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Energy bands of ternary alloy semiconductors:
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A method for calculating compositional variations of energy bands of ternary alloy semiconduct-
ors based on the coherent-potential approximation is presented. A generalized, Soven-type equation
in a matrix form is derived and then solved by subsequent iterations. Zeroth-order approximation
for band-gap energies is taken from the virtual-crystal approximation. The nonlinear dependence of
the energy upon the alloy composition at various symmetry points within the first Brillouin zone is
calculated for GaAsl „P„and Ga„Inl „Pcrystals. Significant band bowing has been found in both
cases. The theoretical results are compared with experimental data available for these systems.

I. INTRODUCTION

Extensive experimental investigations of the electronic
structure of compound semiconductors have been carried
out because of their importance in optoelectronic device
technology. Consequently, a quantitative understanding
of important apsects of the band structure such as varia-
tions of band gaps in different symmetry points of the
Brillouin zone has been gained.

However, the theory of substitutional alloys in quite un-
satisfactory. The fundamental difficulty in such analysis
is that no exact solution of the Schrodinger equation for
the disordered system is obtainable. This motivated an in-
terest in approximate theories.

The models which have been frequently used to describe
the electronic structure of semiconductor alloys are the
virtual-crystal approximation (VCA) and semiempirical
dielectric model (DM) of Van Vechten and Bergstresser.
None of them, however, can account for the full range of
important band properties that are known from experi-
ment.

The theories which can provide this are the ones derived
from the multiple-scattering description of disordered sys-
tems. Such procedure is appropriate if the disordered po-
tential of the alloy can be decomposed into a sum of con-
tributions due to the individual atomic scatters. The
propagation of an electron through such system can there-
fore be treated as a succession of elementary scatterings
from these randomly distribution atomic potentials.

Most of the works have used a single-site approxima-
tion in which scattering of the electron wave from one site
is taken into account exactly, while the remainder of the
crystal is treated at best as a mean environment. Crucial
for these theories is a choice of the so-called effective
medium in which individual scatters are embedded. If the
effective medium is determined by requiring that it repro-
duce the average scattering at each site, we deal with the

average —t-matrix approximation (ATA)." The next
development was the coherent-potential approximation
(CPA) of Soven. The CPA adds to the ATA the idea of
self-consistency. Stroud and Ehrenreich first applied the
CPA method to semiconductor alloys. Their calculations,
however, involved complicated Brillouin-zone integra-
tions. Furthermore, their results, due to a small difference
between Si and Ge potentials, were not so different from
VCA results. The considerable progress has been made in
recent years. CPA calculations, based on the method of
linear combination of bond orbitals, have been applied to
the number of III-V alloys. ' On the other hand,
Mariette et al. ' instead of using a tight-binding approxi-
mation have adopted for their calculations a semielliptic
density of states suggested by Hubbard. ' Their calcula-
tions for the GaAs& „P„alloys have shown the ability of
this method to account for not only the compositional
dependence of band gaps, but also, with cluster-type exten-
sion, ' to incorporate the local environment effect on the
nitrogen bound-exciton state.

This paper is concerned with detailed calculations of
energy bands of ternary alloy semiconductors:
GaAs& P and Ga In& P. The calculations are based
on the formulation of Mariette et al. ' of the CPA
method, however, certain extensions of their treatment are
introduced. This paper presents a systematic derivation of
generalized, multiband Soven-type equation in a matrix
form. This form of the CPA equation is particularly suit-
ed for iterative numerical calculations. The preliminary
results of these calculations have been published else-
where. "

II. CPA CALCULATIONS FOR TERNARY ALLOY
SEMICONDUCTORS

This section develops the formalism underlying the
single-site approximation and derives a generalized
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Soven-type CPA equation for ternary alloy semiconduct-
ors. The single-particle properties of the system are
described by the resolvent operator G(z),

G(z)=(z —H) (2.1)

where H is the configuration-dependent one-electron
Hamiltonian. The macroscopic properties of the crystal
depend on an average taken over all configurations and
can be determined from an average resolvent operator
(G(z) &

that is, the averaged t matrix for the scattering should
vanish. The ternary alloy semiconductor can be treated as
a pseudobinary compound of 2 8~ type. Using this no-
tation, we have the following equivalences:

