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The applicability of effective-mass theory to the calculation of impurity binding energies is dis-
cussed. A numerical test calculation is first performed in the case of one single band. A new two-
dimensional effective-mass approximation is then proposed, valid for a small and a moderately small
(up to 15) number of planes, allowing determination of impurity states derived from any subband. It
is then shown that Bastard’s model yields accurate binding energies for the lower states where it is
applicable. Finally tunneling effects between quantum wells are considered showing that they have a
nonnegligible influence in the experimental conditions.

I. INTRODUCTION

Since the development of molecular-beam epitaxy, there
has been great interest in semiconductor superlattices, first
realized by Esaki and Tsu.’? Many absorption and
luminescence experiments have been performed®~7 and ex-
citons have been observed. A simple and analytical theory
of these systems has been proposed by Bastard® using a
three-dimensional effective-mass approximation [3D
EMA (refined treatment has been proposed recently in
Ref. 9)]. This theory is based on the following assump-
tions: (i) the discontinuities in potential are assumed to be
large so that the study is limited to an isolated quantum
well, (ii) the quantum well is simulated by an infinite
square well, the effective kinetic energy operator being ob-
tained from the 3D EMA, and (iii) the impurity potential
is superposed to the constant potential in the quantum
well.

It is clear that such a treatment is valid for a large num-
ber of planes in the quantum well. It should become
inadequate' in the limit of a few planes since the potential
does no more fulfill the criterion of being slowly vary-
ing.!! However, it is important to know at which stage
these approximations become poor and what is the magni-
tude of the corresponding error. The present work tries to
answer such questions. For this an “exact” test calcula-
tion is first performed for small number of planes in a
simple case of a tight-binding s band with a Coulombic
impurity. We also present a two-dimensional (2D) EMA
which is tractable only for very narrow superlattices and
compare it to the exact results. We then present a more
useful 2D treatment which proves to be valid in the inter-
mediate case, i.e., for a number of planes ranging from 1
to about 15. This treatment represents in fact the central
resuit of this paper since it aillows calculation of the bind-
ing energy with respect to the exact energy of the bottom
of the corresponding subband, which is not the case in
Bastard’s model. Finally we discuss the validity of EMA
for that problem and show that our 2D treatment provides
the natural approximation method for moderately narrow
and narrow superlattices.

II. EXACT CALCULATION FOR VERY NARROW
SUPERLATTICES

Here we want to perform an exact numerical test calcu-
lation. For this we consider a single band with one Wan-
nier function per atom. This is completely equivalent to a
tight-binding s band. To get the maximum simplicity we
consider only hopping integrals between nearest neighbors.
The dispersion law for a perfect square lattice (corre-
sponding to the limiting case of one plane) is then given by

E(k)))=—2B[cos(k.a)+cos(k,a)] , (1)

where f3 is the hopping integral and EII is the wave vector
within the plane of components k, and k,, a being the lat-
tice parameter. The minimum in energy corresponds to
Eﬂ:o and the effective mass near this minimum is given
by
m*= __ .
2Ba*

We consider a donor impurity with attractive potential
V(T) assumed diagonal in the Wannier functions’ basis.

Its value on the impurity site (taken as the origin of
coordinates) is taken equal to U, while V(I—i,- ), on site
ﬁ,-;&O, is given by

(2)

- e?
V(IRj)=——75—. (3)
K |R;|
This 2D impurity problem cannot be solved analytically.
We have thus used a numerical technique based on
Green’s-function theory.!? For this we calculate suitable
diagonal matrix elements of the Green’s operator by the
continued-fraction—expansion technique.'* The impurity
states thus appear as poles of these Green’s functions.
Table I [part (a)] gives the results obtained for

U=-8, B=0.1, a=5, K=10 4)

(with values for U, B, and a in a.u.), which correspond to
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TABLE 1. Values of (E —Ej) in atomic units obtained using a numerical calculation (LCAO method
on an s cubic lattice using a recursion method) and using the 2D EMA. (a) System made by one plane,
and (b) system made by three planes (antisymmetrical solutions).

