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Diffusion on a random lattice: Weak-disorder expansion in arbitrary dimension
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We consider a random-hopping model on a regular lattice. We describe a method of calculating
the drift velocity, the diffusion tensor, and the conductivity. The method works for symmetric as
well as for nonsymmetric hopping rates. We can use this way to obtain systematic weak-disorder ex-
pansions. In the symmetric case we compare the results of the expansion with those of the
effective-medium approximation. In the nonsymmetric case, the expansion shows that the upper
critical dimension is 2. At d =2, we conjecture logarithmic corrections in the velocity.

I. INTRODUCTION

Classical diffusion in a random medium has been a sub-
ject of growing interest in the last few years. There have
been considerable efforts to explain the conductivity prop-
erties' of one-dimensional disordered conductors, and
now the problem can be solved by various methods: the
effective-medium approximation, the renormalization
group, the replica trick, etc. Another subject of great in-
terest is the problem of diffusion on percolation clus-
ters " in the neighborhood of the threshold. Several ap-
proaches were developed: Monte Carlo simulations, '

effective-medium approximation, ' ' random walks on
fractals, ' most of the recent works on this subject being
motivated by a conjecture of Alexander and Orbach. ' In
these two problems, the hopping rates were always as-
sumed to be symmetric, i.e., the probability 8'„„ofjump-
ing from site x to site y was equal to O' „. The nonsym-
metric case, although it has been less studied by physicists,
is also very interesting for several reasons.

(i) Firstly, it is a very important problem in probabili-
ty' ' theory, and several nice results have been obtained
in one dimension.

(ii) Secondly, it is one of the easiest disordered systems
to study: It has the advantage of being the generalization
to the disordered case of the random-walk problem, which
is one of the best understood problems of statistical
mechanics. However, the effect of disorder, even when
the distribution of hopping rates is very narrow, has non-
trivial effects: Qne finds, for example, in one-dimension
exponents varying continuously with the distribution of
hopping rates. ' ' ' ' Qne finds also a typical effect of
some disordered systems, namely that different quantities
such as the velocity and the diffusion constant are singular
at different points. ' Therefore, there is no doubt that a
better understanding of the effect of disorder in this
random-hopping problem will be useful in the study of
more complicated disordered systems.

(iii) A third interest for nonsymmetric hopping prob-
lems is that in physical systems one can consider the effect
of an external electric field ' or of local electric random

fields. Both effects give rise to nonsymmetric hopping
rates, the ratio between 8'„„and 8'„„being related to the
value of the electric field between sites x and y.

(iv) Lastly, it has been recently pointed out that the
one-dimensional case could explain the famous problem of
1/f noise.

In this paper we present a weak disorder expansion of
the velocity, the diffusion tensor, and the conductivity of
the nonsymmetric hopping problem. Since it is known in
one dimension' that new features appear even for nar-
row distributions of hopping rates, it is reasonable to think
that several interesting properties can be extracted from
these expansions in higher dimension. The method used
to generate these expansions is a generalization of a calcu-
lation done recently for a one-dimensional case. In prin-
ciple these expansions can be carried out to any order in
the width of the distribution of hopping rates. Then, to il-
1ustraie the interest of these expansions we analyze two
situations: the symmetric case, where we compare the re-
sults with those of the effective-medium theory and the
more general nonsymmetric case. In that case we find
that d =2 is the upper critical dimensionality because the
weak disorder expansion is singular for small velocities
when d (2.

Our starting point is a master equation

which describes the time evolution of P„(t), the probabili-
ty for one particle to be on site x at time t By definition . x
is a point of a d-dimensional lattice

X =X=(X),xg, . . . , Xp, . . . , Xg)

whereas W ~ „dt is the probability of jumping from site x
to site x' during dt. In this paper we shall consider that
the 8'„~ are randomly distributed according to a distribu-
tion which depends only on the distance x' —x. We shall
limit ourselves to the case where the 8'~ „are independent
random variables except that the two hopping rates 8'„„
and 8'„„ lying on the same bond will be possibly correlat-
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ed. This restriction of considering independent 8' „ is
not absolutely necessary but it will simplify our final ex-
pressions. We shall write

It is easy to obtain the time evolution of Q„(t) and S„(t)
from the master equation (1):

