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The problem of determining the static or dynamic elastic displacement field in a semi-

infinite medium bounded by a rough, planar, stress-free surface is a random problem due to
the stochastic nature of the surface-profile function. %'hat is usually solved for in such

problems is the displacement field in the medium averaged over the ensemble of realizations
of the surface roughness. With the aid of Green's theorem we have replaced the true boun-

dary conditions on the displacement field at the actual surface of the medium by effective
boundary conditions satisfied by the average displacement field at the nominal, flat surface.
The average field can then be obtained by solving an effective (nonstochastic) problem that
is formally similar to the flat-surface problem. We apply this method to obtain the attenua-

tion length and frequency shift of a Rayleigh wave due to surface roughness on an isotropic
medium. The results are found to be in agreement with those of a calculation based on the
boundary-matching method (Rayleigh's method).

INTRODUCTION

The study of dynamic and static properties of a
semi-infinite elastic medium bounded by a rough,
stress-free planar surface is made difficult by the
necessity of satisfying the stress-free boundary con-
ditions point by point along an irregular surface. It
is attractive, therefore, to explore the possibility of
replacing the original boundary conditions on the
rough surface by modified, effective boundary con-
ditions on the planar surface that is the nominal sur-
face of the solid. In this paper we show how this
can be done if it is not the actual displacement field
in the solid that is being sought, but rather the dis-
placement field averaged over the ensemble of reali-
zations of the surface roughness. The limitation of
the treatment to the mean displacement field in a
solid is not overly restrictive. It suffices for the
determination of the dispersion relation for Rayleigh
waves propagating along a rough surface, and for
obtaining the specular component of an elastic wave
scattered from a rough surface, for example. There
are other applications to which the results obtained
in this paper can be put, e.g. , the determination of
the static and dynamic Green's tensors for an elastic
half-space bounded by a rough surface.

Effective boundary conditions have been used in
the study of other problems associated with rough
surfaces. The derivation by Bass' of the boundary
conditions for the averaged electromagnetic field at
a statistically rough surface is an example of prior
work of this type.

Although the derivation of the effective boundary

conditions for the averaged displacement field will

be presented here in complete generality, we will

quickly specialize the results obtained to the case of
isotropic elastic media, for which quite explicit re-

sults can be obtained.
The outline of this paper is as follows. In Sec. II

we consider an arbitrary semi-infinite elastic medi-
um bounded by a rough surface. The actual vector-
displacement field satisfies the stress-free boundary
conditions at every point on the rough surface. Be-
cause of the presence of roughness, the actual dis-
placement field is a random field. We decompose it
into two components: its average component men-
tioned above and its fluctuating component. With
the assumption that the roughness is sufficiently
small so that a perturbation theory is adequate, we
are able to transform the original stress-free boun-

dary conditions at the actual surface into new boun-

dary conditions for the average component of the
displacement field at the nominal flat surface. In
physical terms, the new boundary conditions for the
average field can be considered as defining an effec-
tive, fictitious stress field that, applied at the nomi-
nal flat surface, will give the same average results as
the original boundary conditions.

In Sec. III we specialize the effective boundary
conditions to the case of an isotropic elastic medi-
um. The algebra involved in so doing is rather
lengthy, but the final result can be given in a rather
concise form.

We emphasize that, having obtained our effective
boundary conditions, we have in effect taken into
account the irregular nature of the surface (and the
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random nature of the problem) once and for all. For
example, with our effective boundary conditions we
can obtain the average Green's functions for a
semi-infinite elastic medium bounded by a rough
surface by a procedure that is forraally identical to
that developed by Maradudin and Mills for the
evaluation of the Green's functions appropriate to
the case of a flat surface. That is, both sets of
Green's functions obey the same differential equa-
tion and satisfy boundary conditions at the surface
x 3

—Q. In the flat-surface case those boundary con-
ditions are the stress-free boundary conditions. In
the rough surface case they are the effective boun-
dary conditions we obtain in this paper. We note
that the aforementioned average Green's functions
are a basic ingredient for the study of a number of
problems of physical significance, such as the Bril-
louin scattering of light from a rough surface.

That application of our theory has been relegated
to a future publication. In Sec. IV we outline a
simpler illustration of our theory by obtaining the
dispersion relation coii (q~~ ) of a Rayleigh wave prop-
agating along a rough surface. (Here q~~ is a wave
vector parallel to the nominal surface. ) We obtain
an expression for the perturbation due to the rough-
ness on the dispersion relation that applies when the
surface is flat. That perturbation has both a real
and an imaginary part. The real part measures the
shift in the frequency away from the flat-surface re-
sult. The imaginary part measures the inverse at-
tenuation length of the Rayleigh wave.

This paper is concluded with four Appendixes. In
particular, in Appendix A we obtain one of the cen-
tral results of our foririalism, namely an expression
for the fluctuating component of the elastic dis-
placement at an arbitrary point inside the medium
in teriiis of the values of the average displacement
field at the surface x3 —0.

II. FORMULATION OF THE PROBLEM

We consider a general elastic medium that occu-
pies the region x3 & g(x~~), where g(x~~) is the
surface-roughness profile function (see Fig. 1). It is
a random function of the two-dimensional position
vector x~~=xixi+xpxp, where xi and xp are two
mutually perpendicular unit vectors in the plane
x3 ——0.

The medium is characterized by the general,
linear stress-strain relation

T~p(x
~

co) = Qc~p» u&(x
~

co) . (2.1)
Bx~

Here u&( x
~

co) is the frequency Fourier transforrii of
the elastic displacement field, T p( x

~

co) is the stress
tensor of the elastic medium, and c p&„ is the

x, = ((x„)

norn
surface

FIG. 1. A randomly rough surface profile.

fourth-rank elastic modulus tensor, which is as-
sumed to be independent of position right up to the
(rough) surface. Unless otherwise indicated, in this
paper Greek indices denote Cartesian components
xi xp x3 (or 1,2,3) ~

The equation of motion for u„(x
~

co) is given by

g L „(x
~
co)u„(x

~

co) =Q, (2.2)

g T p(x
~
co)np ——0,

P x3 ——g( x
~~)

(2.4)

where np, the unit vector nor-nial to the surface at
each point, has components proportional to the vec-
tor

Bg(x ) Bg(x )
, 1

Bxi Bxp
(2.5)

We now make the assumption that the roughness
is "small, " in the sense that it is possible to expand
all the dynamical variables in a Taylor series as fol-
lows (x =

x ~~+x3x3).