(a) One plane

(b) Three planes

State Exact calculation-2D EMA
Ey 0.004 19-0.004 0

E,, 0.000 441-0.000 444

E 0.000 448-0.000 444

Exact calculation-2D EMA
0.002 59-0.002 49
0.000434-0.000417
0.000 372-0.000 379

m*=0.2m,, where m, is the electron mass.

This method can be extended to the case of several
planes, provided their number N remains small (in prac-
tice N <5). For odd number of planes and a central im-
purity, the Coulombic potential is an even function of z
(the coordinate normal to the planes) and we can separate
even and odd solutions. Then we obtain even bound states
under the even bands and odd bound states under the odd
bands. These results are reported on Fig. 1 for N =1, 3,
and 5, and the two lower bands for which there exist true
bound states. Let us notice that the lower “s” state under
the odd band has rather the behavior of a “p,” state which
will asymptotically tend towards the impurity p state for a
large number of planes. ‘

III. 2D EMA FOR VERY NARROW SUPERLATTICES

The case of one plane with a central impurity can be
handled by the wusual techniques of effective-mass
theory,'*~!3 leading to the 2D effective-mass equation
# |1 9 1 3

my 3x?  my dy?

e2

K|T|
=(E —Eo)f(T), (5)

) - f(T)

where f(r) is the envelope function. In our case
my =my =m* given by (2), leading to an isotropic situa-
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+ 0000372 | ~eyen -
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« 0.000045

- 0000434 | ~band . L
. 0.000441 +0002591 | 7 - .0000019b " LT
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#0.000398 +0.002446} " -7 7
. 0000434
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» 0.002933
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FIG. 1. Even and odd bound states under the bands for a cen-
tral impurity in a system made by 1, 3, or 5 planes calculated by
LCAO. An asterisk indicates an s state bound to the chemical
shift, a dot indicates a p state, and a plus sign indicates an s state
unconnected to the chemical shift. The numbers are the distance
to the bottom of the band in atomic units.

tion. Equation (5) can be solved using a polynomial
method!®?° and the energy eigenvalues are given by
2
2m*e* 1
E,_ ,=— (6)
™ K% | 2(n+m)+1

The lower-energy levels obtained by this expression are
compared in Table I [part (a)] to the exact values of Sec.
II. The agreement is very good showing the quality of the
predictions of EMA. However, we must notice that the
numerical value of the 1s lower level is sensitive to U, i.e.,
to the chemical shift, and that the agreement obtained for
that level is somewhat fortuitous. This is not true for ex-
cited states which are much less sensitive to U. To show
this more clearly we have investigated the much less
favorable (and unrealistic) case corresponding to K =1
whose results are reported on Table II. While the agree-
ment is much worse for the 1s state, it remains quite satis-
factory for all other states, thereby demonstrating the
power of the EMA.

When the layer contains a few planes (N), we can still
use the EMA in directions parallel to the layer, but not
perpendicular. In such a case it can be proven?®! that, in-
stead of obtaining one single differential equation, we have
to handle a system of N coupled differential equations
which is extremely difficult to solve. However, for a sys-
tem of three planes, it is still possible to obtain simple
analytical results for the case of a central impurity for
which we get a symmetrical system.

Let us then note as |i,/) the Wannier function centered
on atom [/ of the ith plane, with i=1-3. It is useful to
build combinations of these atomic functions having well-
defined symmetry properties. With the three functions
|1,1), |2,1), and | 3,/) we can build one antisymmetrical
combination

1
&) =—=(| L) = [3,])) )

and two other symmetrical combinations. Thus, the an-
tisymmetrical impurity states can be expressed in terms of
the |a,!) alone which exactly reduces the problem to a
2D one. The only difference with the one-plane case
comes from the matrix elements of the impurity potential.
These are now given by

(@1 V]a,I'"Y=~[{(L,1L|V|LI)+(3,1|V |31,
(8)

i.e.,
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TABLE II. Localized states under the bottom of the band;
for a donor impurity in a single plane: Distance between the
state and the bottom of the band, K =1, is (a) calculated using a
LCAO method with f=0.1 a.u. and a =5 a.u., and calculated
(b) using the EMA.