GaAs
&

«P«+-+(CraP )«(CxaAs), „~A„B&

Cra„in) «P~(GaP)«(lnP) ) „+-+A«B)

The configurational average of the scattering t matrix is
simply the weighted average

(2.2)
& t & =xt~+(1 —x )ts, (2.7)

The CPA method is based on the assumption that an ef-
fective Hamiltonian can be defined by the relation

( G(z) &
= (z —H, tt) (2.3)

p(E) = — Im TrG(z) .1
(2.4)

In the case of an alloy, relation (2.4) takes the form

Heff is configuration independent and possesses full crys-
tal symmetry, although it is energy dependent and non-
Hermitian, which results in finite lifetime of electron
states. %'hen employed, the effective Hamiltonian does
not produce further scattering from the individual states
on the average. It incorporates such a potential that an
electron wave propagates coherently through the material.
Gnce the function G(z) is known, the density of states per
atom can be calculated from the standard formula

where the t matrices associated with the individual sites
are given by' '

A, BV ' —cr(z)
(2.8)

1 F(z)[ V—"' a(z) )—
The V"' represent in a single-site approximation the
one-electron energies for the particular site of an alloy
described by the tight-binding Hamiltonian

H= g ~

n &V„(n
~
+ g ~

n &h„(m
~

.
n, rn

n&m

(2.9)

As has been pointed out by Mariette et a/. ,
' in a semi-

conductor alloy it is necessary to account for three sub-
bands of a conduction band, i.e., to introduce three self-
energies cr (a=l,X,L) as well as to express the total
Green's function for the alloy in the form of a sum over
subbands

p(E) = — Im Tr(G(z) & = ——ImF(z),1 1

~N 7T
(2.5) F gF—

a=I,X,I.
(2.10)

where the diagonal element of the averaged Green's func-
tion (G(z) & is denoted by F(z)

F(z) =(0
~

(G(z) &
~

0& =—Tr(G(z) & .1

N
(2.6)

In a simplest approximation to CPA, i.e., a single-site ap-
proximation, ' the mixed crystal is replaced by an effec-
tive medium created by placing on every lattice site the
energy-dependent complex potential o., the so-called self-
energy. The self-energy o. is chosen in such a way that the
average scattering on the ith site on which o. is replaced by
the actual potential ( V or V ) is the same as if there was
potential o.. That means there is no scattering at all, since
o. is the same as the potential assumed for all other sites;

x(v~ —cr ) (1—x)(V —cr~)

1 —hVAF
+

1 —EVBF

where

aV"F= g (V"'—a )F
a=I,X,L

(2.11)

(2.12)

The equation (2.11) is to be solved self-consistently. Tak-
ing into account (2.12), it can be rewritten in the form

By substituting (2.10) and (2.8) into (2.7), and imposing
the condition of vanishing of the average t matrix, the
CPA equation for the substitutional ternary alloy can be
written as

r

x(v" —o ) 1 —g(V o~)F~ ~(1—x)(V— cr ) 1 ——g(v o~)F~ =0. —
a a

(2.13)

Setting a =I, one can obtain

x( Vr —crr) 1 — ( Vr —err)Fr + g ( V~ cr~)F~-
a(+I )

r

+(1—x )( Vr —or) 1 — ( Vr err)Fr+ g ( V—~ —o~)F~
a (+I')

=0, (2.14)

and furthermore,
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xVr+(1 —x) Vr —( Vr —or)Fr( Vr —or) —orA B B

—x( Vr —err) g ( V~ o—~)F~ —(1—x )( Vr o—r) g ( V~ o~—)F~ =0 . (2.15)
a {&I) a {&I)

The expression x Vr+(1 —x ) Vr ——Vr is a linearly interpolated potential value between binary constitutent, i.e., Vr is the
VCA potential. Therefore, the self-energy o.l- can be finally expressed in a form convenient for iterative calculations:

o'r ——Vr —( Vr —o r)Fr ( Vr c—rr ) x—( Vr err )F—»( V» c—r» ) —( 1 —x )( Vr or )F»—( V» —o» )
A B A B B A

