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Following our earlier work [Phys. Rev. 8 23, 4208 (1981)]on the dynamics of the graphite (001)
free surface, we present here the surface and bulk mean-square amplitudes (MSA's) of vibration and
the surface thermodynamic functions of graphite. For crystals of finite size, the MSA s depend on
the aspect ratio (lateral dimension divided by thickness) and for a given aspect ratio, on thickness.
This is of importance for measurements on actual graphite crystals. In addition, this parametriza-
tion enables us to carry out an extrapolation to the thermodynamic limit (vanishing surface-to-
volume ratio) in a single parameter, namely inverse thickness. For infinitely thick crystals the
MSA's are independent of aspect ratio. The surface thermodynamic functions are similar to—but
roughly a factor of 10 smaller than —those of more isotropic crystals. This is a result of the weak
interplanar binding in graphite which makes the creation of a surface less of a perturbation on the
bulk. We find no evidence of a significant contribution from the so-called "flexural mode" in the
slab dynamics nor in the surface specific heat.

I. INTRODUCTION

In two recent papers' (to be henceforth referred to as I
and II) we treated the lattice dynamics of a bare graphite
slab and of a xenon-covered graphite slab, respectively.
The work was motivated by the increasing experimental
and theoretical interest in a variety of properties of gases
physisorbed on graphite surfaces, but also by the intrinsic
interest of changes in the thermodynamic properties
caused by the large surface areas and the anisotropy of the
"bare" materials. For instance, measurements of heat
capacities of a variety of graphite samples by different au-
thors have revealed discrepancies for which a number
of explanations have been offered (cf. I).

In the present paper we continue our study of the bare
graphite (0001) surface by presenting results for the
mean-square amplitudes (MSA) of vibration and the sur-
face thermodynamic functions; the calculations were
based on the model and methods of the dynamical calcula-
tions of I. We present in Sec. II the formulation and, in
Sec. III, the results for the MSA's (III A) and for the sur-
face thermodynamic quantities (III 8).

cell extends through the entire thickness of the slab, and
the slab itself is generated by all possible translations of
this unit cell parallel to the (0001) planes.

The frequencies co~(q) and (orthonormalized) eigenvec-
tors g (l3,a,q,p) at a given 2D wave vector q are deter-
mined by the dynamical matrix equation.

Dap(13i+i13 i+ iq)kp(13 i+ iqip) coti(q)ga(13 + q ipi) ii

l3,a, p

where ct, P label the Cartesian coordinates, l3 is the label
of each of the X3 lattice planes, a. labels the atoms in the
20 unit cell for each plane, and p is the polarization in-
dex. The construction of the dynamical matrix and the
method of solution have been described in I.

Given the frequencies and eigenvectors, the MSA's and
the vibrational thermodynamic functions for the slab are
calculated from standard expressions. We have for the
MSA's

( tt (13,tc) ) = (&/2&M„) g'
~

ga(&3 + qp )

II. FORMULATION &&coth[fico~(q)/2k~T]/co~(q) .

Our method of calculation is similar to that described
in previous studies of MSA's and thermodynamic func-
tions of noble-gas crystals ' and ionic crystals. ' The
first step is to calculate the normal modes of vibration of
a graphite slab having two free surfaces parallel to the
(0001)-oriented graphite planes and containing %3 lattice
planes; two-dimensional (2D) periodic boundary condi-
tions parallel to the surfaces are applied. The slab unit

(2)

The expressions for the internal energy, Helmholtz free
energy, entropy, and constant-volume heat capacity are,
respectively, '

E =k~ T g I —,x+[x/(e —1)]J,
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F=kiiTQ[ —,'x+ln(1 —e ")], (3b)

S=k~ g I [x/(e" —1)]—ln(1 —e ")j,
f Jp

C, =kii g [—,'x/sinh( —,'x)]

(3c)

(3d)

where

x =%co~(q)/k~T . (4)

The frequencies used in Eqs. (2) and (3) were obtained
from dynamical calculations in which the carbon-carbon
force constants were derived from pairwise interactions as
given by a modified version of the "axially symmetric"
model of Nicklow et al. " for bulk graphite. The model is
described in I, and comparisons with more recent bulk in-
teraction models are made in Ref. 12. (Some errors in the
interaction constants in I have been corrected in Ref. 12.)

