fig. 1 we report the results of the best fits at two dif-

ferent temperatures. For T=300'C, K=0.245 A ', and
DTA =5 X 10

The agreement between theoretical and experimental
spectral shapes is excellent in the frequency range 0.8—40
cm ' for all the measured spectra with the same value of
G and with K slowly increasing versus temperature (see
Fig. 2). It can be observed, on the contrary, that the
overall spectral density is larger than the one given by Eq.
(19) in the region above 40 cm ' where the importance of
the contribution of the optical modes has been already
recognized. ' The difference

(20)

which represents the "weighted" optical density of states
(see Appendix A), is shown in Fig. 3 for three different
temperatures. We may note that its shape is quite tem-
perature independent, while the ratio

Q.23— X(T) f des Jr~r (co) f den Jr"r (co) (21)

100 200 300 400 T ( C}
FIG. 2. Temperature dependence of I{ parameters as ob-

tained by the fit of experimental data; solid line is the linear best
fit. Arrow indicates the @~aphase-transition temperature.

(reported in Fig. 4) is proportional to K. This result can
be theoretically predicted by performing the integral of
scattering equation (13) (see Appendix 8) by assuming a
small k dispersion for the optical branches, which is quite
a reasonable hypothesis.
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FICi. 3. Optical density of states obtained as described in the text at three significant temperatures: T =180'C (line), 260 C

(dashed line), and 340 C (dotted line). This density is peaked about 110cm and its shape is temperature independent.

V. DISCUSSION AND CONCLUSIONS

A detailed analysis of the Raman spectrum of a-AgI
crystals has been developed as a function of temperature
up to 450'C using the polarizability model already pro-
posed in I. All the spectral features in the (0.8—250)-
cm ' region are assigned to the iodine dynamics and are
quantitatively accounted for by a weighted density of
states of both acoustic and optical phonons. Since we

I

200 300 400 T ('G)

FIG. 4. Plot of the ratio between the integrated intensity of
TO and LA phonons as a function of temperature: Best fit indi-
cates linear behavior. Arrow indicates the P~a phase-
transition temperature.

have quantitatively accounted for the spectrum above 0.8
cm ' we assign any central line due to the Ag+ diffusive
motion (whose contribution to the light scattering we
evaluate to be of the same order of magnitude as the one
relative to iodine) to be limited to the spectral region
below 0.8 cm '. Experiments are in progress in that fre-
quency range to reveal and measure the predicted Ag+
contribution by means of interferometric techniques.

The present data already analyzed allow us to deduce
some properties of the iodine motion as well as some
properties of the average Ag+ distribution. We present
the following:

(a) The high anharmonicity of the TA branch, already
observed by inelastic neutron scattering at T =300'C, is
seen from our analysis to be temperature independent.
This suggests that the short lifetime of these excitations
can be due to their interaction with some relaxation of the
"melted" Ag+ sublattice rather than to phonon-phonon
processes. An empirical description of such phenomenon
has been already given by Winterlinglt' to account for the
Brillouin line shape in vitreous silica and was also dis-
cussed by Fleury. ' In these works a lowering in the pho-
non oscillator strength has been predicted for high values
of the relaxation strength g (see Ref. 12, p. 2436), which is
in good agreement with the low value of DT~ we find in
fitting experimental data to Eq. (19).

(b) Clear evidence of the existence of optic modes in
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a-phase AgI is obtained in the frequency region 40—250
cm ', exactly where P-Agl also shows its optical contri-
bution. No other experimental data are available in
current literature on such excitations; therefore it may be
useful to deduce even qualitatively some of their proper-
ties. From the experimental value of the ratio between the
integrated intensity of such band and the LA contribution,
which is 1.3, we may deduce the presence of three
branches of quasiharmonic excitations (I -&co-) having

k k

small k dispersion at least for k ~X (see Appendix B).
The quasiharmonicity of such phonons is also supported

by the weak temperature dependence of the line shape, al-
ready stressed in Sec. IV.

