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Series expansion for the symmetric Anderson Hamiltonian
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Spin susceptibility, charge susceptibility, and specific heat for the symmetric Anderson model can
be expanded in power series which converge absolutely for any finite value of the expansion parame-
ter U/m. A. The coefficients of these expansions satisfy the simple recursion relation
C„=(2n —1)C„ I —(m/2) C„2. The expansions rapidly assume their asymptotic form and the
scaling behavior is obtained for U/m. A )2.

In this paper we show that the exact results for the sym-
metric Anderson Hamiltonian, ' obtained by the Bethe-
ansatz method, can be represented by convergent
power-series expansions in terms of u =U/~b„ irrespec-
tive of the magnitude of the expansion parameter, and
that the same series expansions could also be generated by
the perturbative approach of Yosida and Yamada. '

The remarkable property of these series expansions is
that they rapidly attain the asymptotic form so that the
scaling behavior is obtained as soon as the expansion pa-
rameter becomes larger than 2. Furthermore, the coeffi-
cients in these expansions decrease very fast with increas-
ing order, so that only a limited number of terms suffices
for an accurate description of the system, even for Ulm. b,
as large as 2 or 3, that is, even in the strong correlation re-
gime.

The symmetric nondegenerate Anderson model is de-
fined by the Hamiltonian

H= geknk +ed hand
k, o o'

+ V g (ck cd +cd ck )+ Und, nd, ,
k, cr

where all symbols have their usual meaning and where
ed ————,

' U. In the weak correlation regime (U«b, ) the
properties of the model could be simply obtained by a
straightforward application of the perturbation theory
around the U=0 ground state. In the strong correlation
regime (U»h) the behavior of the system is character-
ized by the scaling laws, and it has been argued that such
a behavior could not be obtained by means of the pertur-
bation theory in terms of u.

Since several papers regarding the application of the
Bethe-ansatz method to the Anderson model have ap-
peared recently, we quote here just the results for the
zero-temperature reduced spin susceptibility
X, =[2m.b, /(gpss) ]X„charge susceptibility X, = —,mb, X„
and linear coefficient of the specific heat y=(35/2+k~ )y
as follows:

2

+C
1+( —,rru +x)

y= —,'(X, +X, ) .

(2)

The exponential term in the expression for g„which we
denote by E(u), has an essential singularity at u =0, and it
tends to the Kondo susceptibility X~—v'm/2u exp( s

m. u)
as u ~ oc. However, before making any conclusions re-
garding the analytic behavior of the complete spin suscep-
tibility, one should carefully evaluate the exponential
corrections to the main value of the integral I, =X, E. —
Rewriting the integral I, in the form

1
—x /2Q

I,(u)= Ref, dx,
277u X —Z

(4)

so that "anomalous" exponential term E(u) disappears
from the expression (1) for X, and the remaining integral
can be evaluated exactly. Expression (2) for X, can also be
transformed into a more convenient form,

cosh( —,m.x )
X,(u) =e " v'2/sru f e " " dx,

0 1+x
(6)

by simply shifting the variable of integration by —,~u.
In order to calculate the integrals in (5) and (6) we ex-

zl

1m z

where z'= —1+iTmu, and integrating along the closed
contour shown in Fig. 1 we obtain

cos( —,mx)
I,(u)=e "~ v'2/mu f e " ~"

z dx —E(u),
0 1 —x

X, =v'm/2u exp[ —,n. u —(1/2u)]
—x 2Q

1 e-" ""dx
+

1+( T~u +ix)

Re z

FIC». 1. Closed contour in the complex plane used to evaluate
the integral in Eq. (4). The contributions of vertical segments
vanish as

~
Rez

~

~ ao.

1983 The American Physical Society



SERIES EXPANSION FOR THE SYMMETRIC ANDERSON HAMILTONIAN 6905

X,(u) =exp( —,
' n. u)y(u),

X,(u) =exp( ——,
'

m u )(!)(—u),
where (p(u) denotes the power series

(8)

)p(u)= g ( —I)"g„u" .
n=O

The coefficients g„are given by

(9)

[2(n+ 1)]! m1)k
(2n+1)(n+1)! ), o [2(n+k+1)]! 2

2k

(10)

and satisfy the recursion relation

g„=[( ,
' m. )"/—n!]—(2n —1)g„

pand cos( —,
' mx)/( I —x ) and cosh( —,

' mx)/( I+x ) into
power series that converge absolutely and uniformly for
any

~

x
~

& oo ', integrating term by term, we obtain

X,(u)= g ( —1)"C„u",
n=O

(14)

where the coefficients C„are given in terms of n-
dimensional integrals. The first five coefficients have been
obtained by Yamada, who evaluated the appropriate in-
tegrals, while the high-order terms are too complicated to
be calculated directly even by numerical methods. Since
the determinantal method is not restricted to a summation
of a certain class of diagrams (rather, it takes into account
all the diagrams of a given order), it could be used for es-
tablishing the exact relations between different quantities
of the model. Thus Yam ada shows that—(n) ) [X(n)+X(n)]

In order to compare these results with those obtained by
means of the Bethe-ansatz method we multiply the series
expansion of exp( —,~ u) and the power series (9) together
and re-collect the terms of the same order to obtain g, and
X, in the form of (13) and (14). Using the recursion rela-
tion (11) for g„s we find that coefficients C„are given as
the solution of the set of linear equations

C„=(2n —1)C„)—(m./2) C„ (15)
for n ) 1, with go ——1. Since the sum of the series entering
Eq. (10) changes from 8/m. for n =0 to 1 for n = oo, the
asymptotic form of g„ for large n is given by just the pre-
factor in Eq. (10). It follows that the power series (9) con-
verges absolutely for

~

u
~

& oo, thus defining the function
y(u), which is analytic for any finite value of u. This
function equals unity at u =0 and attains its asymptotic
form ))o~ (u) =v'm /2u exp( —1/2u) for u )2. Indeed, the
relative difference between g and y, is 6.7% for u =1,
only 0.8% u =2, and becomes completely negligible for
u)3.