In the dynamical calculations no corrections have been
made for the effects of surface relaxation or for bulk and
surface thermal expansion and other anharmonic effects.
Let u be any one of the thermodynamic functions reduced
to unit quantity of material (per mole or per molecule,
say) for the sample having surface area per quantity (n
moles or molecules) A/n, and let u be the same function
for a reference bulk sample having negligible surface area
(say, from periodic boundary conditions). We may term
the difference

bu=u —u

III. RESULTS

the surface-excess u, just as is done for experimental deter-
minations of surface thermodynamics. If the surface-
excess u is indeed proportional to the relative surface area
A /n of the sample, then the surface-specific u defined as

s hu
A/n

has meaning. Thus we may discuss the surface-specific
heat (capacity) C„', the surface(-specific) (internal) energy
E', the surface(-specific) Helmholtz free energy F', and
the surface(-specific) entropy S', where parenthetical por-
tions of the terms are usually dropped by convention.

of graphite, with periodic boundary conditions in the x-y
directions and free surfaces in the z direction. An attempt
to use a finer grid corresponds to enlarging the sample in
the x and y directions, and as is well known' will lead to
logarithmically divergent MSA's. In order to obtain the
true, convergent values of the MSA's appropriate to the
three-dimensional (3D) thermodynamic limit, we must use
a somewhat more complicated procedure. At this point it
is useful to state briefly, first, how we expect the MSA's
to behave as functions of slab thickness and slab size,
second, what behavior is actually found, and finally, what
this means for comparison between calculation and experi-
ment.

l. Expected behavior ofMSA 's

If one considers a slab of fixed edge length and allows
the thickness to increase (N3~ oo ), one is effectively com-
puting the MSA's for a one-dimensional system, and they
will diverge as N3. If, on the other hand, one fixes the
thickness (N3 fixed) and increases the edge length, the
MSA's will diverge as the logarithm of the edge length (in
accordance with the above-mentioned theorem). Instead
of specifying a slab by its edge length and thickness, we
can specify it by its aspect ratio defined as the ratio of
edge length to thickness —and thickness. In view of what
has just been said about the dependence of the MSA's on
crystal sizes (thickness and edge length) one is justified in
expecting the MSA's for finite crystals of given thickness,
say, to be different for different aspect ratios. One is fur-
ther tempted to expect, albeit without rigorous justifica-
tion, that if one constructs successively larger slabs of
given aspect ratio, then both the bulk and surface MSA's
will converge to some finite values.

In fact, the first expectation is found to be true: For a
given thickness the MSA's increase with increasing aspect
ratio. Furthermore, as we let the crystal grow towards in-
finite size, the MSA's do indeed converge —moreover, the
limiting values are the same for all aspect ratios, for both
the bulk and the surface MSA's. This reassuring result,
however, may not be of practical importance since most
exfoliated graphites on which actual measurements are
performed are of rather small thickness, so that the size
effects are indeed important. We will come back to these
points below.

A. Mean-square amplitudes of vibration

We are interested in calculating mean-square ampli-
tudes for two rather different sorts of systems: first, for
the bulk and surface of macroscopically large crystals-
i.e., systems for which the surface-to-volume ratio is van-
ishingly small, and are thus essentially in the thermo-
dynamic limit —and also for the finite and rather small
systems which are encountered in typical specimens of
graphite and which are subject to significant finite-size ef-
fects.

For the first case, in particular, some care is required.
If we attempt to compute the MSA's using (2) and a uni-
formly spaced —i.e., Born —von Karman —grid of q points,
we are actually calculating the MSA's for a finite sample

2. Details of the calculaton

The aspect ratio is arrived at in the following way. We
adopt an enlarged 2D unit cell, which is suitable for the
description of adsorbate properties later on [see Fig. 1(a)].
It has side a =3ao, where ao ——1.4210 A is the inplanar
nearest-neighbor (NN) distance between the carbon atoms.
We let d =c/2=3. 3539 A denote the interplanar distance
in graphite. The calculations have been carried out for a
lozenge-shaped crystal similar to the unit cell, with side
length A and thickness C ( =N3d) [see Fig. 1(b)]. The as
pect ratio is defined as A/C=a(a/d). Calculations have
been carried out for three aspect ratios corresponding to
a=1, 8, and 80 (called cube, slab, and sheet, respectively),
and for each aspect ratio for four finite thicknesses
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FIG. 2. Division of the ISBZ in parts in which different grids
are used. U indicates a uniform grid determined by the lateral
size of the crystal and the periodic boundary conditions. G& and
G2 indicate Gauss-Legendre quadrature grids. The characteris-
tics of the grids are given in Table I.