F ( x )
i „&~-„~——F( x ii', 0)+g( x

i i
) . F( x )

x3 x3 ——0

2

+ —,g (x()) F(x)
Bx 3 x3 ——0

J

(2.6)

and obtain meaningful results by keeping only terms
of up to O(g ). Thus we substitute (2.5) into Eq.
(2.4) and expand the stress tensor according to Eq.
(2.6). In this way we obtain the result that

where the differential operator L „(x
~

co) is defined
by

2

L~&(x
~

co)=co 5~&+ —Qc~p», (2.3)
p p xp x~

p being the mass density of the medium. Equation
(2.2) applies at every point inside the medium. It is
supplemented by the stress-free boundary conditions
at the actual, rough, surface:
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g pc „, g(x~~) ax
a

+«xi')
X3 X~

u„(x
~

co)
x3 ——0

P)V
+«x()) + —,g (x()) 2 u„(x

/
co)

x~ ax 3ax„ 'x3 ——0
=0. (2.7)

In Eq. (2.7) and in the rest of this paper, the Greek
index 5 denotes the coordinates x, and x2 only.
This convention exploits the fact that x, and x2
enter all the equations in an equivalent way.

Now, as mentioned in the Introduction, because
of the random nature of the surface-profile function,
the quantity of interest is not the displacement
u&(x

~

io) itself but its average (uz(x
~

ro) ) over the
ensemble of realizations of the surface roughness. It
is then useful to introduce the operator P (in this
context called the "smoothing operator") such that

Pu~(x
i
co)=(up(x

i
co))

together with the operator Q such that

P+Q =1.

(2.8)

(2.9)

With these definitions we obtain the useful identity

=(u„)+Qu„.
(2.10a)

(2.10b)

Thus Qu& describes the random fluctuation of uz
about (uz ). We also note that an expansion of u&
of the form u„=uo+u &g+ in Eq. (2.10b) indi-
cates that the vector Qu&(x;ro) is of 0(g). This

I

I

conclusion will be used below repeatedly. We next
note the following results:

Pg( x ii) =0,
Pg (xi')=5

P g(xi')=0,
axs

P«x(() g(x(()=0 .
axs

(2.11)

(2.12)

(2.13a)

(2.13b)

Equation (2.11) states that it is possible to define a
flat, nominal surface (in fact, we measure the coor-
dinate x3 from that surface). In Eq. (2.12) we have
introduced the root-mean-square departure of the
surface from flatness 5, which is one of the two
parameters that characterizes the ensemble of rough
profiles. (The other, the transverse correlation
length a, is introduced explicitly in Ref. 3.) Finally,
Eqs. (2.13) show that the limit involved in differen-
tiating g can be interchanged with the averaging
operator P, i.e., that averaging commutes with dif-
ferentiation.

We now act on Eq. (2.7) from the left with the
operator P. Utilizing the identity (2.10b) and Eqs.
(2.11)—(2.13) leads us to the result that

Ca3I V QP X = g g c &„„p Qu„( x
~

co)
ag( x(()

ax, ax, x3 ——0

p g(xi') Qu„(x iso)
x3ax~ x3 ——0

+ —,5
1 (u„(x

~

ro))
ax 3ax~ x3 ——0

(2.14)

c~3p~ up( x
~

co) =0
X x3 ——0

(2.15)

Thus Eq. (2.14) implies that if we want to work with

In Eq. (2.14) we have kept all terms through 0 (5 ).
At this point it is instructive to note that, in the

case of a medium bounded by a perfectly fiat sur-
face, the boundary condition for u&(x

~

co) is [see
Eqs. (2.1), (2.4), and (2.S)] as follows:

I

the gverage of the elastic displacement field ab ini
tio, the stress-free boundary condition (2.15) that ap-
plies in the absence of roughness is effectively re-
placed by Eq. (2.14), whose right-hand side may be
interpreted as defining an effective (fictitious) stress
that is applied at the average, nominal surface.

Now, Eq. (2.14) is not the result we are seeking,
since in the first two terms of the right-hand side
there enters the fluctuating component of the dis-
placement vector Qu&. We thus need to relate Qu&



A. G. EGUILUZ AND A. A. MARADUDIN 28

Ca3pv up, X CO

x3 ——0

tv X QpBx x3 =0
(2. 16)

and (u&). Since Qu& enters Eq. (2.14) multiplied
by g(xi') (or its derivatives), we need to obtain such
a relation to O(g) only (this simplifies the problem
considerably).

We proceed to establish a boundary condition for
Qu„by acting on Eq. (2.7) from the left with the
operator Q. Recalling Eqs. (2.10)—(2.13) and the
comment following Eq. (2.10), we are led to the re-
sult [valid to 0 (g)] that

where

8 „„(x)=—c 3q„g(xi')
X3

+ gc s„„g(xi') (2.17)

We next notice that the vector Qu„satisfies the
same differential equation as u& itself, namely Eq
(2.2). A generalization of Green's theorem for the
differential operator L~&, expressing Qu& in terms
of its boundary value [that is, according to Eq.
(2.16), in teriiis of (u„)] suggests itself. This ques-
tion is addressed in Appendix A, where we obtain
the result [see Eq. (A13)] that

Qx&(x
I

cu)= —2 f d x((D& (;x xi',((Ol~) I).(I„(x')
~ G, e, r

( u p( x'
~

ro) )
Xy x3 ——0

(2.18)

where the integral runs over the plane x3 ——0. The "flat-surface" Green's functions Dz„(x;x'
i
co) (Ref. 2) are

defined by Eqs. (A6) and (A7).
Substituting Eqs. (2.18) into Eq. (2.14) leads us to the desired effective boundary conditions for the average

displacement field (A, = 1,2,3):
T

Cg3pv Qp X CO

x3 ——0

a
CA3pv 2 up X CO

Bx 38x x3 ——0
T

+ 2 Xc„„„f d'x„D„.(x;x„,OI ~)
P p, v X

a, P, y
x3 ——0

X F."pr(xi', x') (up(x'i~))
Bx r I

x3 ——0

2 2

g cx3x„ f d x
(( D~ (x;x((,O

I

Ql)

p, v X3 X~
a, P, y

x3 ——0

X F&pr(xiii, x ) (u, (x i~))
Xy x3 ——0

(2.19)

(T)
FIzPy( X

i i
j X ) = C(z3Py Bxi

2

W(
i xiii

—xii f
)—— + QCGspr -W(

/ xi' —xi' f
),

Bx3 s BxiBxs
(2.20)

(2)
FGpr( xi',

' x ) = —c~3pr
X2

W(
i xi' —xi' f

) + QCGspy W(
i xii —xi' i ),

BX 3 s BX2BXs
(2.21)

I I

FGP'r(

xiii,

x ) = —
c(g3Py W(

i
x

[/
x

[/ /
) + Q c~sPr W( [ x/

f x/( /
)

Bx3 s Bxs
(2.22)
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Here we have introduced the correlation function

&g(xi')g(xi')&=5 W(
i xi' —xi' i ), (2.23)

chosen such that W(0)=1. [This ensures that Eq.
(2.23) is consistent with Eq. (2.12).]