(c) As far as the Ag+ arrangement is concerned, the in-
crease of K with temperature, obtained by fitting the
acoustical contribution, corresponds to a decrease in the
correlation length and qualitatively confirms the order-
disorder evolution of the system which was already dis-
cussed in I. Nevertheless, K cannot significantly change
because its low-temperature value is already very near to
its upper limit established by the Ag+-Ag+ repulsion,
which excludes the occupation of nearest-neighbor d sites.

APPENDIX A

Using relation (8) we may write the general expression for the one-phonon leading term,

Iyy (to) ~ g Oyy(kj
)
q)lmD-. (co),

2ioi( k )
(Al)

where the weighting factor Oyy (k,j ~ q ) is given by

Oyy(kj
~
q)= ge ' ' g(MIM ) ' e ' ' QFyy(i i' l l't =0)e (kj

i
i)l p(kj ~i),

1, 1' f, l a, P

and the quantity Fap (i,i;1,1;t=0) represents the configurational average of the polarizability derivatives, i.e.,
il

yy' ~ t. t. ~ il P i'l' ~ il yy'
Fap(i, l;l, l it 0)= Uyy Uyy, Uyy

BX;(,
(A3)

which was already calculated in I for i =i', 1 =1' [here used in Eq. (9)]. An important property of F
aypy

(i,i', l, l';t =0) in
the case of CID scattering in u-AgI is

Fyapy(i, i', l, l';t =0)=5 pFyay(i, i';l, l';t =0)=5 pFyy(i, i', l, l';t =0) . (A4)

In order to prove relation (A4) we note from Eq. (9') in I that the polarizability derivative Uyy depends on the direction
of the electric field 8';I created on the (i, l) iodine by the silver ions belonging to its d-site environment (cage): for exam-
Ple Uyy ——Uyy (Q;l) where Q;i indicates the Eulerian angles of the field Q;l =(8;i,y;I). Because of the high number of
possible arrangements of the silver ions in the cage (already discussed in I) many directions are allowed for 8';i. We may
introduce a probability function II' ( Q )d Q for the field to be directed along Q into the solid angle d Q: Then the con-
figurational average for i =i' and 1 =1' can be performed by an integration

Fypy(i i 'l l't:0): f dQ II (Q) U (Q) puyy (Q) (A5)

We need to generalize this expression for i &i' and l&l', keeping in mind that a given field direction on iodine (il) ex-
cludes a number of possible directions for the field on its neighboring iodines, giving, in such a way, a correlation be-
tween the directions of the fields on different iodines. Therefore, we may introduce a conditioned probability function
II' ' (Q „QO)d Ql in terms of which F ypy (i,i', l, l';t =0) may be calculated, assuming that II' '(Q I, QO) =5(Q I.QO). In
the general case, we may write

Fyyp(i i', l l' t=0)= f dQ f dQ II'(Q )II" (Q„Q ) U (Q )PU (Q) . (A6)

Through Eq. (9') in I we may derive an exPression of Uyy in terms of Cartesian comPonents,

I' ll
=—( P'ig ) —= (xlt =slngii cosg711 +11=sln8iislnlPil ~ zii =cos811 )

Uyy'( Qil ) 0 il(yilyil T5yy')+ T(5ayyr'I +5ay' ii) yil il yil (A7)

From this equation can be easily seen that

1 2
(A8)
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where

i„) 8 8 1 a a
, ——5 ~ +—5,+5rr '

gA gArgAr' 3» 2 y gAr
' r QAy

03

aw ~a~ ~'aa„'

and the function Q'" ' (Ai, A2) is defined as

ii, ~, &h r, ~ ~, A&sins&cosy&+A&&sing&sing&+Afcose& A2sin82cosq&2+A(sin82siny2+A$cose&
e

= f dR, dR e ' 'e ' 'll'(R, )II"'(Rz,Ri)5(
~
Ri ~' —l)5(

~
Rp

~

—1) (A9)