W„„=a(x—x')+5W'„„ (3)

and calculate the quantities of interest up to a given power
of the 58'„„.The zeroth order corresponds to a random
walk on a pure lattice with hopping rates a(x —x'). No-
tice that we do not need to restrict the jumps to nearest
neighbors. We shall express our results as functions of the
successive moments c„~(x —x') of the 5W„„defined by

=g( W„„Q„—W„„Q„),

dS =g( W„„S„—W„„S„)+g(x—x ') W„„Q„.dt I

c„~(x—x') = ((5W„„)" ~(5W„„)l') . (4)

The paper is organized as follows. In Secs. II and III
we write the equations which lead to the expressions of the
velocity, the diffusion tensor, and the conductivity. In
Sec. IV we expand the solutions of these equations in
powers of the 5W„„and we obtain the first corrections
due to the presence of disorder. In Sec. V we give two ap-
plications of these expansions. We compare the results of
this expansion with the prediction of the effective-medium
theory in the symmetric case. Then we show that the
weak disorder expansion becomes singular in the nonsym-
metric case for d & 2 and we examine the consequences on
the critical behaviors of the velocity.

S„(t) S„r+T„ if t~ ~ . (12)

If we replace Q„and S„by their long-time expansions in
Eqs. (9) and (10), we find that Q„, S„,and T„must verify

g( w„„g„—w„„g„)=o,
X

(13)

(10)

As in the one-dimensional case, ' we expect that in the
long-time limit (t~ oo ), these quantities have the follow-
ing behaviors:

Q„(t)~g„ if t~ ca,

II. THE VELOCITY AND THE DIFFUSION
TENSOR

g(w„„s„.—w„, „s„)=o, (14)

In this section we derive the expressions which give the
velocity and the diffusion tensor. The method ' we use to
obtain these quantities consists of describing the properties
of the steady state of a periodic d-dimensional hypercubic
lattice whose elementary cell contains A=X sites. The
hopping rates in the elementary cell are arbitrary. The
reason why we need to make the calculations on a periodic
lattice is that the steady state will be characterized, in par-
ticular, by the probabilities P of being on sites x in the
long-time limit. For an infinite lattice, the P„vanish and
the idea of a steady state is not valid. However, if the lat-
tice is periodic, the sum of P„over all the points which
can be deduced from x by the translations of the lattice
has a finite limit.

Because the problem is periodic with a period A, in each
direction we have

X

(W„„T„—W„„T„)+g(x—x ') W„„Q„=S„.
X

(15)

We are now going to show that if we know the solutions
of (13)—(15), we can calculate the velocity and the dif-
fusion tensor.

If we define (x&(t) ) and (x„(t)x,(t) ) by

(x„(r)) =+X„P„(r), (16)

(X„X (t)) =+X„X„P„(t)

(in this section, the angular brackets denote the average
over the random walk), we can calculate the components
of the velocity v and of the diffusion tensor D by

~x,x =~+.~, +n~

where n is a d-dimensional vector with integer components

71 =(ll l, lip, . . . , tip, . . . , lid ) .

It is convenient to introduce two quantities

Q„(t)=QP„+„1(t),

vp = 111n (x~ )
t~a) dt

Dp~ = 1 11111 ( (X~x~ ) —(X
1 ) (X~ ) )

taboo dt

Let us first calculate the velocity

(18)

S„(t)=g( x+ n A, )P„+„1(t),
n

=gx ( W„„P„W„„P„)—
X,X

where the sum runs over all vectors n HZ The S„(t) are
d-dimensional vectors as x and n.