FIG. 1. (a) Krypton or xenon epitaxially adsorbed on the gra-
phite (0001) surface in a (30 W3XW3) overlayer structure.
Vertices of the hexagonal net mark carbon atoms in the first
graphite plane, X marks carbon atoms in the second graphite
plane. (b) Lozenge-shaped crystal with side length 2 and thick-
ness C.

X3 —7, 13, 2 1, and 27 as well as their extrapolation to in-
finite thickness. The reason for this particular
procedure —fixed aspect ratio and increasing thickness —is
that it is the proper way to approach the thermodynamic
limit, i.e., the limit of vanishing surface-to-volume ratio.
Because for fixed aspect ratio the surface-to-volume ratio
is C ' [ =(N3d)' '], taking the limit N3~ oo is
equivalent to taking the thermodynamic limit. The
periodic boundary conditions, applied to the sample crys-
tal, determine the density of the wave-vector grid in the
(2D) surface Brillouin zone (SBZ).

For a given aspect ratio and thickness one calculates
(u (l3,a)) [Eq. (2)] by summing appropriately weighted

contributions from q points on this uniform grid in the ir-
reducible part of the SBZ (ISBZ). In practice, however,
this method leads to far too many sampling points (e.g.,
roughly 3900 points for a 27-layer slab). One deals with
this problem by observing that the finite resolution of the
grid is important only in parts of the ISBZ where the con-
tribution to the MSA is varying rapidly, i.e., near the zone
center where the low frequencies occur. Accordingly, one
divides the ISBZ into two or three parts —an inner part
around the origin in which a uniform grid is used, and one
or two outer parts for which the contributions to the
MSA's are much less sensitive to the details of the grid.
For the latter parts, optimum results are obtained by sam-
pling with much coarser Gauss-Legendre quadrature grids
(see the Appendix). The division of the ISBZ is indicated
in Fig. 2, and the details of the sampling grids are summa-
rized in Table I.

For a given temperature, one expects the MSA's to con-
verge if one increases the size of the crystal to infinity,
while maintaining a fixed aspect ratio. Furthermore, us-
ing the layer number X3 as a measure of the size of the
crystal, it is reasonable to expect that the MSA's admit of
a series expansion asymptotically valid in j./N3. When
the calculations are performed, both expectations are
found to be true. Furthermore, for each T the MSA's for
the cube, slab, and sheet all approach the same limit for
infinite size crystal (N3 ~ oo ).

This fact may be understood by considering the related
case of the bulk-adapted slab- i.e., a slab in which period-

TABLE I. Characteristics of sampling grids used in various parts of the ISBZ for the evaluation of
the MSAs. (Cf. Fig. 2.) Gl and G2 indicate the number of points in the Gauss-Legendre grids.
n

&

——n2 ——1 means that the entire zone is covered with the uniform grid corresponding to the crystal size.
n2 ——1 (n I&1) means that the zone is divided into two parts.

Aspect ratio
n2 G) G2 n2 GI G2 n2

80
G) G2

7
13
21
27

36
36

8
8

24
24

64
64
64
64

80
80

240
240

8
8

24
24

36
36
36
36

64
64
64
64
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ic boundary conditions are imposed at the top and bottom,
rather than the free-surface boundary conditions of the
present calculations. In this case, our procedure for calcu-
lating the MSA's for a given thickness and aspect ratio
corresponds to computing an approximation to the MSA's
of the bulk with a quadrature rule of the midpoint-rule
type; the 3D Brillouin zone is divided into identical
prismatic elements, and the integral is approximated by
the product of the volume of one element and the sum of
the values of the function at the midpoints of the
elements —the contribution from the acoustic modes at I
being excluded. In this case, the aspect ratio determines
the shape of the elements, and the thickness the total
number thereof; the fact that the extrapolated values are
the same simply means that the approximations actually
converge to a well-defined integral, despite the singularity
in the acoustic contributions —this confirms that the bulk
MSA's are well defined.

