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Matrix continued-fraction calculation of localization length
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A matrix continued-fraction method is used to study the localization length of the states at the
band center of a two-dimensional crystal with disorder given by the Anderson model and with in-
commensurate charge-density waves. For the disordered case it is found that exponentially localized
states, which scale according to the work of MacKinnon and Kramer, become weakly localized as
the disorder becomes weaker, and there is some critical disorder for which the localization length
does not saturate with the width of the strips, which confirms the results found by Pichard and Sar-
ma. %eakly localized states are also found in one dimension for $V/V ( 1. In the case of a crystal
with a modulation that is incommensurate in one direction and commensurate in the other, the local-
ization in the first direction behaves in a similar fashion as that found by Aubry, Sokoloff, and oth-
ers for the one-dimensional chain, that is, approximately the same critical modulation strength is
found: 8' /V=2. If the modulation is incommensurate in two perpendicular directions, there ap-
pears a tendency of increasing localization lengths as the width of two-dimensional strips is in-
creased and an intermediate regime develops between the insulating and metallic regions.

I. INTRODUCTION

Many interesting physical systems may be modeled by a
Hamiltonian representing a linear chain with nearest-
neighbors interaction which has the form
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where index i denotes a site with an energy E; and V;;+I
is the hopping matrix element. The corresponding
Green's function is

G(E)=(EI—H)

where I is the identity operator and E is a scalar.
In a local scheme, we can write

G~(E)=(0I G(E) I»=
0 00

Localization in disordered systems has been studied by ex-
panding the self-energy X in an infinite renormalization
perturbation series' which is difficult to handle. Howev-
er, a tractable expression of the self-energy Zoo may be
found as the sum of two terms of the form

Zoo(E) =&Oo(E) +&Oo(E)

Each of these terms accounts for the effect of sites to
the left or to the right of

I
0), respectively, and have a

continued-fraction expression ':

In order to clarify the meaning of this expansion we
may put E+~~+~~ ——oo and see that the self-energy Zoo (E)(N)

calculated with X sites to each side of
I
0) provides the

exact self-energy for such a finite chain. If we work en-
tirely within the realm of real numbers and have a system
for which the continued fraction converges in I. steps to
the right (left) for a certain eigenenergy E, it means that
there is an eigenvector which has an expansion in a finite
number of local states. We may interpret the convergence
length L as a measure of such a localization length. This
follows from the criteria that states are localized when the
self-energy is real and extended otherwise. It is clear, for
example, that if the self-energy is not real then conver-
gence is not obtained.

The continued-fraction expansion has been widely used
in solving the density of states (DOS) and localization of
one-dimensional charge-density waves (CDW's) and
Anderson disordered systems. In studying higher-
dimensionality systems there are various ways of proceed-
ing. In one of these, it is usual to reduce the model Harn-
iltonian to the form (I) using a recursion method which
provides an algorithm for reducing a Hamiltonian to a tri-
diagonal form which can then be handled as in a one-
dimensional system. However, we do not follow this pro-
cedure, but instead make use of the fact that the Hamil-
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tonian in a tight-binding representation appears in a
block-tridiagonal form.

Thus in Sec. II we carry out a straightforward generali-
zation of (3) and (4) as a matrix continued fraction (MCF)
where Goo(E) =(0

~
G(E)

~
0) becomes a matrix, the state

~
0) representing a set of states in a layer perpendicular to

the length of the chain.
In Sec. III we use the MCF formalism in evaluating the

localization length in a two-dimensional Anderson disor-
dered system. We show the results for the statistics of the
localized states and find the regimes for exponentially and
weakly localized states. Results seem to be in accord with
those obtained by Pichard and Sarma' using a transfer-
matrix approach.

In Sec. IV we study the tight-binding model for CDW
systems and show by numerical computation that for
two-dimensional CD' systems, the localization properties
are not very different from those of a one-dimensional
chain (as studied by Sokoloff, Bulka, Soukoulis and
Economou, "and others).

II. MATRIX CONTINUED FRACTIONS

+
~ii Vi, i+ 1(E Ei+ 1,i+ I ~i+1,i+1) Vi+1,i ~ (6)

These formulas may be deduced following Wu et al.
with the caution that the product of matrices may be non-
commutative. The validity of Eqs. (4)—(6) is not restrict-
ed by the dimensionality of blocks.

For the case in which the V;;+& matrices are of the
form Vij ——v5,J (and hence commute) then the usual recur-
sion formulas'3 of continued-fraction theory, namely

g(n) g g(n —1)+g(n —2)

and

p(n) g p(n —1)+p(n —2)
n

with

(E —E„)(—1)"

In order to calculate the local DOS and localization
length in systems with a dimensionality higher than 1, we
will use the fact, already pointed out by Butler, ' that the
resolvent or Green's function of a linear operator
represented by a matrix, which is tridiagonal in blocks,
permits a continued-fraction-like expansion.

Such a Hamiltonian has the form (1) where now the
state

~

i ) represents the set of 1V; states associated with the
index i; E; is a (N~ XX;) matrix representing the Hamil-
tonian matrix elements among states in the same set and
V;;+1 is a (X; &&K;+,) matrix which connects successive
sets of states.