= g(x„' —x„)W„„P„.
X,X

(20)
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In the limit t~ oo, one obtains (22)

v„= g g(xp —x~)W„„Q„,
x&A x'

where the Q„are the normalized solutions of Eq. (13):

(21)
The calculation of the diffusion tensor is similar to the

calculation of the velocity. One finds in the long-time
limit

(xpx„)=t g g[(xp —xp)W» „(S„)+(x' —x„)W„„(S„)p]
x&A x'

g[(xp —xp)W„„(T„)„+(x„'—x )W»»( T„)p] +g g(xp —x~)(x„' —x„)W„„Q„, (23)
x&A x' xEA x'

g (S.) (S, ) + g g [(T )„(S,) +(S )„(T,)„] .
xFA yEA xGA yEA

(24)

The solution Q„of Eq. (13) is unique provided that one cannot divide the sites into two subsets of sites x between which
the W~ would be zero. If we assume that this is not the case, there is only one normalized solution of (13). Therefore
the solution of (14) is

S» =VQ»

where V is a priori an arbitrary constant vector. It is very easy to find that

(25)

(26)

by summing Eq. (15) over x and by comparing the left-hand side to Eq. (21). Then when one sets relations (23) and (24)
into (19), one obtains

Dp„—,' g QI[(x„'———xp)( T»)„+( x,
' —x )( T)p] W»»+[( xp

—x~)(x„' —x )Q„W„„]I

(27)

One should notice that because of (25) and (26), the term
linear in time in (23) is canceled by the term linear in time
in (24). In concluding this section we have shown that if
we can solve Eqs. (13)—(15), then we know how to calcu-
late the velocity and diffusion tensor [Eqs. (21) and (27)].

III. THE FREQUENCY-DEPENDENT
CONDUCTIVITY

W„„(t)= W„„exp[E.(x —x ')e' '] . (28)

Since the conductivity describes only linear effects we can

We are now going to obtain a general expression of the
ac conductivity. The method that we follow here is a gen-
eralization to arbitrary dimension of a formulation yet
used in one dimension. There is a slight modification in
the definition which has the effect of adding to the con-
ductivity a constant term, independent of frequency, and
therefore the physical meaning of the results remains un-
changed.

As in Sec. II, we work her= on a finite lattice of A sites
with periodic boundary conditions. We consider that the
effect of a time-dependent uniform electric field Ee'"' of
frequency co is to give a time dependence to the hopping
rates 8„„.In the presence of the field the 8'„„should
be replaced by W» „(t),

linearize this relation

W„„(t)=W„„[1+E.(x —x ')e'"') . (29)

We have now to study the long-time behavior of the mas-
ter equation with the hopping rates 8'„„,

dp„ =g ( W„„P„W„„P„). —
dt

(30)

In the long-time limit, the P„have the following time
dependence:

P„(t)=Q„+R„Ee'"' . (31)

and

g(W», Q —W,»Q»)=0
x

i coR„=g( W„„R„—W„„R„)
x

(13')

+g [W„„.( x —x ')Q„—W„„(x ' —x )Q„] .
x

(32)

If we put (31) into (30), we find that the zeroth order and
the first order in the field give the equations verified by
Q„and R„:
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Qne should notice that if one sums this equation over x,
one finds

gR„=0,

Q„=(1+q)„)/A, (36)

where the qr„represents the change in the solutions of (13)
due to the 58„„.The y„must obey

which expresses the conservation of the probability.
The velocity at time t is always given by

dPx
v(t) =gx =g gx( W„„P„—W„„P„)

dt

+[a(x' —x )p„—a(x —x')y„]

=Q[5W„„(1+y„)—5W„,„(1+y )] .

=g g( x ' x) W„—„P„.'
X

Equation (37) is written in such a way that the p can be
found iteratively,

If we replace now the P and the 8'x ~ by their expres-
sions (29) and (31) in the long-time limit, one finds that
the component v„(t) of the velocity has the following
form

GA(y' —x,y —x)5W««(1+@«),
y,y'E:A

where the Green's function GA is solution of

(38)

v~(t) = V„+go„E„e'"', (34)
+[a(x' —x )Gz(y' —x,y —x ) —a(x —x')GA(y' —x',y —x')]

where V is the drift velocity that we have obtained in Sec.
II, =g(5„«5„«—5„«5„«) . (39)

V„= g g(x„' —x„)W„.„Q„,
X&A x'

and where the tensor o.
& is the conductivity tensor

cr„= g g(x„' —x„)W„„(x' —x„)Q„
x&A x'

+g(x„' —x„)W„„(R„),
X

(21')

(35)

In order to keep the Q„normalized, one must choose the
solution GA of (39) which has the property that for an ar-
bitrary choice of y and y'

g GA(y' —x,y —x ) =0 .
XEA

(40)

Equation (39) can be solved easily in the Fourier space and
one obtains

So we see that to calculate the conductivity tensor we need
to find the Q„and R„which solve Eqs. (13) and (32), and
then we can use formula (35).