In the case we actually calculate, with free-surface
boundary conditions, the details of the convergence are
somewhat less clear. In particular, it is not evident a
priori that the surface MSA's will be well-defined in the
same sense as the bulk MSA's. Our results suggest, how-
ever, that the essential features are similar; it is thus not
surprising that the extrapolated amplitudes are essentially
independent of aspect ratio. The fact that this result ap-
pears in our numerical calculatons is compelling evidence
that our extrapolation procedure leads to the correct
MSA's.

If we thus view the amplitudes for slabs of finite thick-
ness as approximations to the true, convergent, values for
a semiinfinite piece of graphite, we observe that the errors
in the approximations are of varying signs: For the per-
pendicular components, the finite-slab values are con-
sistently larger than the true ones, while in the parallel
case the finite-slab values are consistently smaller. Clearly
the sign of the error depends on the details of the func-
tional form of the integrand; we suspect that the differ-
ence between the parallel and perpendicular cases involves
the anisotropy of graphite.

3. Results for the MSA 's

As mentioned above, we evaluated MSA's for crystals
of three aspect ratios (cube, slab, sheet) and each of these
for four thicknesses. The calculations proceed with first
solving the equations of motion [Eq. (1)] for the particular
sampling grids chosen (Table I) and using the resulting
frequencies and polarization vectors to evaluate the
MSA's as functions of temperature [Eq. (2)]. The com-
putations were carried out on the Control Data Corpora-
tion Cyber 170/750 computer of the University of Texas
at Austin. Computational requirements varied from 15
sec of central processing unit (CPU) time [and 10 ft of
tape at 6250 CPI (characters per inch) to store the data]
for the 7-layer cube to 27 min CPU time (and 1135 ft of
tape) for the 27-layer sheet; 80% of the computation time
was spent diagonalizing the equations of motion.

The data obtained in this way are too voluminous to
present here, and our choice of what to present has been
guided by anticipated usefulness. For example, a widely
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FIG. 3. Surface mean-square amplitudes (MSA) for the 7-,
13-, 21-, and 27-layer sheets and the infinitely thick sheet as
functions of temperature. (uj )s indicates the MSA's for the vi-
brations perpendicular to the surface (u)s for the vibrations
parallel to the surface. The latter coincides within the thickness
of the curve for all sheet thicknesses.

used substrate for adsorption studies is Grafoil. ' It con-
sists of grains of single crystalline graphite which have
large and quite uniform surfaces parallel to the (0001) gra-
phite planes; the lateral extent is of the order of
10 —10 A. From the width of neutron-scattering Bragg
peaks one estimates a coherence thickness of about
100 A. '

In view of these experimental parameters, it appeared
most useful to present the MSA data for the sheets. The
thickest of these, the 27-layer sheet, has a thickness of
90.6 A and an edge length of 9208 A; this is in the range
of the actual dimensions of graphite crystallites in
Grafoil.

In Fig. 3 we show the MSA's of the surface atoms of
the 7-, 13-, 21-, and 27-layer and infinitely thick sheets for
vibrations perpendicular and parallel to the surface
( ( tt J )s and ( u

~ ~

)s, respectively). It will be noted that
( u j ) is strongly dependent on thickness, decreasing as the
thickness increases and converging to the infinite-
thickness value as N3, i.e., proportionally with the van-
ishing surface-to-volume ratio as pointed out above. This
is a finite-size effect; for the smaller thickness, the
surface-to-volume ratio is larger, and the entire system is
more strongly perturbed by the surface. The effect is not
connected with the Landau-Peierls divergence, since it is
of opposite sign: At fixed aspect ratio the lateral extent of
the system is smaller for the smaller thickness.