—x ( Vr err—)Fl ( Vi —o L ) —( 1 —x )( Vr err )—FL ( VL —o L ) .A B B A (2.16)

The expressions for ox and o.L can be derived in exactly
the same way by setting in (2.13) a =X and a=L, respec-
tively. It can be easily noticed that each of the expressions
for o.~ has the following form

o =V —(V o)F —(V —o )— (2.17)

~r Fr
&x = ~x —~ Fx

~L FL

(2.18)

or using a closed-form notation,

o.a= V —SapF~ . (2.19)

The complete S matrix is given in Table I.
The valence band is treated here within a framework of

a simple, single-band model. The appropriate self-energy
is derived from the equation

~&r = Vur —( VUr —~~r)Fur( VUr —o'ur) ~ (2.20)

where the ellipsis stands for the remaining terms. The
part V~ —(V~ cr~)F~—(V~ o—) is exactly the result ob-
tained by Soven in the case of one-band model. It de-
scribes the contribution to the self-energy coming from a
substitutional A-B disorder within the particular subband.
The remaining four terms are the compositionally weight-
ed contributions due to off-diagonal interactions of a
given subband with the remaining two ones. The original
Soven equation has a scalar form and appears to be a spe-
cial case of generalized matrix equation referring to our
case, which reads as follows:

and F„r is an alloy Green's function for the valence band.
In order to calculate the compositional variations of en-

ergy bands in the alloy it is necessary to specify some un-
perturbed densities of states. The simplest approximation
is the semielliptic partial density of states' '

[W (E V—) ]'—i for iE —V
i

&W
p (E)= mW

0 f ro~E V~ &—W (2.22)

This approximation is well justified for binary limits even
sufficiently far from the band edges: This can be checked
with the use of the band structure as obtained from
pseudopotential calculations. It still holds, although with
limited accuracy, for ternary compounds. The density-
of-states model that is used is acceptable for I as well as
for X and L regions of the conduction band; the model has
been recently proved by its ability to fit spectral depen-
dence of the optical cross sections for the transitions be-
tween a localized level and the conduction band. ' On the
other hand, using a more realistic density-of-states model,
one needs to adjust more parameters to describe it.

The P is a partition function satisfying the normaliza-
tion condition

f p (E)dE=P~ . (2.23)

It can be calculated by purely geometrical considerations
applied to the first Brillouin zone of the crystal. ' The to-
tal unperturbed density of the states for the alloy is given
by

where

V,r ——x V„r + (1—x ) V,r (2.21)
p (E)= g p (E),

a=1,X,L
(2.24)

TABLE I. Elements of S matrix.

Sii =(Vr —o-r)( Vr —or)A B

S)2 =x( Vr —or)( V~ —og )+(1—x)( Vr —or)( V~ —og )

S)3——x( Vr —o.r)( VL —cri. )+(1—x )( Vr —o.r)( VI". —o.L )

S$$ =x ( V~ —o g )( Vr —o r )+ ( 1 —x )( Vg —o'g )( Vr —o r )

S» ——( V& —o&)( V& —o&)A B

S„=x(VA—~ )(V,'—~, )+(1—x)(V' — )(V,'—~, )

S3$ ——x( VL, —oL, )( Vr —or)+( 1 —x)( VL, —oL, )( Vr —or)A B B A

S32——x ( VL. —o L )( V~ —ox )+ ( 1 —x )( VI. —o I. )( Vx —or )
A B B A

S33 ( VL, ~L )( VI. oL )

p~(E) = ——IrnF~(z) . (2.25)

Making use of the Hilbert transform, we find the follow-
ing explicit expression can be written for the alloy Careen's
function:

whereas p~(E) is the contribution to the total density of
states from the subband a centered at V and having the
halfwidth 8' .

The density of states in the alloy is related to the one-
particle Green's function by the equation (2.5). Taking
into account three subbands of the conduction band, one
can obtain the following expression for the partial density
of states p~(E):
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oO

t
I J I I

p (E)
z —cT~ z —E (2.26)

The above integral has been evaluated using the unper-
turbed density of states given by (2.22),

OO ~ Ch

F~(z)= 2 (z —o +[(z—o~) +8'~]'~
J .