1 e/qy e tqy

ga( )(1—'") (41)

IV. THE WEAK DISORDER EXPANSION

We saw in Secs. II and III that one can calculate the
velocity, the diffusion tensor, and the ac conductivity by
using Eqs. (21), (27), and (35), which require the solutions
of (13), (15), and (32). It is almost always impossible to
solve these equations except in the pure case or in some
one-dimensional situations. However, it is easy to expand
the solutions of these equations in increasing powers of the
5W„X. Let us show here how this expansion works to
find the solutions of (15) and (32).

If we replace the W„„by their expression (3), one can
write the solutions Q„of (13) in the following form:

where the sum runs over all the q of the reciprocal cell ex-
cept q=0, i.e.,

2~n
&

2~n z 2m.nd
(42)

with 0&n; &A,.
One should notice that the restriction q&0 is due to the

condition (40). Therefore, we do not need to define (41)
for q =0 where Eq. (41) is indeterminate.

We can now find the complete expansion of the velocity
by replacing Q„by its expansion in Eq. (21). One obtains

V„=gz&a (z)+gz„—g 5W„+,„+gz„—g 5W„+,„G~(y' —x,y —x)5W« ~

«
1 1

Z

+gz„—g 5W„+,„Gz(y' —x,y —x)5W««GA(t' y, t —y)5W;, —
z x,y,y', t, t

(43)

There is, of course, no difficulty in continuing this expansion to any order in the 68'y y. In the thermodynamic limit this
expansion becomes simpler for two reasons. Firstly, the sums of 58'x can be replaced by the moments c» defined in
Eq. (4). Secondly, the Careen s function GA becomes an integral over the Brillouin zone. For the velocity in the thermo-
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dynamic limit, one gets the following expression:

V„=gz„a (z) +gz„[G(z,O)c2 0(z)+ G(O, z)c2, (z) ]

+gzz[G (z,O)c30(z)+ G(z, O) G (O,z)c3 q (z)+ G(O, z)G( z—,O)c3q(z)+ G(O, z)G(0, —z)c3 $ (z)]+ (44)

and G(y', y) is just the limit of GA(y', y) when A~ no, i.e.,

1 2~ ~ „e'~—e'~~
G(y', y ) = d "q

(2m. ) 0 o ga(z)(1 —e'~')

(45)

In cases where the indetermination at q=O would be a
problem, one can always use the fact that G is the limit of
GA when A~op. Although the calculations are slightly
longer to obtain the diffusion and the conductivity tensors,
they do not present any new difficulty.

One solves again perturbatively Eqs. (15) and (32) in the
same way as we solved Eq. (13). We give in the Appendix
the expansion of the velocity [Eqs. (Al) and (A2)] up to
the fourth order and the expansions of the diffusion tensor
[Eq. (A3)] and of the conductivity up to the second order
[Eq. (A4)]. We are now going to illustrate these expan-
sions by two examples: the conductivity in the symmetric
case and the velocity in the nonsymmetric case.

V. APPLICATIONS

The first thing we did was to verify that in the weak
disorder limit these expansions agree with the exact ex-
pressions of the velocity and of the diffusion constant in
one dimension with nearest-neighbor hopping rates. '

However, it is clear that there are a lot of situations where
I

the expansions can give interesting information. For ex-
ample, in one dimension, it is a way to study cases which
are not exactly solvable: the case of hopping rates to an
arbitrary number of neighbors, strip geometries, etc. In all
dimensions it can also be used in several situations and it
would be tedious to discuss all of them. Therefore, we
have chosen to give here only two examples: the sym-
metric case and the velocity in the nonsymmetric case.

A. The symmetric case

a(x —x')=a(x' —x),
58„„=58'„„,
c„z(x—x') =c„o(x—x') =c«(x —x') .