We note that Eq. (2.23) embodies all the inforina-
tion we need about the statistical properties of the
rough surface [in addition to the existence of a flat
nominal surface; see Eq. (2.11)]. Equation (2.23)
states that the surface-roughness profile is a station-
ary stochastic process. We remark that the sta-
tionarity assumption (the assumption that the corre-
lation function 8' depends on the vector difference
between the points xll and xll and not on their
separate locations on the surface) has the conse-
quence that infinitesimal translational invariance is
restored to the problem for quantities that are aver-
ages over an ensemble of rough surfaces. This fact
will be exploited in Sec. III when we obtain (for the
case of an isotropic medium) effective boundary
conditions for the Fourier transform of the displace-
ment field.

As indicated in the comment following Eq. (2.15),
the right-hand side of the effective boundary condi-
tions given by Eq. (2.19) can be thought of as defin-
ing fictitious stresses that, applied at the flat nomi-
nal surface, will give the correct average results. We
emphasize that although those effective stresses
have rather complicated definitions, Eq. (2.19) offers
the following advantageous approach to the solution
of problems involving rough surfaces. This is that
with the procedure leading to Eq. (2.19) we have ef-

l

fectively taken into account the irregular nature of
the boundary surface once and for all. Having ob-
tained Eq. (2.19), the calculation of average displace-
ments, Green's functions, etc., can be fornially car-
ried out as if the surface were flat (and the problem
nonrandom). We illustrate the use of our effective
boundary conditions in Sec. IV.

III. ISQTROPIC MEDIUM

2 2
catv p[(cl 2ct )5ap pv

+c, (5 „5p„+5 Pp„)] . (3.1)

We shall illustrate the algebra involved in going
from Eq. (2.19) to Eq. (3.24) by considering one typ-
ical term of Eq. (2.19) in detail, namely,

A. Effective boundary conditions
in configuration space

The effective boundary conditions (2.19) apply for
an arbitrary elastic medium. It is of interest to
analyze them in detail for special cases. Thus in this
section we consider the case of an isotropic medium.
(The medium is isotropic from the point of view of
its bulk elastic properties. ) Such a medium is a par-
ticular case of a medium with cubic symmetry for

~ 5 2 2which c i2 ——c i i
—2C44, with c i i ——pci and c44 ——pc, ,

where ci and c, are, respectively, the speeds of longi-
tudinal and transverse elastic waves in the bulk. Al-
ternatively, for an isotropic medium we have that
the elastic modulus tensor c p&„ is given by the
equation

Ig c„„„f d x'
~

~D„(x;x~~, 0~m)
p~» V

a, P, y
x3 ——0

F~pr(xi', x ) & pu(x i
co)&

x3 =0
(3.2)

We note that in the case of an isotropic medium, the Green's functions D„„(x x'
~

co) that enter Eq. (3.2) have
been calculated by Maradudin and Mills. (These authors actually calculated the appropriate Fourier
transforiiis of these Green s functions. )

We begin by carrying out the sums over P and y in Eq. (3.2). Now

QFipr(x~~, x )
@y

&u, (x ~~)&
axr

a& a&X iipr a a i + i2pr apr
~

Xi Xi Xi Xz

aw a a&up&—C 13Py
ax3 axr

, a&u, &, , a&u, &, , a&u, &=p ci +(ci —2cg ) +(ci —2cg )
ax i axz aX3

a I

, W(i xi' —xiii)ax i ax i

, a&u, &,a&u, &

+P c, , +c,
ax 2 ax i

, a'& u, &, a'& u, & a8'(
( x)( —x() f

) —p c, z +c, W(
f x(( —x(( f

) .
axiaxz ax ax ax,

We now make the following definitions:
(3.3)
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BW( ii) t) BW( ii)
&11(x[['x )=cl, , + t, , ct W("())

8X] BX] c1x3 Bx3 BX3
(3.4)

, ~W(.„) ~,aW(.
,
~) a

a]z(x~~, x')=(c] —2c, ) +c,
Bx ] Bxz BXz BX 1

(3.5)

BW(r(i)
a]3(xi'»'x )=(c] —2c, ) —— —c, W(rii )

BX] BX3 BX 3 BX ]
(3.6)

where we have set r
~ ~

=
~

x
~ ~

—
x~~ ~

. Substituting these definitions into Eq. (3.3) we have the result that

F~py(x([, x') (up(x' [ co)) =p y [tz~y(x][,'x')(uy(x'
[ co))] o, (3.7)

where we have generalized the result by letting a take on the values 1, 2, and 3. The elements of the 3& 3 dif-
ferential operator a y( x~~', x') for a =2,3 are defined by the equations

BW(rt)) t) BW(&)))
az](x~~, x )=ct +(c] —2ct )

BX] BX2 BX2 BX]

BX ]

a, ~W( ()) a
azz( x[~, x ) =ct +CI

BX ] BX2 BX2

8—c, W(rii) —
zBX 3

(3.9)

a
az3(xi','x )=(c] —2c, ) —c, W(rii)

BX2 BX3 Bx 3 Bx 3

W (rii)
a3](x~~, x )=c, —, (c] —2c—, )W(r~~)

BX] BX 3 BX3BX]

(3.10)

(3.11)

W(r)i)
u33(x(~»x )=ct

BX 3

—(c] —2c, ) W(rii )
BX 3 BXz

(3.12)

a, ~W(&(() a, a'
+33(x~~, x )=c, +c,', ,

—c] W«~~)
BX] BX 1 Bx3 Bx3 BX 3

Making the additional definition that

(3.13)

(3.14)

and utilizing the result given by Eq. (3.7) in Eq. (3.2) we have

1=5'pg I d «bi"), J(x )x(((i )[apx„»(x)), x')(x„(x'(x»&)],
@y X]

(3.15)

Note that the original expression (3.2) consists of a sum over five indices, whereas the result (3.15) consists of a
sum over two indices only.