State (a) (b)
1s? 2.631 4.00
2s? 0.474 0.444
2p 0.451 0.444
352 0.172 0.160
3p 0.164 0.160
4s? 0.085 0.082
4p 0.083 0.082
S5s2 0.052 0.049
Sp 0.050 0.049
6s? 0.034 0.031
6p 0.033 0.031

2These states are bound to the chemical shift.

82

ol |Vl =———57,
(al|Vv] K(Rf+a*)'"

Sy s 9)
instead of —e2/KR; for one plane. We have then simply
to solve Eq. (5) but where the potential is replaced by
__eZ/K(r2+02)l/2.

The solution of this new problem cannot be found ex-
actly and we use a variational procedure. For the lower
“1s” state we take a trial function

fis(r)=Ae~% . (10)

The expectation value of the EMA Hamiltonian in this
case can be expressed under the form
2 2.2
Eyla)=—"—a?+ 2% 8 (1 (7/2)[H,(2aa)
2m* K

—N(2aa)]}, (11)

where H; and N, are the Struve and Neumann functions
of order 1.22 The function E () is then minimized nu-
merically leading to optimal values a,, and E ;(a,, ).

A similar procedure can be rigourously applied to the
“2p” state which, by symmetry, is automatically orthogo-
nal to the 1s state. In that case we take a trial function of
the form

Sop(r,0)=Are % cosf , (12)
and can express the quantity E,,(a) in terms of Struve
and Neumann functions of order 0 and 1, and then

minimizing with respect to a.
J

(K=K T
_ Il | ,,* — —
<¢’,.,r” |V ‘Pn,i*h)*fe ! '“n,T;H(fn’z)“,,,;’l'l(rn’z)V(’n’ﬂdv ,

where u is the periodic part of the Bloch function. The product u*
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The case of the “2s” state cannot be handled rigorously
from the variational point of view since we cannot ortho-
gonalize it to the exact 1s state. We have, however, chosen
for this state a trial function

Sas(r)=A(b —r)e™*", (13)

where b is determined by orthogonalization to the approxi-
mate ls state obtained above. From this we can then
determine E, (a) and minimize it, the procedure, at this
point, having an indicative value.

The corresponding results are reported in Table I [part
(b)] showing very good agreement with the results ob-
tained from the exact numerical calculation. This again
shows the usefulness of the 2D EMA for that problem.

IV. MORE GENERAL 2D EMA

The treatment developed just before is a discrete method
that can treat only very few planes (N <3). For instance,
the case N =5 with a centered impurity cannot be decou-
pled since there are two symmetric coupled equations and
three antisymmetric coupled equations. It is thus of con-
siderable interest to devise a more general method to
reduce the problem to a 2D effective-mass equation. We
shall adapt for this the general method which allows us to
derive the 3D EMA in k space.

Let us then denote as H, the Hamiltonian of the super-
lattice in the absence of the impurity. Its eigenvalues can
be grouped into 2D subbands which result from quantifi-
cation in the z direction. For small N the distance in ener-
gy between the bottoms of these different subbands are
much larger than the binding energy of the impurity
states. We can thus say that in this limit each set of im-
purity states derives from the corresponding 2D subband
(we neglect here resonance effects which are discussed in a
forthcoming paper?’). We thus write the impurity states
| ¥, ) derived from the nth 2D subband under the form

‘\Pn):kza"’?lllqv”’?ll) ’ 1
I

where |@ - ) are the Bloch states relative to this sub-
)

band. Projecting the Schrédinger equation onto one of the
basis states |@ ) we get
> Sl