Consequently, for u ) 2 one can write the scaling law C„=[(—,
' m. ) "+'/(2n + 1)!!]P„, (16)

for n )2, with Co ——C) ——1. It is seen at once that the first
five C„'s generated by Eq. (15) coincide with Yamada's re-
sult. Assuming that the susceptibilities have unique series
expansions in powers of U/~A, it follows that, due to the
high symmetry of the functions that enter the integrals in
the theory of Yosida and Yamada, the n-dimensional in-
tegral for C„could be reduced to a sum of lower-order
terms according to Eq. (15). Thus, the complete perturba-
tive solution could be constructed by iteration.

The solution of Eq. (15) for general n can be written as

X,(u)=(vr/2u)'~ exp[
—,
'

m u —(1/2u)], (12)

Xg(u)= g C„u",
n=0

(13)

which is peculiar to the strong correlation regime. It
should be emphasized that, since X, /X» ——exp( —1/2u),
the susceptibility tends rather slowly towards its limiting
Kondo value X~, but the strong correlation regime is es-
tablished as soon as X, assumes its asymptotic form (12),
i.e., for u )2. We also mention that 7, becomes exponen-
tially small in the strong correlation regime, so that
y= —,X, for u )2.

In the perturbative approach of Yoshida and Yamada
to the symmetric Anderson model the Hamiltonian is di-
vided into the unperturbed part, equal to the nonmagnetic
Hartree-Fock approximation to the full Hamiltonian, and
the perturbation U(nd, ——,

'
)(nd, ——,

'
), so that only the ef-

fect of fluctuations is treated perturbatively. The macro-
scopic quantities are then expanded in the power series of
u=U/m4, with the coefficients given in terms of the
imaginary-time integrals of the determinants built from
the one-particle temperature Green functions for the un-
perturbed Hamiltonian. As regards the susceptibilities,
the Yosida and Yamada result for T=0 can be written as

a=a

k
(2n + 1)!!

[2(n +k)+1]!! 8
(17)

and since 2/m. =PO &P„&P =1, it is easy to see that the
power series (13) and (14) representing X, and X, con-
verges absolutely for J u

~
& oo. We are thus led to the

conclusion that both X, and X, are analytic functions for
any finite value of u and that the perturbation theory in
terms of u is appropriate and gives exact results not only
for small u, but for any finite u. Furthermore, since the
magnitude of C„decreases rapidly with increasing order
[C„=(rr/2) "+'l(2n+1)!! for large n], even a limited
number of terms in Eqs. (13) and (14) is sufficient for an
accurate description of the system, not just in the weak
correlation regime but in the strong correlation regime as
well. Thus, e.g., for Wilson's ratio 8 (u)=X, /y at u =2
the finite-order approximations give R '"'= 1.889,
R =1.952, and R =1.961, while the exact value at
u =2 is R =1.962.

We mention here that the determinantal perturbation
expansion has been used " to show that in the strong
correlation regime the low-temperature behavior of the
model obeys scaling laws. That is, both the transport and
the thermodynamic quantities become universal functions
when written in terms of the reduced variables T/O and
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(pzh)/(k&O), where k&O=b, /ny. The coefficients of
(T/0)" and [(p~H)/(k&0) j" in the appropriate low-
temperature and/or low-field expressions become parame-
ter independent for p )2. Here, as in the case of Wilson's
ratio, the finite-order perturbation theory is found to
describe accurately the transition to the strong correlation
regime. For example, the coefficient a&———,[1+2(R—1) ]
of the (T/0) term of the electrical resistance, which
equals 1 in the u~oo limit, is equal to 0.950 at n =2,
while the finite-order approximations give ~z

' ——0.860,
~&

' ——0.938, and K&
' ——0.949. Clearly, any finite-order ap-

proximation must break down eventually for sufficiently
large u, but once the crossover region has been passed
(which happens at u —1), the scaling laws can be used to
extrapolate the results to an arbitrary point in the strong
correlation region.

To conclude, we have shown that the spin susceptibility,

charge susceptibility, and the specific-heat coefficient for
the symmetric Anderson model can be represented by
power-series expansions that converge for any finite value
of the expansion parameter U/mA. These expansions rap-
idly assume their asymptotic form so that for U/n. h) 2
the strong correlation behavior characterized by scaling
laws is obtained. The finite-order approximation is seen to
be able to reproduce the scaling laws, which lends support
to the belief that one could use the perturbative approach
of Yoshida and Yamada to write down the series expan-
sions for the quantities that could not be evaluated by the
Bethe-ansatz method, calculate the first several terms, and
obtain the results that retain their validity both in the
weak correlation and the strong correlation regimes.
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