Proceeding in a similar fashion, we can generalize Eq. (3.15) as follows. For A, =1,2,3 and 5=1,2 we have
that

g xx»„„Jd'x)) D„(x;x,),0(x»)
p p, - X~

a, P, y

F'
p (xi', x'), (up(x'

i
co))

ay x~ ——0

and, for A, =1,2,3

=~ p j d «i) 2 "x»]("I)'")l
I

~& ]d&»»("II " )("»("
i
~))]*'=»

P, y Xs x3 ——0 (3.16)
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2

g cx3u„ f d x(( Du (x;
p, 'v X3 Xv

a, P, y

xjj 0
i
co) F p&(xjj x ) (up(x

i
co) )

x3 ——0

=b p jd x(( g bx)](x((, x(( Im)[apx(x((, x')(ux(x'
I
m))],

Py
(3.17)

Here we have made the definitions [cf. Eq. (3.14)]:

I

bp~(xj(jxjj ~

co)= —gcgspv D~~(xjxjj, 0
~

ci))
p Bx x3 ——0

(3.18)

(3)
2 I

bg~(xj[pxjj ~co) — Qc+3pv Dp~(xjxjj&0 ~co)
P pv X3 x3 ——0

(3.19)

Explicit expressions for the matrices b~ ( x
j j,

' x
j j ~

co), with P= 1,2,3, are obtained by combining the definitions
(3.18) and (3.19) with Eq. (3.1) and the results of Ref. 2 for the flat-surface Green's functions. For brevity
those expressions (or their Fourier transfoiiris to be defined below) are not given in this paper. They are, how-
ever, imphcit in the results for a related matrix that actually enters our final result, given by Eq. (3.35) [the ma-
trix c]I~, defined by Eq. (3.36)].

Consider now the boundary condition that results from Eq. (2.19) for A, = l. With the results (3.16) and
(3.17) at hand, we easily obtain the result that

p,' ( (
~

))+ ( (
~

))
X3 X] x3 ——0

5 2 8 a
pe) 3 (u, (x ~co))+

BX3 Bx 3Bx]
(u3(x

~

co))
, x3 ——0

+b'pg f d'xj(bPp'(x((, x(g lm) [ap„(x((,x')(u„(x' lm))1,
Py5 xs

pg J' d xj(bj~p'(x((, x(( I
m)[ap (x((, x')(u (x'

I
m) )], (3.20)

where we recall that the index 5 assumes only the values 1 and 2. The boundary conditions for A, =2,3 can
be written down without difficulty. It is, however, useful to give the boundary condition more concisely, viz. ,
in vector forrri, by introducing the 3 && 3 differential operator f],p( x ) according to

f]](x)=c, , f[2(x)=0, f[3(x)=c,'
Bx3 Bx [

(3.21)

fr[(x)=0 fz2(x) =&t x f23(x) =&~
BX3 BX2

(3.22)

Q [f][p(x)(up(x i co))]„, 0
———

P x3 ——0

f3](x)=(ci —2c,), f32(x)=(ci 2c, )—, f33(x)=ci (3.23)
Bx] Bxp Bx3

We are thus led to the following effective boundary conditions that the average displacement field must
satisfy on the flat nominal surface bounding an isotropic elastic medium (A, = 1,2,3):

5 df I](x) (up(x ~co))
P dX3

+5 g f d x((bxp(x((,'x(( Im) [apx(x((', x')(ux(x'lm))],
P, y, S xs

—b g I d xj(bxp("(('"(( Im)[apx(x((', x')(ux(x' Im)&], =a. (3.24)
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The left-hand side of Eq. (3.24) equals p 'T~3(x
~

co) evaluated at x3 ——0, which vanishes in the case of a truly
flat surface by virtue of the stress-free boundary conditions. The effects of surface roughness on the boundary
conditions for the average field are given by the right-hand side of Eq. (3.24). We note that whereas the first
term on the right-hand side of Eq. (3.24) is independent of the correlation function W'(

~ xjj —xjj ~
), this func-

tion enters the remaining two terms in Eq. (3.24) via the operators apz(xjj, x'), defined by Eqs. (3.4)—(3.6) and
(3.8)—(3.13). In order to obtain more explicit expressions for the effective stresses given by the right-hand side
of Eq. (3.24) we must make use of an important physical feature of the problem, namely that of translational
invariance in the plane of the surface.

8 E.ffective boundary conditions for the Fourier transform (u ( k jjco ~
x3) )

of the average displacement field

The averaging procedure implied by the operator I' (Pu = (u ) ) restores translational invariance in the plane
of the flat, nominal surface. This suggests the convenience of transforming Eqs. (3.24) into boundary condi-
tions for the Fourier coefficients (u (qjjco ~

x3)), defined by the relation

(u (x (co)) =f,e " "(u (qllco (xe)
(2m. )

(3.25)

where q jj
is a two-dimensional wave vector in the plane of the surface.

We note that the "fiat-surface" Green's functions D„„(x; x'
~

co) possess the property that

I

D„„(x;x'
/
co)=Dp„(xjj—xjj',x3x3

/

co) . (3.26a)

Thus they can be Fourier transformed as follows:

D„„(x;x')co)=f e (( (( Do„()cll jxexeco) .
(2m )

(3.26b)

We now outline the steps needed to Fourier transfoiin Eq. (3.24) by considering one typical term entering
that equation, namely,

J(xi( (co)=—b f d xjlb cj (xll', xjl co) [uc&(xi(,'x')(uc(x' (co)?]x)
(3.27)

According to the definition given by Eqs. (3.14) and (3.26b), we can define the Fourier transform b'&", ( k
j j

~

co)
of b'&I'(xjj', xjj ~

co) via a relation of the form of Eq. (3.26b). Thus, making use of Eqs. (3.4) and (3.25) and intro-
ducing the Fourier transform g (Qjj ) of the correlation function 8'(

~ xjj —xjj ~
), we are led to the result that

J(xlg jco)=b'f,e '(( ((J(qlg (co),
(2~)

(3.28a)

where we have called

d(qlll ~)=(I, j(q(ll
—)

II j
)bj'I'(kll j~)(ql —&l)jell(qll, ')

ll jxj)&ul(qll~ jxj)?I
277 2 x3 —0

with

2

x3 ) =c~ (qi —ki)qi+c, (q2 —k2)q2 —c,
& 2
3

(3.28b)

(3.29)

Note that the fact that we were able to cast our result for J(xjj
~

co) in the form (3.28a) is, in effect, the state-
ment that averaging over the roughness restores translational invariance in the plane of the nominal surface.
Equation (3.28a) ensures that the final result can be given as a boundary condition for the Fourier coefficients
( 2/ ( q

~

jco
~

x 3 ) ) . [We stress that the same property would not hold for the Fourier coefficients of the displace-
ment field u qll~ I

x3) itself. ]
The preceding argument can be easily generalized to obtain the results that
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f d xj b(x[&(x ('(x g(leo) [ggx(x((', x')(ux(x lm)&]„'
P, y, S xs x3 =0

2 2

=g'f ~''" "x f(2m. ) p r s (2m. )

X [i (qs —ks)bpp(kII
~ co)[(2'(qII, kII ~

X3)(1d2(qIIro
~
x3))]j (] (3.30a)

and

g' y f d'xj(kx",'(x», x» I ~)[aux(x((, x')(ux(x'
I
~) &],

O, y
2 2

=g' f — ' x""*"gf,g(jqll —
kill &[»"p(kill&[gux(qll'kill x3&(u, (qll~ I*i»1. =.I .