It seems almost redundant to point out here that the
thickness dependence of the MSA's is an effect that can
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FIG. 4. Center-layer MSA's for the sheets of various
thicknesses as functions of temperature. (u q )c for the infinite-

ly thick sheet is the true bulk value (uz )s. For the parallel vi-

brations the center layer MSA's for all sheet thicknesses coincide
within the thickness of the line with the bulk value (u~~ )s. The
solid circles at 300 K are the results reported by Chen and Tru-
cano (Ref 18).

only be obtained by calculations on crystals of finite thick-
ness. However, this is important to keep in mind, if one
considers alternative methods for calculating surface
dynamical properties, such as the matching method, the
Green-function method or the continued-fraction method.
These methods, as usually applied, all give results that ap-
ply to half-infinite crystals and the question of crystal
shape (aspect ratio) is not addressed. Fortunately, as we
find here, the shape dependence of the MSA's disappears
for infinite crystals; but, of course, size effects are not
treated by these methods when applied to semiinfinite
samples.

In Fig. 4 we show the MSA's for atoms in the center
layers of the 7-, 13-, 21-, and 27-layer and infinitely thick
sheets, for vibrations perpendicular and parallel to the sur-
face ((uz)c and (uII)c, resPectively). The thickness
dependence of (ut )c is even more pronounced than that
of (uz)s. In the limit for an infinitely large crystal

(ut)c and (uII)c approach to the true bulk values

( u f )~ and (u
II )z, and again these bulk values are shape

independent; i.e., they are the same for the cube, slab, and
sheet.

Finally, in Fig. 5 we show the surface enhancement of
the MSA's, which is defined as ( u )s /( u )g. Since
(u )tt is defined only for the infinitely large crystals, we
only show the curves for that case. Notice that there is a
small visible variation in (uI)s/(u~~ )~ going from the

1.8

I.6-

OJ~ I.4l
~(A

t. 2

1.0—
SHEET

— II

CUBE

0,8'
0 100 200 300 400

T(K)
500 600

FICx. 5. Temperature variation of the surface MSA enhance-
ment (u )s/(u )s for the infinitely large crystals. For the per-
pendicular vibrations the curves for the various crystal shapes
coincide within the thickness of the line.

3A' l P(x)

where

cube to the sheet; the corresponding variation in
(ut)q/(uz)~ falls within the thickness of the line.

It is interesting to compare these enhancement results
with those of the more isotropic ionic crystals, which we
evaluated a number of years ago. It turns out that the
surface enhancements for vibrations perpendicular to the
surface (z direction) are comparable to those for the ionic
crystals, but in contrast to the latter, the in-plane vibra-
tions (x,y directions) show no surface enhancements at
T=O K and very little at higher temperatures. This can
be attributed to the great strength of the intraplanar in-
teractions compared to the very weak interplanar interac-
tions, which results in a very weak interplanar coupling
for the (x, y) vibrations; the absence of one of its neighbor-
ing planes hardly alters the (x,y) vibrations in the surface
plane.

It is often customary [especially in low-energy electron
diffraction (LEED) experiments] to express measured
MSA's in terms of Debye temperatures O. The reason for
this practice is probably that one can express in one num-
ber the MSA's as a function of temperature, provided the
Debye approximation is valid. If this is not the case (and
a priori, there is no reason to assume that it is) one has to
specify the function O(T), and so there is no gain over
specifying the MSA's themselves as functions of tempera-
ture, except that in a plot of O(T) the deviation from
Debye-type behavior becomes very visible', for a Debye
system O(T) is a constant. At each temperature the value
of O(T) is obtained from (u )~ be determining the value
of 0 which satisfies the relation
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FIG. 6. Debye temperatures O&(T) associated with the per-
pendicular vibrations for the bulk (8) and for the surface (S),
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TABLE II. Equivalent Debye temperature O(T) for perpen-
dicular and in-plane vibrations at T=5 K and T~ao for the
bulk and the 27-layer and infinitely thick sheets.

Temperature

Bulk

Surface

Bulk
Surface

27-layer sheet
thick sheet

Og (K.)

O11 (V.)