S'a
(2.27)
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The halfwidth of the semielliptic bands can be simply ex-
pressed as a function of a lattice constant denoted by a
and the effective mass m

(4~p. )'"x'
8' = (2.28)

Q ma

It has been assumed for the calculations that V and W~
vary linearly with composition.

III. NUMERICAL CALCULATIONS

The theory formulated in the preceding section has been
used to calculate the band structure of selected ternary al-
loys. Both the absolute energy variations at main symme-
try points of the Brillouin zone as well as the energy gaps
at these points have been calculated. The materials chosen
are GaAs& P„and Ga„ln& „P for their technological
importance and the availability of experimental data.
With these materials we could compare numerous experi-
mental results from different laboratories. Moreover, the
case of Ga In& P is also challenging since there is still
an unresolved question about location and the nature of
direct-indirect crossover in this material.

The numerical values of band-structure parameters for
binary limits of considered ternary alloys are listed in
Table II. Conduction-band effective masses for GaAs and
GaP are well established from various experiments,
whereas for InP there are some discrepancies in the values
listed in the literature. Particularly, the effective mass at
L, minimum is uncertain. For the calculations we have
adopted the value 1.01m0, which is the same as mz in
GaP and produces correct downward bowing of the L sub-
band in mixed crystal.

The valence-band masses listed in Table II, due to the
lack of reliable experimental data, have been calculated as
the density-of-states effective masses with the use of
theoretical heavy-hole and light-hole effective masses
given by Lawaetz. The contribution from a spin-orbit
split-off band has been neglected.

The only absolute energies that enter calculations are
E 's at I ~5„, i.e., the top of valence band in III-V corn-
pounds. They have been taken from photoelectric thresh-
olds obtained by fitting the x-ray photoemission spectra.
The values of Ea for the conduction-band subbands
(I,X,L ) are computed using appropriate values of energy
gaps I ~, -I ~5„X~,-I &5„and L, &,-I ~5„, which are known
from the experiment.

The energetic positions of the centers of each semiellip-
tic band have been calculated from the relation (2.28). For
the calculations of partitioning of Brillouin zone we have
adopted the scheme proposed by Mariette et al. ,

' which
gives the following values of P 's for III-V compounds



28 ENERGY BANDS OF TERNARY ALLOY SEMICONDUCTORS:

with zinc-blende structure:

Pp ——0.0379,

P~ ——0.4792,

PL ——0.4829

The lattice constants required to calculate the halfwidths
of the semielliptic bands in binary compounds are listed
below

a~,A,
——5.653,

ay„p ——5.869,

a G,p ——5.451,
0

in units of A.
For a given composition of a mixed crystal, V (x) and

W~(x) are calculated by a linear interpolation between the
binary limits. Then the equation (2.27) is used to calculate
the alloy Green's function F~(z). As a first approxima-
tion for the self-energy we set the VCA result o (z)
= V (x), which is actually energy independent. The start-
ing energy, denoted here by z variable, is chosen well
below the unperturbed band edge, which results in real
F~(z). This greatly simplifies further calculations. At the
same time a complete S matrix is computed and a new
self-energy cr(z) is obtained from the matrix equation
(2.18). The new o.(z) is used to compute a new F(z) and a
new S matrix, and the whole procedure is repeated until a
self-consistent value of o (z) is attained. Sufficient con-
vergence is accomplished by iterating several times. For
this o (z) we check the imaginary part of I' (z), and if it
is equal to zero, then the z variable is incremented and
new self-consistent cr (z+M) and F (z+M) are calcu-
lated. At the moment when for some I' (z+n M) we get
ImF & 0, the precise location of the band edge is tracked
by bisection procedure applied to the z range
[z+n M,z+ (n —1)M]. Such numerical procedure is
very efficient, and combined with rapidly convergent o~,
it results in reasonable computing times.