(47)

(48)

(49)

When one uses these relations in the expressions
(Al) —(A4) of the Appendix, one finds that the velocity
vanishes as it should in the symmetric case and that the
conductivity tensor is given by

In the symmetric case one considers that the 8"„„veri-
fy for any choice of x and x'

(46)

If we look at Eqs. (3) and (4), one finds that (46) implies
that

cT~~= Qzpz~a (z) +2+zpz~c20(z) . fd q
1 . . . d

e'~' —1

(2m)" i co+ ga(y)(1 —e'~~)
(50)

It is easy to check that the diffusion tensor D& is related to the conductivity o.
&

in the limit co~0

2Dpv 1~m 0pv .
Q7 —+0

(51)

It is interesting to compare the content of (50) with the effective-medium approximation. To do so we take the for-
mulas (17) and (18) of Ref. 4 (see also Ref. 5). For a hypercubic lattice in dimension d, the conductivity o, in the
effective-medium approximation is given by

O,m
——d8 m, (52)

where 8 is a function of co given by the following equation:

c

8'~ —8'„ =0,JF„„[1 icoGO(iso—)]+[(d —I )+icoGO(i o))]W
(53)

where 8'„„ is a hopping rate, the average must be taken over the distribution of W„„,and Go(ice) is defined by

Go(iso)= d d q .
1 1

(2m. )" icu+2d —2(cosq~ + +cosqd )
(54)
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When one calculates 8' in cases where the distribution
of 8' ~ is very narrow, one finds that the effective-
medium prediction reduces to (50), except a factor d/2
which comes just from the definition of the conductivity.
Therefore, up to first order in this weak disorder expan-
sion, the effective-medium approximation is exact.

B. The nonsymmetric case

Let us now investigate the nonsymmetric case, i.e., the
case where the matrix 8'„~ is not symmetric. The first
thing one can notice in the expressions (A3) and (A4) of
the diffusion tensor and of the conductivity is that Dz is
symmetric whereas o.

& is not symmetric:

C
ln

4mDp

Dp

Vp

For 1&d &2

and for d = 1

CV= Vo —sgn( Vo) +
2Dp

V„=V„[1—const c
~

V0
~

' ~'+. . ], (60)

(61)

A(0) —A(q) =pa (z)(1 —e'~') .
z

(55)

These denominators can vanish only at q =0.
Around q =0, A (0)—A (q) has the following expansion:

3 (0)—A (q) = i V0 q—+O(q ),
where Vp is the velocity in the pure system

VQ ——gaza(z) .

(56)

(57)

Dpv =Dvp

opto'~~ ~

Therefore, the Einstein relation (51) is no longer valid
here. This is not very surprising since, in general, there is
just a dynamical steady state but no equilibrium which
corresponds to the nonsymmetric case.

When one looks at the expressions which give the velo-
city, the diffusion tensor, and the conductivity, one sees
that all the terms of the weak disorder expansion are sums
of integrals which contain in the denominator differences
such as A (0)—A (q),

d. =2. (62)

For d &2 velocity V vanishes linearly with V0 [Eq. (58)]
and the only effect of a weak disorder is to renormalize
the slope. In the contrary case, for d &2, the expansion
near VQ is singular [Eqs. (59) and (60)], and one needs to
resum the singular expansion. The best way to do it is to
use the renormalization-group techniques.

The method is described elsewhere. One of the main
results of field-theory approach is that the velocity van-
ishes in d =2 in the following way:

V- Vp

c ln(const/V0)
(63)

For d & 2, we think that ea h new term in the expansion is
more singular in the limit Vp —+0. It is easy to verify that
this behavior in one dimension agrees with the exact ex-
pression ' in the limit Vp —+0.

The first important result which comes out from these
behaviors near Vp ——0 is that the upper critical dimension
1S 2,

gz„z a(z) =2D05„„,

gzzz„[c20(z) —c2 ~ (z) ]=c5&„

(D0 is the diffusion constant of the pure case, and c is a
natural measure of disorder).

Using this notation, we get the following behaviors (in
the V0~0 limit): for d ~2

V„=V&(1+const c+. . . ),
and for d =2

V„=V„'(1—r+ 31'+
with

(58)

(59)

It is then clear that when Vp goes to zero, the expansion
may become singular.

An analysis of the expansion of V& [see (Al) and (A2))
in the small-Vp limit leads to a behavior which depends
strongly on the dimensionality. Let us assume for simpli-
city the following isotropy properties:

This behavior shows that in d =2 there is just a critical
point of V at Vp ——0, in agreement with what Paladin and
Vulpiani claim. This is in contrast with d =1, where the
velocity V vanishes' in a whole phase.