(2~)2 pr (2'�) x3 —0

(3.30b)

For convenience in the presentation, the definitions of the remaining elements of the 3 & 3 differential operator
q II

k
II I

X 3 ) [whose 11 ~l~~~~t was g1ve»n Eq. (3.29)] are g1ve»n Appendix C.
We now turn to the left-hand side of the boundary conditions (3.24). Recalling Eq. (3.25), it is easy to show

that

g[f~p(»&11p(x I~)&l.,=o= j",e " g[f2p(qII x3)&t p(qII~ IX3)&l,=o,
P

where

(3.31)

f]1(qII X3)=ct' f]2(qII X3)=o, f]3(qII,X3)=iqlc', (3.32)

f23(qII X3) (3.33)

rXf ]3(q ,IIX3)=iq (]cg—2c, ), f32(qII,'X3)=iq2(cl —2cg ), f33(qII X3)=cg (3.34)

Finally, we note that the first term on the right-hand side of Eq. (3.24) is obtained immediately from Eq.
(3.31).

Substituting Eqs. (3.30) and (3.31) in Eq. (3.24) we can equate the coefficients of (2~) exp(iqII. xII) in the
integrands on both sides of the equation [see comment below Eq. (3.29)]. We thus obtain the following boun-
dary conditions for the Fourier coefficients (u~( qIIco ~

x3) ):

g [fop(qII, X3)(up(qII ~ X3))]„, o
P

2

fop(qII, X3) 2 (Qp(qIICo
~
X3))

p dX3 x3 ——0

+5 g f zg(l q(g k((l)cx(t(q(('k(pl~&[ ux(q(('k(g ulxi)&ux(q((~lxi&&]
p y

(2m. )
(3.35)

where we have defined the tensor c2 p( q
I I, k

I I
~

co ) ac-
cording to

v(qII kII f~)= —b~p«III~)

+ g i(qs ks)b2„p(kII I
co) —(3 36)

For convenience in the presentation we give the
explicit expressions for the elements of
cap(qII,'kII ~~) in Appendix C. lt is of interest to
note that for a given wave vector kII the elements of
this tensor [and thus the contributions to the "effec-
tive stresses" given by the integral in Eq. (3.35)]
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have a pole at the frequency co =CRkll of a Rayleigh
wave propagating on a flat, stress-free surface. 3

(Here CII is the speed of such a wave. )

In conclusion, Eq. (3.35) gives, for A. =1,2,3, the
effective boundary conditions for the Fourier coeffi-
cients of the average displacement field
(u~(qllco

~

X3)) at the surface x3 ——0 in the case of
an isotropic medium. As indicated at the end of
Sec. II, the convenience of these boundary condi-
tions stems from the fact that they provide a pro-
cedure for calculating the quantities of physical in-
terest (viz. , averages over an ensemble of realizations
of the surface-roughness profile) that is formally
identical to what one does in the case of a flat sur-
face. We outline a simple example of the use of the
boundary conditions given by Eqs. (3.35) in the next
section.

L I3(qll~ I
x3) =I (Cl —Ct )ql

L 23 ( q
1 1

ro
l

x 3 ) i (——cl c,—)q 2

I'32( q Ill I

x

2 2 2 2
2

L 33 ( q
I I

~
I
x 3 ) =~ Ct q—

1 1

+Cl 2
3

L22(qll~ I

x3)=co —(c,qI+cl q2)+c,2 2 2 2 2 2

X

(4.5)

(4.6)

(4.7)

(4.8)

IV. EXAMPLE: RAYLEIGH SURFACE
WAVES

Eq~~tio~ (4.2) is solved without difficulty. The
lltIoII that vanIshes as

Equation (3.35) gives, for A, =1,2,3, the boundary
conditions that must be satisfied by the Fourier
transform of the average displacement field,
( u~( q

1

leo I x 3 ) ), present in an isotropic medium
bounded by a planar, rough surface. In this section
we apply Eq. (3.35) to the particular case of the free
oscillations of such a medium. In particular, we
outline the derivation of a result giving the frequen-
cy shift and the attenuation length of a Rayleigh
surface wave brought about by the presence of sur-
face roughness, a problem of both theoretical and
experimental interest.

In the present case of an isotropic medium, the
differential operator L &(x

~

co), given by Eq. (2.3),
adopts the simpler form

L „(x ~a))=( a+Ic, V )5 „+(cl—c, )
i)x Bxp

(4.1)

The equation of motion for the coefficients
(u (q lice

~

x3) ) can be obtained by Fourier
transforming Eqs. (2.2) and (4.1), with the result
that

gL „(qllco i X3)(u„(qllco
i
X3))=0, (4.2)

where the elements of the differential operator
L ( qll~ l

x3) are given by
2

L II(qll~ l
X3)=~ —(cl q 1 +ct 'q2)+ct2 2 2 2 2 2

(4.9)

(u2(qllco ~X3)) = (e ' '(AI )+e ' (Q2))

(4.10)

(u3('qllco
/
x3 ) ) =i e '"'(A

I )

. qll —a,x3( ) (4.11)

qll I
~»nd CI&(qll I

~»«defined by Eqs.
(C25) and (C26). The coeffIcIent» qll I

~) or
rather their averages (2~(qll )

co)), are to be deter-
mined by applying the effective boundary conditions
given by Eq. (3.35).

Our program is then to substitute Eqs.
(4.9)—(4.11) in Eq. (3.35) and, making use of the re-
sults given in Appendix C, obtain the eigenvalue
equation that the coefficients (2~(qllco) ) must satis-
fy [Eq. (4.12)). The amount of algebra needed to
implement this program is extremely lengthy (al-
though straightforward) and here we will bypass it
entirely. The final result agrees with Eq. (2.50) of
Ref. 3. It has the following fornI:

L»( q 11~ I
X3)= —(cl' —ct')q I q2

=L2I(qllco
~
x3),

3

(4.3)

(4.4)

)+~~&(qll~ ) ~~P qll~) ~ =
P

(4.12)

where the matrices I' p(qll~) and ~ & qll~ are
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~o qll )+~~«ll ) ' (4.13)

which defines the perturbation bee(q~~) of the Ray-
leigh wave dispersion relation due to the roughness.