774
670
681

2046
2045

500 K

530
385
424

1653
1578

This exercise is made convenient by using a rational ap-
proximation for the Debye function P(x). '

In Fig. 6 we have plotted the temperature-dependent
Debye temperature Oz(T) [as obtained from Eq. (7)] for
the vibrations perpendicular to the (0001) planes, for the
bulk, and for the 27-layer and infinitely thick sheets. The
values for T=5 and 500 K (the smallest and largest T for
which the 0's have been calculated) are given in Table II.
We see a strong temperature variation in Oz(T) below 200
K, which indicates a breakdown of the Debye approxima-
tion at those temperatures. In Fig. 7 we have plotted the
Debye temperatures Oii(T) for vibrations parallel to the
(0001) planes, for the bulk and the surface. The curves for
all cases (cube, slab, sheet; 27 layers and infinitely thick)
coincide within the thickness of the line. Because the
parallel vibrations are associated with much higher Debye

FIG. 7. Debye temperatures 011(T) associated with the in-

plane vibrations for the bulk (B) and the surface (S).

temperatures, there is deviation from Debye-type behavior
in the entire temperature range displayed here.

4. Comparison with experiment

Comparison of the MSA data with experiment is diffi-
cult because of the paucity of experimental data, and it is
further complicated by numerous uncertainties in unfold-
ing the data to get an MSA. The first mention of bulk
MSA's is by Bacon' in connection with x-ray diffraction
measurements on graphite powder. He quotes a value for
Oz of 560 K (which agrees nicely with our calculated
value of 530 K), derived from two reflections, but settles
on a mean value of 700 K derived from a series of mea-
surements on a third reftection. Recently, bulk MSA
values from x-ray measurements at 300 K on small single
crystals were given by Chen and Trucano'; the experi-
mental points are indicated in Fig. 4. Notice the excellent
agreement of (uz)~ with our calculation. The agreement
for (u

~i
)~ is not quite as good; we have no explanation

for this discrepancy.
The first reported measured surface MSA's that we are

aware of were derived from LEED measurements by Albi-
net et al. ' The authors determined the MSA's on the
basis of the temperature variation of the specular spot; in
the absence of a full LEED theory, they chose the result
for 70-meV electrons, namely Oz ——690+70 K, as
representative for the surface MSA's. This is substantially
higher than our high-temperature value of Oz ——424 K for
the infinitely thick crystal. The companion calculations
by these authors, based on a first-neighbor (in-plane and
out-of-plane) interaction model led to even higher Debye
temperatures, i.e., lower MSA's. In this connection we
point out that a first-neighbor interplanar interaction
model does not provide for coup1ing between the parallel
and perpendicular vibrations and fails to give rise to the
Rayleigh surface mode, ' whose low vibrations make a sub-
stantial contribution to the MSA's. In a following paper,
which is based on the same interaction model, Biberian
et al. , calculate the MSA's in the low- and high-
temperature limits and compare their results with the De-
bye approximation, based on the high-temperature Debye
temperature. As in Ref. 19 the MSA's come out substan-
tially lower than our results, of course, for the same
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reasons. The authors note that the Debye approximation
is not valid in the range 0—200 K for (u ~ ) and 0—400 K
for (u); our results agree with that observation, for
these are precisely the temperature ranges where we find a
strong temperature dependence in the corresponding De-
bye temperatures.