[6n(E||)—E]an’kH+2 <¢’n,k” ! V | ¢"’ki| )an,?il-_—o ’
i)

(15)
where €, ( ﬁll) is the dispersion relation for the nth subband
and V is the impurity potential. Writing |@ _ ) under

|
the Bloch form we get

(16)

w4, . can thus be expanded in a Fourier series,
A (RG]
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u* RiTic L LK), (17

¥y T KEH m ¥ G
leading to

2 —_ k + K ,)T 4 —
@,z Ve, 5 S [dre" Ki=Fie Ry Tifdzc v, Kip2V (Fp2) (18)
Kn
I

As is usual in the 3D EMA (Ref. 14) we drop the K”;/:O @ o= 1 c eii’” i’i(p“ , 26)
terms and approximate C . for values k || and k! f m X Ny k|

K, X!
=
near the bottom K §) | of the band by

C - . ,=Cl2), (19)
ke k)
with C(z) defined by
ca={ g, (T2 | %% (20
If we note U, (7)), the quantity
Ua(T))= [ V(F),2)C(2)dz @1

and then the matrix element in (18) becomes the 2D

Fourier transform U,,(E[l—ﬁu) of U,(T}). The basic
equation (15) reduces to

[ea(K))—Ela_ - +2U(k|,_k|,)a =0
K

(22)

As in the 3D case this is the Fourier transform of the fol-
lowing differential equation:

[€x(—iV|))—E 4 U, (T))1F, (T} =0 (23)

where F,(T|)) is the usual envelope function, i.., the
Fourier transform of Ank- If in (23), €, is expanded to

second order we get the 2D effective mass equation,

. 2

(KD —E — LA+ U(F)) |Fa(Fp=0, (4)
2m

in the isotropic case.

Thus we have just proved that the 2D EMA is applic-
able as long as impurity binding energies are smaller than
the energy splitting between the subbands. If we take for
the ratio of these two energies a limiting value of 0.25 then
we find that our 2D treatment should be valid for

N <10-15.. (25)

The important point about the 2D EMA is that it contains
an effective impurity potential U,(T}) which is an average
of V(7|,z) over z defined by (21). This can be performed

if we know ®, o» -6, the solution of H, at the bottom of
ol
the nth subband.

V. APPLICATION OF THE 2D EMA
TO THE TIGHT-BINDING s BAND

An application of this theory can be readily made to our

test case of the tight-binding s band. In that case K || =
for each subband whose Bloch function is

where @ ; is the atomic function of atom i in the /th plane
(n is again the index of the subbands and varies from 1 to
N). .
Applying (21) and (20) with (26) and using approxima-
tions coherent with the tight-binding treatment one gets

Un(T)=23, | Cn1 | ZV(?”,ZI) , 27
I

where z; refers to the position of the /th plane along the z
axis. It is also well known that, in our simple case, the
coefficients | C, ;| ? reduce to

sm [nlm/(N +1)]

2 sin’[nlm /(N +1)]
i=1

’Cnllz

(28)

for / varying from 1 to N.

We can compare our 2D EMA and effective potential
U,(T)) to what we have obtained directly in Sec. II for
very narrow superlattices. We see that the equations to be
solved are identical. A first very important conclusion is
that our 2D treatment is valid for N < 10—15 and has the
correct limiting behavior for very small N. It thus
represents the desired solution to the problem when the
3D EMA does not apply.

In this tight-binding “test” case the effective potential
U,(T))) is defined as a finite series (27) in which the coeffi-
cients take the values given by (28). It is instructive to
look at the intermediate situation with moderately large
number of planes where the series can be approximated by
an integral. In this case U, (7)) becomes

L
: fo sinz(mrz/L)V(f’H,z )dz

Un(f.”): L > (29)
fo sin’(n7z/L)dz
where L is given by
L=Na . (30)

The integral expression (29) is more tractable in practice
than the series expansion of U,(T|)) and it is also more
adapted to a comparison with the 3D EMA. We consider
here only the lower subband and its 1ls impurity state. We
again choose for this state a variational envelope wave
function of the form

—
—a| r|||

F(?W:Ae 31

The corresponding binding energy E;(a) is given by
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2.2 2,2 L/2
Ea)=20  16ae” 52 o o) b, (2az)— Ny(2a2)] — 1jcosi(mz /L)dz ,

which we minimize to obtain the optimum value.