E (ev }
C PA calculations

—3.00

binary compounds has been found. ' While there is some
scatter in the experimental data, there does appear to be a
trend toward larger bowing parameters with larger lattice
constant differences. Both these facts are inherent to our
theoretical treatment. The main equations of CPA theory,
i.e., (2.11) and (2.12), involve V"' —the one-electron ener-
gies for the particular site of an alloy described by the
tight-binding Hamiltonian (2.9). In the case of our model,
where the density of states has semielliptic form suggested
by Hubbard, these energies refer to the centers of each
band. They are calculated from the known positions of
band edges and the halfwidths W of the band in ques-
tion. The latter depends on the lattice constant, effective
mass, and, throughout the partition function P, the
geometry of the Brillouin zone.

The inspection of Figs. 1 and 2 shows that there is no
correlation between the bowing parameter and the energy
differences between the binary end-point compounds.
This is particularly striking when comparing bowing at I
and L minima of the conduction band in Ga„ln~ „P.
However, if we plot the linearly interpolated positions of
the centers of each band versus the composition of the al-
loy (as has been done in Fig. 3), one can observe that they
do not follow the variations of band edges, which are
represented here by straight-line interpolation. Figure 3

IV. RESULTS AND DISCUSSION

The results of calculation of energy at the main symme-
try points versus the alloy composition for GaAs& „P„
and Ga~ In& „P at the absolute-zero temperature are
shown in Figs. 1 and 2. Zero of energy corresponds to the
vacuum level. The energy variations are characterized by
the so-called bowing parameter defined as 4 times the en-
ergy deviation from straight-line interpolation at x =0.5.
One can notice that both the conduction and valence
bands contribute to the total bowing of the band gap.
Furthermore, the amount of bowing is different for dif-
ferent subbands of the conduction band. This result sup-
ports the earlier claim that the effect of disorder is dif-
ferent at different points of the Brillouin zone. Altarelli
has argued that this variations can be explained by the
difference in the ionic pseudopotentials of the alloyed ele-
ments. On the other hand, a definite correlation between
the bowing parameters for several ternary alloys and the
lattice constant differences between the two end-point

—4.00

—4.50—
—5.5 0—

l

15v

—6.00 I I I I I

0.5

c o rnposi t ion

'l. 0

FICx. 1. Calculated energies at the main symmetry points of
Brillouin zone versus alloy composition for GaAs~ P„.



7110 M. BUCxAJSKI, A. M. KONTKIEWICZ, AND H. MARIETTE 28

E (ev}

vacuum I eve l

I
phot o el ect rig
threshold

—3.00

—3.5 0

CL
UJ

5

(x)
G

~x„(v„)
(v„)

L„(v„)
x~c (E~)
Lie (E
f, (E~)

—4.00
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GaP
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I

15v

reveals a clear trend: The higher the energy difference be-
tween the centers of a given band, the greater is the value
of bowing parameter for this band. This is illustrated in
Fig. 4. The straight line drawn in Fig. 4, fitted by the
least-squares method, gives an approximate relationship
between the absolute value of the energy different

}
hV

and the bowing parameter b,
b =0.67

i
Av (4.l)

The equation (4.1) can be used for quick, rough estimation
of an unknown bowing parameter without the necessity of
performing complicated numerical calculations.

The parameter that can be easily referred to the experi-
mental results is the band gap. Therefore we plot in Figs.
5 and 6 the compositional variations of the band gaps at
the main symmetry points both for GaAs& „P and
Ga In& P alloys. The solid lines are derived from our
work, whereas dashed lines are from the work of Chen
and Sher. We have chosen to compare our results with
those of Chen and Sher since their work presents so far
the most rigorous calculations of electronic structure of
ternary alloys. However, the input of their calculations
includes the scaled virtual crystal approximation (SVCA)
densities of states as well as the bonding and antibonding
energies for the binary end compounds. The calculation
of these quantities requires complicated numerical integra-

QQ, i i a i l i a

0 0.5
composition x

FICx. 2. Calculated energies at the main symmetry points of
Brillouin zone vs alloy composition for Ga„In& „P.

tions over the entire Brillouin zone of the crystal. More-
over, such calculations are sensitively dependent on the
large number of adjustable parameters needed to generate
parametrized band structure of binary compounds. On
the other hand, our calculations, despite the use of greatly
simplified band structure, provide by far the most effi-
cient way of obtaining compositional variations of ternary
alloy energy band edges. For GaAs& „P we get practi-

lX

I—

X
CL

0.5

e GaAs, „P

0.5

idv~i ( ev )

FIC)l. 4. Calculated bowing parameter vs the energy differ-
ence between the centers of semielliptic bands in binary end-
point compounds.