The most recent experimental determination of surface
MSA's of graphite was carried out by Boato et ah. ' with
He-atom scattering. Since the He atoms do not penetrate
the surface, one in principle measures true surface phe-
nomena, but the unfolding of the experimental results to
obtain surface MSA's necessitates the calculation of the
elastic diffraction probability of the specularly reflected
beam, which rests on the hard corrugated wall model and
on an assumed attractive well interaction. The results for
(uj )~ agree at 300 K with Chen and Trucano's bulk
value and are thus much lower than our calculated results.
Vhth the attendant difficulties in arriving at MSA values
it is difficult to pinpoint the cause of the discrepancy be-
tween these experimenal results and our calculated values.
However, the agreement of the He scattering surface re-
sults with Chen and Trucano's x-ray bulk results indicates
that the MSA's derived from He scattering are too low.
Further, Ref. 21 attributes the deviation of the MSA's
from Debye behavior to the high anisotropy of graphite.
Such a conclusion needs to be substantiated because it is
well known that deviations from Debye behavior per se
occur for all substances; after all, the Debye spectrum de-
viates significantly from actual vibrational spectra. For
instance, for solid noble gases (which are fairly representa-
tive of isotropic materials) the specific-heat Debye tem-
perature for the bulk drops by 15%%uo between T/8=0 and
0.1 (Ref. 22); for ionic crystals this variation ranges from
7% (RbC1) to 14%%uo (MgO) (cf. Ref. 10). A similarly pro-
nounced deviation from Debye behavior is not found for
the MSA Debye temperatures, however. For instance, for
argon we find that the bulk-MSA Debye temperature
varies between 83.7 K at T=0 K and 84.9 K at T=50 K,
while the surface-MSA Debye temperature Oz for the
(111) surface varies between 57.0 and 58.6 K in this same
temperature range. In comparison with these minute
changes, the variations in graphite are huge. For instance,
for the bulk, Oz and 0!~ vary by 34% and 20%, respec-
tively, between 0 and 500 K, while for the infinitely thick
sheet, the variations for Oz and 0!!are 38% and 23%,
respectively. Without investigating these differences in
detail it is somewhat speculative to attribute the large-T
variation of a quantity like O~ totally to the anisotropy of
the lattice (after all, O~ applies only to the perpendicular
vibrations). It may well be that the close Debye-type
behavior of the MSA's of the solid noble gases is in a
sense accidental, so that in comparing graphite and solid
noble gases, we are comparing two extremes.
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FIG. 8. Vibrational contributions to the surface thermo-
dynamic functions E and I for the (0001) surface of graphite.
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vector sampling grids. The results reported here were ob-
tained for a 13-layer slab with a 12& 12 Gaussian grid in
the ISBZ, and a corresponding 12&(12X12 Gaussian grid
in the irreducible part of the bulk BZ; for this slab thick-
ness and at these grid densities the results have converged
for all practical purposes.

In Fig. 8 we present E and F, and in Fig. 9, S and
C~ for temperatures from T=O up to 500 K. It is in-

B. Surface thermodynamic functions

The surface thermodynamic functions E, I', S, and
Cz have been evaluated according to Eq. (5). There exists
no divergent behavior of these quantities as functions of
lateral extent or thickness of the slabs and thus no particu-
lar care has to be exercised in the choice of the wave-

I t I i I i I
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FIG. 9. Vibrational contributions to the surface thermo-
dynamic functions S and C~ for the (0001) surface of graphite,
as functions of temperature.
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FIG. 10. Surface specific heat Cz for the 3-, 13-, and 21-layer
graphite slabs, as functions of temperature. Inset: Difference
C~(3-layer slab) —Cq(21-layer slab) at low temperatures.

teresting to note that these quantities are roughly a factor
of 10 smaller than the corresponding functions for the
ionic crystals. ' This is a result of the weak interplanar
interactions in graphite, which diminishes the difference
between a slab and the bulk: The creation of a surface is a
much smaller perturbation than that in more isotropic
crystals.

Of particular interest is the surface specific heat,
because —among the four quantities —it is most directly
amenable to experimental measurement. In Fig. 10 we
compare the Cz results for 3-, 13-, and 21-layer slabs; the
peak maximum lies at 50 K. Notice the small difference,
at low T, between the 3-layer result, and the 13- and 21-
layer results (the latter agreeing at all temperatures within
the thickness of the line). This difference is attributable to
the interaction of long-wavelength modes localized at op-
posite surfaces of the 3-layer slab, which gives rise to the
lowering of some frequencies and hence a slight increase
in Cv. The difference Cv(3) —Cf(21) is plotted in the in-
set in Fig. 10; the curve has a shape typical of all excess
specific-heat curves.