In Ref. 3 we present a detailed analysis of b.co(q~~ )

in the case that the correlation function
IV(

I xi'
—"ii I

) is assumed «be a Gaussian F«m
the real part of hen(q~~) we obtain the shift in the
frequency of a Rayleigh wave due to the presence of
roughness and from its imaginary part we obtain the
lifetime of such a wave (or its inverse attenuation
length). In this regard we note that the surface
roughness opens up three channels for the decay of a
given Rayleigh wave, namely the channels provided
by the transverse and longitudinal bulk modes and
by other Rayleigh waves. In Ref. 3 we study the

defined by Eqs. (2.18) and (2.40) of Ref. 3. It seems
worth pointing out that we consider this agreement
with the results of Ref. 3 as significant, in view of
the algebraic intricacy of either method, and in view
of the fact (explained in Appendix B of Ref. 3) that
an earlier method gave different (erroneous) results.

Let us comment briefly on Eq. (4.12). The matrix
H p(q ~~co) is of O(5 ). Thus in the case of a flat
surface the solubility condition for Eq. (4.12) is sim-
ply detlM (q~~co) l

=0, who se sol«ion gives the
dispersion relation ~o(qll —c~qll of a Rayleigh
wave propagating on a flat surface. [The speed c~
of the Rayleigh wave is defined by Eq. (2.4) of Ref.
3.] In the case of a randomly rough surface
the solution to the equation det[M' '(q co)
+H(q~~co)]=0 can be written in the form

contributions from all three channels to both the
real and imaginary parts of b,co(q~~ ).

In conclusion, we have given a simple illustration
of the method developed in Secs. II and III for the
study of dynamical properties of a semi-infinite elas-
tic medium bounded by a rough, planar surface. In
the present example we have applied the boundary
conditions given by Eq. (3.35) to the solution of the
equation of motion for the average displacement
field given by Eqs. (4.9)—(4.11). We stress that what
we have done in this section is completely analogous
to what one does to obtain the dispersion relation
coo(q~~)=c~q~~ in the case of a flat surface. The con-
ceptual simplicity afforded by our method is ap-
parent.

As mentioned in the Introduction, our method
can be applied to more general problems dealing
with the interaction of a rough surface with various
external probes. The key role in such problems is
played by the Green s functions for the semi-infinite
medium bounded by a rough surface. The average
of these Green's functions over an ensemble of
rough surfaces can be calculated rather directly by
using our effective boundary conditions. Finally we
note that, as indicated above, the results obtained in
this section exactly agree with those obtained using
Rayleigh's method.
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APPENDIX A: GREEN'S THEOREM FOR THE OPERATOR L, p

In this appendix we obtain a fornial result for the vector Qu„(x
l
co), the fluctuating component of the total

displacement field u„(x
l
co). Consider two fields U (x

l
cg) and V (x

l
co). We proceed to evaluate the integral

L= g f d x[U (x(m)L x(x—(ra)V~(x(ra) —V (x(ru)L „(x (ra)U„(x (a&)], (A1)
a,p

where

2I ~id( X
l

CO) =CO 5~~+ g c~p~v
p p„""BxpBx„

(A2)

is the differential operator that governs the dynamical behavior of an elastic medium [see Eq. (2.2)]. The
volume of integration, V, will be specified below. Substituting Eq. (A2) into Eq. (A1) and using the divergence
(Gauss) theorem leads us to the result that

1 =—g ]]I dSrr)rc»„U=1
p app, v S ~Xv

V„—V~ U„
xv

'
a adxc p„„U Vp-

P p
V xp xv

a a
V~ Up

xp xv
(A3)

where S is the surface that encloses the volume V, and n is its normal unit vector (directed outwards). Making
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use of the symmetry relation

Catv =Cpvap ~

it is easy to show that the second line in Eq. (A3) vanishes. Thus we obtain the result that
r

(A4)

I=—g )I dSn~c p„„U (x ~co)
a, P,VvS v

V&(x
i
co) —V (x

i
to) Uz(x

i
co)

x
(A5)

We define a Green's-function tensor D&„(x;x'
~

~) such that

Q L „(x
~
to)D„r(x; x'

~

to) =5 P( x —x') (A6)

(where we assume x3, x3 & 0) together with the boundary conditions

g ca3pv Dpy(x;x (
co)

p, v v x3 ——0
=0. (A7)

Equations (A6) and (A7) define the "flat-surface" Green's functions calculated by Maradudin and Mills. We
next define the quantity Ir by

I„=g f d'» [gu ( x
l

uc )t.,u(x
l

ur )Du»( x; x'
l

cu) —D r( x; x'
l

ru)t. ,u( x
l
ur)guu( x

l
ru)], (AS)

a,p

where the volume V is the whole upper half-space x3 &0. Now, the vector QU (x
~

io) satisfies the same
(homogeneous) equation as u (x

~

co), namely Eq. (2.2). Thus from Eqs. (A6) and (AS) we have that

Ir Qur(x'
~

(o)——. (A9)

We now make use of the result (A5), with the replacements U~Qu, V~D. We further assume that
u&(x

~

to)~0 as x3~ oo. Noting that the unit vector normal to the surface x3 ——0 is n=(0,0, —1), we obtain
the result that

x3 ——0
gu„(»'

(
ur) ——g c=,cu„ f d' ((g, (x (uc) D„r(x;x lur)'

P a,p, v v

+ X c ~u. f d'x))D r("'» lur) gu„(» l~)
a,p, v v x3 ——0

(A10)

Furthermore, because of the stress-free boundary condition (A7) we imposed on the Green's function D&„, the
first term in Eq. (A10) vanishes. This is very convenient, since utilizing the boundary condition (2.16) in the
second term gives then a result for the vector Quz in terms of (derivatives of) the average field (u&(x;ro) )
alone, namely,

gur(»'lm)= —g f d x() D (x;x' m)& u (x) (u (x lm))
a,p, v v x3 ——0

(A 1 1)

We note that this result shows explicitly [see Eq. (2.17)] that the vector Qu„ is of O(g) [as suggested below
Eq. (2.10)]. We emphasize that Eq. (A10) holds for any Green's-function tensor satisfying Eq. (A6), e.g., the
much simpler infinite medium Green s functions, for which, obviously, there is no analog for the boundary
conditions (A7). The reason we chose the semi-infinite medium Green s functions, with the stress-free boun-
dary conditions (A7), is that our choice provides us with an expression for Qu solely in terms of (u ) [Eq.
(A 1 1)].