FIG. 3. Linearly interpolated positions of the centers of each
semielliptic band vs alloy composition for GaAs~ „P„and
Cxa„In) „P.
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3.00

E {eV)

2.50

2.0 0

1.5 0

1.0 0

compos i t ion x

'l.0

3.00

FIG. 5. Calculated band gaps vs alloy composition fo
GaAs~ „P„at0 K (solid line, this work; dashed line, Ref. 32).

cally identical results as those of Chen and Sher, whereas
for Ga„ln~ „P there is the essential difference concerning
the location and precise nature of direct-indirect cross-
over.

To check the validity of our calculations we have com-
pared the bowing parameters obtained in this work with
those quoted in literature. In the case of the band gap the
total bowing parameter is a sum of the contributions from
the conduction and valence bands. Tables III and IV list
the results of extensive search in the literature published
in recent years. They contain both experimental results as
well as theoretical estimates obtained by such methods as:
dielectric model (DM), empirical-pseudopotential-method
band-structure calculation (EPM BS), first-principle
CPA calculations based on linear combination of bond-
orbitals method' (I.CBO CPA) and VCA effective-
pseudopotential method (VCA EPM).

First we shall discuss the GaAs~ „P„alloy. We have
obtained a perfect agreement with the numerous experi-
rnental data available for this alloy. As far as comparison
with other theories is concerned, the general tendency
pointed out by A.ltarelli, that in the case when a group-V
element is alloyed, the X-band bowing should be as large
or larger than those of I and L bands, is reproduced in
this theory, while other theories generally do not repro-
duce this feature. The dielectric model (DM) as well as
EPM BS and VCA EPM give too small X-band bowing
and too large I -band bowing when compared to the ex-
perimental results.

In the case of Cxa„ln~ „Pwe deal with an opposite situ-
ation. The conduction-band X~ state corresponds to a
charge distribution, attaining its maximum at the group-V
site and vanishing at the group-III site. Therefore, it is

E (eV}
TABLE III. Survey of experimental and theoretical values of

the bowing parameters for GaAs~ „P„.

2.50
Bowing parameter b (eV)

X Reference

2.00

1.5 0

0.21
0.21
0.174
0.2

0.210
0.210
0.210
0.186
0.210

0.03

0.202
0.2
0.280
0.211

0.27
0.211
0.221

Experiment
0.25
0.23
0.16

0.160

33
35
23
25
36
37
38
39
40
41

1.00 I I I k

0.5
composition x

1.0

FIG. 6. Calculated band gaps vs alloy composition for
Ga„In& „Pat 0 K (solid line, this work; dashed line, Ref. 32).

0.148
0.26
0.30
0.21
0.23
0.38
0.17
0.30
0.22

0.208
0.22
0.11
0.21

0.08
0.10
0.13

Theory
0.160
0.45
0.19
0.25
0.23
0.22
0.21

0.18

This work
32

2, 34
31
35
42
13
39
43
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TABLE IV. Survey of experimental and theoretical values of
the bowing parameters for Ga„In& „P.

TABLE VI. Experimental and theoretical values of the cross-
over compositions for Ga„In& „P.

Bowing parameters b (eV)
X

Experiment

Reference
One crossover

&c,r-x
Two crossovers

+c2,L-X

Experiment

Reference

0.684
0.76
0.758
0.50
0.758

0.40—0.88

0.508
0.40
0.70
0.758
0.43
1.36
0.39

0.147
0.15
0.203

0.148
0.17
0.40
0.15

0.16

Theory

0.68

0.86

0.34

0.790
0.41
0.50
0.68
0.43
0.27
0.23

44
45
46

47,48
49
35

This work
32

2, 34
31
35
42
43

0.63
0.65
0.69
0.72
0.74

0.66

0.68
0.74

0.68
0.63

0.68

0.65

Theory

0.77
0.74

0.77

0.80

47,48,55,56
57,58

48
46

45,59,60
44
61

This work
32
53

2,43
30

expected that the effect of disorder on the X& conduction-
band edge in the case when the group-III element is al-
loyed should be small in comparison with the effects at
the I and L, points. This is indeed the case we have ob-
tained from our calculations. As can be seen from Table
IV, the values of the band-gap bowing at the I, X, and L
points are in satisfactory agreement with experiment,
whereas the DM model predicts generally too large X-
band bowing.