The results of this calculation are plotted on Fig. 2
where they are compared to those of the discrete linear
combination of atomic orbitals (LCAO) calculations. We
can observe that there is significant difference only for
very narrow superlattices (the maximum error for N =1
represents only 13% of the binding energy, while for
N >1 it is practically negligible). The 2D EMA in its
continuous version thus represents a quite accurate
method for predicting the binding energies for moderately
small number of planes (N < 10—15). As we have shown,
for very narrow superlattices the 2D EMA can be reduced
to its discrete version which gives essentially exact results.

VI. COMPARISON WITH THE 3D EMA
MODEL OF BASTARD

We now compare our results with those of previous cal-
culations and mainly the one by Bastard® based on the use
of the 3D EMA. This work was mainly concerned by the
lower impurity states derived from the lower subband.
The Hamiltonian of the problem was taken to be

# e

A (33)

H=—
within an infinite potential well of width L. To solve this
problem for the ground 1s state, a trail function of the fol-
lowing form was used:

Fi,=Asin(mz/L)e =", (34)

10 20 L/a

T OO OO P PRSP PP P

~2]

-49 +

FIG. 2. Comparison of binding energies obtained by a con-
tinuous model (solid curve) and a discrete calculation (crosses).
[Energy is reduced energy: E/(m*e?/2K*#).]
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(32)

I
which has 3D character in the exponential. From (33) and
(34) a total energy E; was obtained under the form

Els=€1+AEls ’ (35)

where €, is the bottom of the lower band for Hamiltonian
(33) in the absence of the impurity potential, i.e.,
2

€=——7(m/L)*. (36)
A first conclusion which emerges from this brief summary
is that Bastard’s model introduces two levels of approxi-
mation: one on €, and another on E ;. The first one cor-
responds to the fact that €, given by (36) is certainly a very
crude approximation to the exact bottom of the lower
band for very narrow superlattices and this error is not
easy to estimate in a general manner. If we now look at
the binding energy we find that there the situation is much
more encouraging. We have plotted in Fig. 3 the AE | of
Bastard’s 3D model and of our 2D model and find that
they give practically the same answer for N <20. After
that the 3D result is lower, meaning that the 3D wave
function is better for larger superlattices which is quite
normal.

A first conclusion that emerges is that the binding ener-
gy of the ls state predicted by the 3D EMA is extremely
good. Thus its main deficiency is-that it is not related to
the exact bottom of the band but rather to an approximate
value which can introduce easily errors of the order of the
binding energy. In this regard the 2D EMA as derived
here is superior since it gives a binding energy with respect
to the exact bottom of the bands. Another strong interest
of the 2D EMA treatment is that it applies equally well to
each of the subbands, which is evidently not true of
Bastard’s model (where there is no systematic way of
building wave functions for impurity states derived from
excited subbands which are orthogonal to the lower states).

L/a
. 10 20 30 40 50 60 70 80 90 100 110

!
=
i
!

FIG. 3. Binding energy of the lower state vs L, the width of
the well (expressed in interatomic distance) obtained using 2D
(dashed line) and 3D (dotted line) continuous models. [Energy is
reduced energy: E/(m*e?/2#K?).]



mconducﬁon band

valence band

S [ S B R

FIG. 4. Variations of the conduction and valence bands in a
superlattice.

This property is used in a forthcoming publication where
it is applied to the study of the corresponding resonant
states.”!