Finally, we make use of the reciprocity relation

D„„(x;x' co)=D„„(x',x
~

ro)

—(u p( x'
i
co) )

Xy 'x3 ——0

(see Appendix 8), and rewrite Eq. (Al 1) in a form more convenient for Sec. II, namely,

gu„(x (cu)= —g f d x)) Du (x;x' cu)8 (x'()cr
~ apy a

(A12)

(A13)
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APPENDIX B: PROOF OF EQ. (A12)

723

In this appendix we prove the reciprocity relation

D „(x;x'
i
co)=D„„(x',x ice) (81)

for the "flat-surface" Green's functions D„„(x;x'
~

co). These Green's functions satisfy the differential equa-
tion given by Eqs. (A6) and (A2) with the stress-free boundary conditions given by Eq. (A7).

We introduce the functions J~( x', x"
~

ro) by the equation

d~ ——g f d~x[D „(x;x"(rc)L x(x (rc)Dxr(x;x']rc) —D r(x;x'(rc)L x(x (rc)D&„(x;x"(rc)],
a,p

where the operator L ~( x
~

co) is given by Eq. (A2). Substituting Eq. (A2) in Eq. (82) we have that
c

2 2

drr= —. Q c C x f d'x D,„(x;x ~rc) D„r(x;x ~rc) D,„(x;—x'~rc) D„(x;x „~cr)CZ P

(82)

(83)

The procedure that leads us from Eq. (83) to Eq. (84) below is as follows. We integrate Eq. (83) by parts
once. We use the symmetry relation (A4) for the elastic moduli tensor c p&„plus appropriate changes of dum-
my variables and obtain the result that the "volume" terms we have after the integration by parts cancel each
other. Finally, using the divergence (Cxauss) theorem in the "surface" terms we obtain the result that

J~———g c cxc]]]l dSnc D „(x;x"(rc) Dxr(x;x (rc) —D 'r(x;x'(rc) Dx„(x;x" (rc) . (B4)

We can obtain an alternative result for J~(x'; x"
~

co) in the following way. Multiplying Eq. (A6) from the
left by D~„(x; x"

~

co) and summing over a we have that

g D „(x;x"
~

co)L &(x
~
co)D&&(x; x'

~

co) =D~(x', x"
~

co)5( x —x') .
a,p

In a similar way we can obtain the result that

gD r(x;x' icy)L „(x
~

co)D„,(x;x"
~

co)=D~(x";x'
~

a))5(x —x") .
a,p

(8&)

(86)

We next subtract Eq. (86) from Eq. (85) and integrate over x (xE V). With the requirement that both x'
and x" lie within V, we have that

J~ Dr„(x', x"
~

c——o) —D~(x";x'
~

rx)) . (87)

We consider now the case that the volume V of integration is the upper half-space X3 &0. In this case the
unit vector n is given by n = (0,0,—1). From Eqs. (84) and (87) it then follows that

Dr (x'x(cr) — ~Dx"(;x, Irc)= ——g f d x(( D „(x;x
I
ra)X 3xx c+xr(x;x

x3 ——0

+ —X f d'x(( D.,(x;x'
I
~) Xc.~,x a,.(x;x"

I
~)

a us Xs x3 ——0
(88)

At this point we make use of the assumption that the Careen's functions D&„(x;x'
~

co) satisfy the stress-free
boundary conditions given by Eq. (A7). Thus both lines on the right-hand side of Eq. (88) vanish, which
proves Eq. (81).

APPENDIX C: THE MATRICES a(q]], k]] ~
x3 ) and c(q]]', k]] ~

co)

In this appendix we give the explicit expressions for the elements of the matrices a p(q~~, k~~ (
x 3 ) and

c p(q~~, k~~ [
co). The former is defined implicitly by Eqs. (3.30) [its 11 element was given in Eq. (3.29)]. The

latter is defined by Eq. (3.36). We have
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2

a»(qll kll I
x3) =ct'(qi —ki)qi+ct'(q2 k2—)q2 ct'

3

a12( q ll kll I
x3 ) =(ct 2—c, )(ql —k1 )q2+c, (q2 —k2)ql

0 &3(qll kll I
x3 ) ( i)[(ct 2ct )(q I k& )+ct qi ]

(Cl)

(C2)

(C3)

t2
3

a2&(qll, kll ~
x3 ) =c, (q, —k, )q2+(ci —2c, )(q2 —k2)q, ,

2

a22( qll, kll I
x 3 ) ct (ql k1)ql +c!('q2 k2)'q2 ct

(C4)

(C5)

023(qll', kll ~
x3 )=( t)[—(c~ 2c—, )(q2 —k2)+c, q2] 9 (C6)

ll I
x3 ) =(—t)[ct'«~ —k~ )+(ct' —2ct')qi] 9 (C7)

32( qll kll I
x3 ) =( —&)[ct'(q2 —k2)+(ci' —2ct')q2]

a33(qll, kll I
x3 )=c, (qi —kt )qi+c, (q2 —k2)q2 —CI I

3
(C9)

Note that the elements of a p( qll., kll ~

x', ) are differential operators in x 3.
The algebra involved in obtaining the elements of c ~(qll,'kll co) is very lengthy. [We must first obtain the

elements of the matrices b' p' for A, = 1 2,3, and that requires a subtle discussion of the boundary conditions
satisfied by the Careen's functions D&„(xx'

~

gati) when the arguments x3,x3 are set equal to zero i(i that order;
see Appendix D.] We have

1
Cgg(qll, kll f

CO)=
k

ll tzt(kll )

~2 k)tz, (kll)
2 A(k ~co)

k2a, (kll )

(C10)

(Cl 1)

2c,
c&3(qll,'kll

I
co)=tqt 1 —2

CI

c2g(qll, kll f
ro) =

k liat(kll )

P(kll )Ai

A(kll (
co)

k, at(kll)
z A(k ~co

(C12)

(C13)

C3y(qll, kll

k

c33( q ll, k
ll

k2tz, (kll )

b(k
i

co

1

at(kll)

ct p(k
ll

)A,
~

co) =iq2 1 —2 z +i
ci' (

ll
to)

'

P(kll )
~

co) =lqi +Eke
ct'

ll
~)

P(kll )
I
~)=tq2+tk2

at(kll )

ct~ A(k /tu)

(C14)

(C15)

(C17)

(C18)

Here we have introduced the following definitions:
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CO

p(kll, co) =2k
II
—

3
—2ag(kll )a, (kll ),

Ct

2

4k
II ag(kll a& kll 2k

II 3
Ct

2

e, (qll, kll1co) =k, (qll. kll)+k, (qll X kll), —k.
c,

2

e~(qll, kll 1m) =k&( qll kll) —k3(qll && kll)3 —k~
Ct

CO—k)
2

C,
A, (qll, kll1 )=2k, (qll. kll)+2q, kll 1 —2

Cl

2
Ct Q)

Aq( qll, kll 1')=2k&( qll. kll)+2qqk II
1 —2 3

—kz 3
Cl Ct

(C19)