Another important characteristic of a ternary alloy is
the composition at which the smallest direct and indirect
gaps become equal and where the luminescence properties
change drastically. As before we have listed available ex-
perirnental and theoretical crossover compositions for
GaAs& „P„(Table V) and for Ga„ln& „P (Table VI). For
GaAs~ „P our calculations predict x =0.46, which is in
agreement with both experimental and theoretical results
quoted in literature. In the case of Ga„In~ P alloys the
situation is a little more complicated. The available exper-
imental results fall into two distinct categories. One
predicts I -X crossover close to either x, =0.63 or
x, =0.74; the other argues in favor of two crossover com-
positions. The latter situation is attributed to the behavior
of the L-band edge. The first crossover refers to the I -L
transition, the second one at higher composition to the

TABLE V. Experimental and theoretical values of the cross-
over composition for GaAs& „P„.

Reference

L-X transition. The results of our calculations support
clearly the second view advanced by Pitt et al. ' and
Merle et al. This result is consistent with their high-
pressure electrical measurements ' and with a detailed
piezoreflectance study of the Ga„ln~ „P system. Both
methods are in this particular case more reliable than opti-
cal luminescence measurements, since they allow one to
follow the positions of three conduction-band minima
across the whole composition range. Therefore, they can
be understood as giving strong support to our calculations.
For a further test of reliability of our calculations we have
replotted Fig. 10 of the paper by Chen and Sher (see Fig.
7), including our results. It can be seen that our calcula-
tions agree very well with a larger number of the experi-
mental data quoted from Refs. 44, 45, 48, and 59.

)nP

2.8

E (ev)

2.4

2.2

2.0

0.45
0.46

Experiment
40,50,51

25,37,39,S2

0.46
0.47
0.48
0.25

Theory
This work, 14,53

2,30,43
32
54

1.4
0.0 0.2 0.6 0.8 1.0

X

FIG. 7. Comparison of theoretical and experimental band
gaps for Ga„In& „Palloy (solid line, this work; dashed line, Ref.
32; circles, Ref. 48; crosses, Ref. 45; triangles, Ref. 59).
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V. CONCLUSIONS

The CPA method has been used for evaluating the ef-
fect of substitutional disorder on the band bowing in ter-
nary alloys. The closed form, matrix equation, an analog
of Soven's equation has been derived. This form of CPA
equation is particularly convenient for iterative numerical
calculations. The results of calculations for GaAs& „P„
and Ga„In& P have been compared with available exper-
imental data. It has been shown that the CPA theory
reproduces correctly both the compositional variations of
band gaps as well as the crossover compositions, while the
other models give only a rough estimation of bowing at
various symmetry points. For Ga„In& „P, where a con-
siderable controversy exists about the location and the na-
ture of the direct-indirect transition, our results support
the recent hypothesis of two crossover compositions attri-
buted to the behavior of the I.-band edge. Finally, we
have found that the amount of band bowing for a particu-
lar symmetry point of the Brillouin zone is proportional to

the absolute value of the difference between the potentials
referring to the centers of the bands in question in binary
limits. Although the band structure of binary consituents
is treated only approximately in our calculations (semiel-
liptic density of states is assumed), the experimental
features of ternary alloy band structure are reproduced
surprisingly well. This result proves the essential role of
substitutional disorder, which is treated by CPA theory
exactly, in producing the nonlinear variations of the band
gaps in the semiconductor alloys.

The ability to calculate the band structure of compound
semiconductors is an important prerequisite for any
analysis of the phenomena occurring in these alloys as
well as in the devices based on these materials. The
relevance of CPA methods for such calculations has been
demonstrated. The certain simplifications introduced in
the model to make the calculation tractable, i.e., the as-
sumption of semielliptic density of states are justified,
since the principal interactions affecting the alloy proper-
ties are incorporated in the present calculations.
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