An interesting question that has been raised in connec-
tion with the specific heat of graphite is the excess linear
temperature contribution at low temperatures, discussed
by Van der Hoeven et aI. , which cannot be entirely attri-
buted to electronic contributions. Fujita and Bugl have
attributed this excess linear contribution to the vibrations
of finite lattices. These authors have pointed out that
elastic plates exhibit a "flexural" mode with quadratic
dispersion [co(q ) cc q ] at low frequencies, which leads to a
linear temperature contribution to the specific heat, and
they speculate that the excess linear temperature specific
heat might be attributed to motions of this kind. %'e have
looked for evidence of the flexural mode, both in the
dynamics, by diagonalizing the dynamical matrix for very

small wave vectors, as well as by attempting to fit the sur-
face specific heat at very low temperatures by the expres-
sions aT+PT . In the dynamical results there is no evi-
dence whatsoever of any frequency branch that is propor-
tional to q, and in fitting the specific-heat results the
coefficient of the linear term a cannot be determined sta-
tistically. In their elastic calculations Fujita and Bugl find
that a graphite plate 100 A thick leads to a linear
specific-heat contribution of about the correct magnitude.
If such a contribution were significant in the lattice
dynamics of graphite we should have found it for slabs of
all three thicknesses.

The only measurements which we can compare to our
results for the surface thermodynamic functions are those
of de Sorbo and Nichols for the specific heat. These au-
thors measured the heat capacity of essentially bulk sam-
ples of Canadian natural graphite having layer thicknesses
in excess of 900 A in the [0001] direction, and of "graphi-
tized lampblack" with a thickness of 110 A. At 20 K (the
highest temperature reported) the measured excess heat
capacity of the lampblack graphite over the Canadian gra-
phite (bulk) is of the order of 59)&10 erg K 'cm
The calculated value at 20 K of 32&(10 erg K 'cm
is in surprisingly good agreement in light of the 1ack of
definite characterization of the surface of the graphitized
lampblack sample and its unknown defect state.

IV. FINAL CQMMENTS

(X2 y2)

(x„O) (X2,0)
FIG. 11. Prototypical region for BZ integration.

Of the two sets of quantities discussed in this paper-
the MSA's and the thermodynamic quantities —the calcu-
lation of the MSA's requires particular care because of
possible convergence difficulties. It should be emphasized
that in this paper we are not interested in 20 systems;
what we are studying is the behavior of the surface of 3D
crystals of varying sizes. However, the methods at our
disposal in slab calculations involve the use of systems
with 20 periodicity. If one would try to compute the
MSA's by fixing the thickness of the slab and successively
refining the integration grid, one would be subject to the
Landau-Peierls divergence effects. ' But, for the present
purpose these are artifacts of the calculational procedure
and not relevant to the real finite-size and thermodynamic
systems we wish to study. Consequently, we devised a dif-
ferent scheme of successive convergent approximations to
avoid them. This scheme, involving pararnetrization of
the crystals in terms of aspect ratio and thickness, is
essential for going to the thermodynamic limit (vanishing
surface-to-volume ratio) as a function of a single parame-
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ter (namely in inverse thickness), so that the extrapolation
is practical.

The extrapolation procedure leads to shape independent
results in the thermodynamic limit:, a result which for sur-
face MSA s was not a priori obvious to us, but which, a
posteriori, is a valuable check on our convergence pro-
cedures. The central point is, that if one wishes to use
slab calculations of MSA's to be relevant to large samples,
an extrapolation procedure like ours is unavoidable —and
at least for graphite the effect of extrapolation to the ther-
modynamic limit is large. We point out that this is the
first time a procedure of this kind is used in practIcal cal-
culations of surface MSA's.

under Grant No. DMR-81-21916 and by the Robert A.
Welch Foundation.

APPENDIX: CxAUSS-I.EGENDRE QUADRATURE
GRIDS

Consider R, the portion of BZ depicted in Fig. 11. We
define variables g and g such as to map the region into the
unit square in (g, g) space: Set
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x=
X2 —X1

We thus have

(xz —x~) .

1 1f dxdyf(xy)= f df f drj(x2 —xi)(yz —yi)[k+yi~(y2 —yi)lf(x(k ri) y(k q)) .

We approximate the g and g integrals by Gauss-Legendre quadrature formulas: These are of the form
1

dug(u)= g wP(u;),
1&i &n

where the u; and m; are tabulated quantities, so

f dx dy f(x y)=(x2 —x& )(y2 —y, ) g g wwj [u;+y, /(yz —y& )]f(x (u;, ui)y (u;, uj )) .
1&i &n 1&jen
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