VI. CONCLUSION

In this paper we have presented a way of calculating the
velocity, the diffusion tensor, and the conductivity on a
random lattice. To do so, one needs to solve Eqs. (13),
(15), and (32). This could be done numerically for small
samples. Here we have followed this approach to obtain
weak disorder expansions for hypercubic lattices of arbi-
trary dimension. In principle these expansions can be car-
ried out to any order, although the calculations become
longer and longer. We have looked at the consequences of
our expansion in the symmetric case: We find that the
effective-medium theory gives the first term of the expan-
sion correctly. Therefore, one needs more terms in the ex-
pansion to see where the effective-medium theory breaks
down.

For the nonsymmetric case, we have seen that our weak
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disorder expansion shows that d, =2 is the upper critical
dimension. The field theoretical approach leads to the
behavior (63) for the velocity V in the limit Vp~0 in
d =2. This behavior will be justified in a planned forth-
coming work by using renormalization-group tech-
niques. We expect the log ' behavior (63) to be observ-
able in a region which vanishes for small disorder
(

~

log Vp
~

&&1/c). It would be interesting to know if this

prediction (63) could be seen in numerical simulations or
in experimental situations.
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APPENDIX

In this appendix we give the weak disorder expansions of the velocity, the diffusion tensor, and the conductivity tensor.
We have carried out the expansion of the velocity up to the fourth power in the 5W„„. The result is

V„=gz„B(z), (Al)

where B(z) is given by

B(z)=a(z)+[cpp(z) —c2 &(z)]I(z)+[c3p(z) c3](z)]I (z)+2c3 $(z)I(z)I( —z)

+ Ic4p(z) —cq~(z) —3c2p(z)[c2p(z) —cz](z)]jI (z)

+3 Icy )(z) —cg2(z)+cz ~(z)[c2p(z) —c2 ](z)]II (z)I( —z)

+c 2p(z)g Icq p(y)[I 2(zy) +I 3(z y)I(z)] +c 2, (y)[I 3(z, —y)I(y) —Iz(zy)] J

—c2 ~(z)g Icpp(y)[I4(z y)+I3(z y)I(y)]+c2&(y)[I3(z, y)I(y) —I4(z y)] I, — (A2)

where the functions I, I2, I3, and I4 are defined by

1 &qz —1I(z) = d gp p A(0) A(q)

[one should notice that I (z) is just a way of rewriting G (z, O) since I(z) =G(z, O)],

(e'~+«' —l l(e'~~ —1)(e'+' 1)—
I2(z,y ) = „.. d "p d"q

(2~)~d [A (0)—A V +q)1[A (0)—A V )][A(O)—A (q)]
1 i. ~ (e'«' —l)(e'~ —1)

(2n. )d [A (0)—A (q) ]
(e'~~ —1)(e'~—1)(e«" e'«')—

I~(z,y)= f . fd pd q(2m)2d " " [A(0)—A (p)][(A (0)—A (q)][(A (0)—A(p +q)]
and where A (p) is defined by

A (p) =ga (z)e'~' .

We have also obtained the weak disorder expansions of the diffusion tensor and the conductivity tensor,

D» —,gz&z~a (z)+ —,gz&——z„[c2p(z)+cp](z))I(z)+ —,
' g[z&y„a(y)+z„y&a(y)][c2p(z) c2 ~(z)]J(z),—

z,y

(A3)

where I has been defined and where J is defined by

1J(z)= ~
. . d q

(2n ) [A(0)—A(q)]'

cr„=gz„z„a(z)+gz z„[c2p(z)+c2 &(z)]H(z, co)+gz&y„a(y)[c2p(z) c2&(z)]H2—(z,y, co)
z,y

+gz&z„[c2p(z) —cq ~ (z)]I(z), (A4)
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where

1 d
e'q' —1

H(z, to)=
d d q(2')" i to+A (0)—A (q)

1 (e'~' —l l(e'~' —l )
H2(z, y, to) = . . . ddq

(2tr}d fico+A(0) —A(q)][A(0) —A(q)]
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