(C20)

(C21)

(C22)

(C23)

(C24)

(C25)

and where we take the branch of the square root such that

We have also defined the wave vectors a~(kll', co) and a, (kll', ro) [for brevity denoted in the above equations as
a~(kll ) and a, (kll ), respectively] according to (re~0+ ):

1/2
(co+i ri)

ag, (kll, ~o) = k II—
Cl, t

Rea(, )0 . (C26)

The physical meaning of the definitions given by Eqs. (C25) and (C26) is made clear with the aid of the re-
sults given in Eqs. (4.9)—(4.11) for the solution to the equation of motion for the average displacement field (in
the absence of external sources). For kll )co/c~, we have that a~, ' gives the inverse decay length (into the
medium) of a displacement field that is confined to the surface region. For kll &co/c~„2m. 1a~, 1

gives the
wavelength (perpendicular to the nominal surface) for outgoing bulk waves.

It is of interest to note that, for a given wave vector kll, the function b(kll 1') [defined by Eq. (C20)] van-
ishes at the frequency co=c~kll of a Rayleigh wave propagating on a flat, stress-free surface. (Here cz is the
~p~~d of such a wave. ) No te that this ze« of A(kll

1

~o) gi~~~ ris«o a po le in he coef icients c~p( qll kll I
~) ~

APPENDIX D: A NOTE ON THE BOUNDARY
CONDITIONS FOR THE FLAT-SURFACE GREEN'S FUNCTIONS

The "flat-surface" Careen's functions D„(x; x'1') introduced in Sec. II and Appendix A satisfy the stress-
free boundary conditions given by Eq. (A7), namely,

g c~3~~ Dpp( x; x
1

co) (Dl)

In the case of an isotropic medium, it is convenient to consider the boundary conditions for the Fourier
transforras D„„(kllco1x3x3) defined by Eq. (3.26a). Substituting Eq. (3.1) in Eq. (Dl) and carrying out the
sums over p and v we readily obtain, for a=1,2,3, respectively, the following boundary conditions for
Dv~(kllro1x3x3 )

Dip(kll~ I
x3x 3 )+~klD3p(kll~

I
x3x3 )

x3 =0
=0, (D2)

Dzp(kllro1x3x3 )+ikzD3p(kIIro1x3x3 )
x3 ——0

=0, (D3)
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iki(ci 2c—, )Dip(kiln I x3x3 )+ikz(ci 2—c, )Dzp(kiln I
x3x3 )+ci D3p(kiln I x3x3 )

, x3 ——0
=0. (D4)

We note that the stress-free boundary conditions
given by Eqs. (D2)—(D4) apply whenever the source
point x3 lies inside the medium (x3) 0). However,
in the effective boundary conditions given by Eq.
(3.35) we need the boundary values of the Careen's
functions D&„(k llano I

x3x3 ) and their derivatives
when the source point x3 =0. We note that this fact
is to be traced back to Eq. (2.18), in which the fluc-
tuating component of the displacement field is given
in teriris of the values of the average displacement
field at the surface x3 ——0. When the source point
x 3 lies on the surface x 3 ——0, we must investigate
whether Eqs. (D2)—(D4) still apply. (We remark
that the present discussion is relevant to obtaining
the results given in Appendix C.)

The problem just posed can be conveniently ad-
dressed to by using the results of Appendix A of the
paper by Maradudin and Mills. These authors ob-
tained explicit results for the "rotated"
Green's functions d»(k ll

u
I
x3x 3 ) related to

D „(kll~ I
x3x,') by the equation

D~„(kilt@ I
x3x3 )= Q [S '(kll)1& d p(kilt@ I

x3x3 )
a, P

XSp„(k ll),

where the matrix S(kll) is given by

(D5)

S(kll) =
ki kq 0

—kp ki 0
0 kll

(D6)

Note that the matrix S(kll) rotates the coordinate
axes about the x3 direction in such a way that the x i

axis is aligned with the wave vector kll.
From Eqs. (A33) of Ref. 2 we can obtain the fol-

lowing results for the nonzero components of
d„„(kllco I x3x3 ) evaluated at x3 ——0:

1
dii(kllCO

I
x30)= —2k lie

' '+ 2k ll—
2 —a,X3e

Cg

(D7)

2

i

c,
Zk ll—2 QP —a&X3 —AtX3a, e

Cg

(DS)

d22(kll~ I
x30) =— —a,X3

C, a,
(D9)

2-~i~3 2 + —Qfx3
d3i(kllco I

x30) =
~ 2aiaie — + 2kll —

z e
c Cg

(D10)

d33(kllco I
x30)=

2
CO —ixi%3 p

—cÃgx3

c2
e lie

t
(Dl 1)

where ai(kll I
co), a, (kll I

co) (denoted above simply as ai,a, ), and A(kll I
co) are defined by Eqs. (C25) and

(C20), respectively.
Substituting the results given by Eqs. (D7)—(Dl 1) in Eq. (D5) and then setting x3 ——0 gives us the values of

D»( k
l leo I

x 30 ) at x, =0. Similarly, differentiating Eqs. (D5) and (D7)—(D1 1 ) we obtain the values of the
derivatives of D„„(kllco

I
x30) with respect to x3 evaluated at x3 ——0. For brevity, the results thus obtained are

not given here (they are implicit in the results given in Appendix C). It is, however, instructive to consider ex-
plicitly the validity of Eqs. (D2)—(D4) for x3 ——0. Making use of the relevant results among those obtained in
the manner just indicated we can show that for x 3

——0 the boundary conditions given by Eqs. (D2)—(D4) are re-
placed, respectively, by the following equations:

Dip( k
l le I

x30) +ik iD3p( k
l
leo I

x30)

D&p(kilt@
I
x30)+ik&D3p(kllco

I
x30)

1=—~5p$
x3 ——0 Ct

1

x3 ——0

(D12)

(D13)
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and

ik~(ct 2—c, )D~p(k~~to
~
x30)+tk2(ct 2—ct )D2p(k~~to

~
x30)+ct D3p( kiico I

x30)
x3 ——0

=5p3 . (D14)

We emphasize that in the above discussion the limits x3 ~0, x3~0 were taken in that order. In fact, the
"non-stress-free boundary conditions" given by Eqs. (D12)—(D14) originate from the fact that the limits
x 3 ~0, x 3 ~0 do not commute for certain of the functions d„„(k

~ ~

co
~
x3x 3 ) and/or their derivatives.
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