This procedure to calculate the configurational averages
allows us to deduce some of their general properties
directly from the properties of the probability distribution
function used. Indeed, because of the invariance of scalar
production under any point symmetry operation, ' the
symmetry group of Q"'(Ai, A2) must include all the
symmetry operations of II"(R). Therefore, recalling that
8/9A and 2 have the same symmetry properties and
that II' (R) contains the cubic symmetry in our case, then
relation (A4) follows directly from Eq. (A8). The factor
0 y ( k,j ~ q ) defined in Eq. (A2) can be now rewritten us-

t

I

ing Eq. (A4), introducing the eigenvectors'

w(k, j ~i)=e 'e(k,j ~

i),
and supposing that (this hypothesis will be justified later
in the case of a-AgI)

I I

Fry(i, i', l, l'; i=0)=A(; 6(
~
xi —xi+x; —x;

~
),
(A 10)

we find

(Al 1)

By replacing sums with integrals in (Al 1) we obtain

r. ,
y'

O"'(k,j~q)= —&
" w(k jli)w(kj li') f dre "q- "e

, , (M, M,')'" (A12)

In the case of a-AgI, M~ ——M with i=1,2, and if we

denote, with e(
~

k
~

), the Fourier transform of e(
~

r
~

),
Eq. (A12) becomes

Oyy(k, j~q)= gA, , e(~k —q~).
0 /l, l

(A13)

2x ImD (~), (A14)
2coi(k)

where

X (277) 1 y yy'

2M 0

It is generally assumed' that the correlation function
e(r) has a Cxaussian shape e(r)=e ' where o. is a
"correlation length. " The final expression for the scatter-
ing intensity is therefore

Iyr (cu) =Ayy [n (co)+1]

expression of the polarizability derivatives [see Eq. (A7)],
we are able to evaluate the correlation function
F yy (i,i', l, l', t =0) for some values of I' —l in the case of
C3 C5 configurations, for instance. In such a situation
the bcc elementary cell l —= (li, l2, 13) is assumed to be made
up by pairs (i=1,2) of C3,C5 iodines; this means looking
at the arrangement of the silver ions on a given cage as a
characteristic of the iodine in its center.

For the lower values of (l' —l) (i.e., for nearest- and
next-nearest-neighbor cells) the evaluation of the configu-
rational averages is now a simple tedious task, performed
while looking for all the arrangements which can be com-
patible with a given arrangement belonging to the cell
l=—(0,0,0). In such a way the assumption (A10) may be
verified and the order of magnitude of %=1/a =0.25
A is obtained by fitting the theoretical results with
e(r) =e " y . Moreover, we note that in the case
(C3 C5) we obtain

n; J~~, i =i'
n i n2 , Jy—y, i&i—'

Using now the description in terms of d-site cages in the
with n; = [3,5I, where Jyy has been already evaluated in
I. The negative value of the A term has the physical
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We evaluate here the ratio intensity between an acousti-
cal branch [to(k) =c

~

k
~ ] and an optical one with small

k dispersion [i.e., co(k)=coo ——const] in the harmonic ap-
proximation, where

f dco Ima-. (co)=sr . (81)
kj

From Eqs. (13) and (81) we obtain for the jth branch,

dco Jrr (to)=vrJrr ge "~, (82)
coj.(k)

where from (A7),

1 (2tr)

K 0
Replacing, in (82),

yAr r

y e
—k /2K geo (k)~

k

Q
(4m )

(2tr )

x f, k'e k'"~'
to~ ( k )

meaning of an "antiferroelectric" arrangement of the mi-
croscopic fields due to the silver ions on the iodine 3-5
pairs which may contribute in lowering the electrostatic
energy of such configurations.

APPENDIX 8

we have the two results

f dco J"'"'(co)=m.J — (4m. )K, to(k)=c
~

k
Irr' — rr c (2

(83)

and

f dco Jr~&'(to)=trJrr 3
(4tr)~8vrK, co(k) =coo .

coo (2tr)'

(84)

Then using the simplification

(cop) = —,
' g top,.

j=1,3
and introducing coL ——cL K, we obtain, for Eq. (21),

X(T) ~K

and

3
LA Lf dco Jr~y (co) f dco Jrr (co)—3 8

j=1 CO0

in agreement with the experimental value of =1.3.
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