VII. TUNNELING EFFECT

Up until now we have considered the case of an isolated
infinite quantum well and thus neglected the tunneling ef-
fects between equivalent quantum wells. A simplified
description of what happens in practice is given in Fig. 4.
The most simple model accounting for that effect in the
conduction band is provided by the periodic square-well
structure of Fig. 5. Let us then discuss qualitatively what

I

. 1/2 172
cos%?:cos a -g;;—E-] cosh |b 2?m(VO—E)] ]
26—V | [2mE |*] .
- Sin (a
2WE(Vy—E) 7 s

The allowed energies are drawn in Fig. 6 for varying
values of the parameters. The product V,a? controls the
number of bands (i.e., the number of steps in the density
of states) while b /a influences the broadening of the states
into bands. It is seen that as soon as the potential well
contains more than two states, then the broadening be-
comes negligible for b/a > 1. It is only when this condi-
tion is realized that our approximation of considering one
isolated quantum well becomes valid. In Fig. 6 are also
given the states corresponding to an infinite quantum well

196 Vo
-44.39V,
Y%d % ‘{r: F ¥ Y Y
> b
7 —
& » §
b/a 5 iqgw bla 5 igw bla & iqw bla 5 G bla 5 KW b/a 5 iqw
(a) 15 (b) 3 (c) 45 (d)e (e)9 (f)i2

FIG. 6. Variations of allowed energies for the potential
described by Fig. 5, as b /a varies, for different depths [in units
of (2mV,a?)'/?/#] of wells. We have reported the levels of an
isolated infinite quantum well (IQW).
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igin)

a b

FIG. 5. Representation of an infinity of infinite wells of
depth V), width a, and a periodicity of L =a +b.

happens.

The energy bands for one isolated square well are sums
of # | k| |2/2m’|"| plus the discrete levels resulting from
quantification in the z direction. This gives rise to a step-
like density of states, the spacing between the steps corre-
sponding to the distance between the quantized levels.
When considering the periodic structure of Fig. 5 these
quantized states begin to interact and, as usual, broaden
into bands. This broadening is unimportant when it is
much smaller than the distance between steps in the densi-
ty of states of one isolated quantum well.

We have studied the shift and broadening of the steps
for different values of V,, a, and b characterizing the
periodic structure (Fig. 5). The allowed energies are given
by the solutions of the following equation*:

(37

-
showing that this approximation introduces an appreciable
error.

Finally we can apply Eq. (37) to the experimental situa-
tion observed by Dingle.> The characteristics of the po-
tential wells and the corresponding bands are given in Fig.
7 where they are compared to the positions of the exciton
lines. The fair agreement obtained shows that the periodic
square-well potential model represents a good description
of the actual system.

top of the well
225meV

bottom _of the well

FIG. 7. Allowed energies calculated by (37) (dark areas) for
the superlattice observed by Dingle (Fig. 12 of Ref. 3). We have
reported the excitons observed by Dingle (dashed lines) and the
levels of the isolated infinite quantum well (crosses). With the
notation of Fig. 5 we have V=225 meV, a =316 A, b =250 A,
and m* =0.068.
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VIII. CONCLUSION

We have described in this work different approaches to
the calculation of impurity states in superlattices based on
the EMA. We have first performed an exact numerical
test calculation for a single band and a narrow superlat-
tice. We have then proposed a new 2D effective-mass
scheme valid for moderate and small number of planes
N < 15, but applicable to impurity states derived from all
subbands. We have compared it to Bastard’s 3D EMA,
applicable to the lower states only, showing that both

C. PRIESTER, G. ALLAN, AND M. LANNOO 28

schemes lead to practically identical binding energies in
the intermediate range (3 <N < 15). Finally we have dis-
cussed the influence of tunneling between potential wells
showing that it is not negligible in the experimental situa-
tions of interest.

A natural consequence of this work is the application of
our 2D EMA to the calculation of the position and width
of resonances associated with impurity states derived from
excited subbands and thus falling into a continuum. This
will be the subject of a planned forthcoming paper.
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