Equation (2) for the Crreen's function is still valid and a
particular block on the diagonal Goo ——(0

~

G
~

0) may be
written in a manner analogous to (3),

Goo«) = (E —Eoo —&00«) f

where Xpp ——5pp+6pp is a matrix representing the self-
energy and

g (0) I P(0) 0

can be used to find successive convergents
6(")=(Q(")) 'P("). However, even though this method is
much faster than continually inverting matrices as in (6),
it is found to be numerically unstable. Thus, we used (6)
directly in our calculations.

If the matrix self-energy may be calculated accurately
after L steps of iteration with (6) this length can be con-
sidered to be the maximum localization length of a state
with energy E, in the neighborhood of the

~

0) set of
states. It should be noted that the calculations of Xpp are
always referred to the same original site

~

0), thus in cal-
culating each new convergent the continued fraction must
be recalculated. Convergence of the continued fraction is
obtained when the difference between successive conver-
gents approaches zero.

There are two different methods which are very success-
ful in evaluating the mean localization length in disor-
dered systems. It is important to emphasize the differ-
ences between them and the MCF approach. The main
idea is to calculate some property characteristic of the
whole system which, if the system is large enough, will de-
pend on the strength of the disorder and on the sample di-
mensions, but not on the particular configuration used in
the calculation. In the method of MacKinnon and Kra-
mer this property is the transmittance between the two
ends of the finite strip (bar), which in the limit of very
long length was the asymptotic property

Tri (Oi G(E) i%) i
=e ' "i" (N co)

In the other method, that of Pichard and Sarma, the
transfer matrices T; up to the 2Ah slice are evaluated to
find the transfer matrix of the whole strip (bar):

T —T+ T+ f T2 TJ

whose minimum eigenvalue y;„has the asymptotic prop-
erty

e )v /2(~ — ,
)

In both methods A, =A, ( W, E) is a statistical measure of the
localization length. As a mean property, it may be
evaluated as accurately as needed by taking N sufficiently
large, the results being configuration independent.

On the other hand, our method is based on a different
idea. Given a particular configuration and a given layer
which we call

~

0), we ask how large must a cluster be in
order to reproduce correctly the local properties at layer
~0) and its neighborhood. The MCF expansion of the

site self-energy Xoo(E) gives us an idea of localization of
an eigenstate of energy E in this region and also permits
the evaluation of local density of states from Goo (an ex-
ample is given in Sec. IV). Of course, for a different clus-
ter the localization length may not be the same. More-
over, the convergence of these local properties do not
necessarily follow any well-defined law. In particular, cer-
tain configurations will have very large localization
lengths. Our method permits the study of the statistical
distribution of the localization lengths among the different
configurations.
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III. ANDERSON DISORDERED LATTICE

A. general considerations

In this section we will consider the usual tight-binding
Hamiltonian

Il=+E „ i
R) {R

i

R, R'
{nearest neighbor)

V-„,(
i
R) (R'

i
+

i
R ') {R

i ), (7)

A, =A.(E, W/V)-1.

and

II~II™xXI~J I

This expression is expected to work well for a one-
dimensional chain with uncorrelated disorder and ex-
ponentially localized states. Although we were not able to
prove it for the proposed generalization, it fits well the nu-
merical data for disorder which is not too weak and we
will interpret this fact as evidence of exponential localiza-
tion. There is a compromise between the number of points
used to fit (8) and the time (proportional to X ) required
to calculate the X convergents; for this reason we perform
only 50 iteration steps before fitting the data with the ex-
ponential.

For each set of parameters (E,M, D, W/V) the averages
of A, and 1/A, have been computed by taking an ensemble
of 100 systems. This size of the ensemble has been select-
ed in order to maintain the variance of (A, ),„and (1/A, ),„
to less than 5% of the mean.

The probability distribution of A, and 1/A. proved to be
well defined so that there is no problem in finding the
mean. At this point there may be some doubt as to wheth-
er it is appropriate to calculate a value representative of
the exponential localization length by examining the mean
of the distribution of A, or that of 1/A, . We give the results
of averaging A, : (I.),„=—10(A.),„. It can be easily shown
from the Schwartz inequality that (X),„&(1/A, ,„) ' so

where R are sites in a square lattice forming a strip of
width M and infinite length (D =2) or sites in a cubic lat-
tice forming an infinite bar (D =3) of cross section M .

Following Anderson' the energies E- are assumed to
R

be equidistributed in the interval [——,
'

W, —, W] and for
simplicity we take the hopping parameter V to be the same
in all directions.

Hamiltonian (7) is tridiagonal in blocks so we can calcu-
late the matrix self-energy Zoo ——b,DO+ b,oo of the J0) layer
with expression (6). The convergence of the M ' dimen-
sional matrix continued fraction might require lengthy
calculations, so we introduce an additional assumption;
the norm of the difference between successive convergents
decreases exponentially, namely

~~boo —boo ~~ exp( N/A, )—
with

that the other possibility for averaging would give a some-
what smaller localization length. We find that both ex-
pressions give results which are qualitatively similar.

B. One-dimensional results
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FICx. 1. Histograms showing the distribution of exponential
localization length X for 200 systems for M=1, 8'/V=1. 2, and
E=O. Systems in (a) have a correlation coefficient higher than
0.75; the others are represented in (b).

When calculating the exponential localization length of
one-dimensional systems we found that when there is a
strong disorder, Eq. (8) is very accurate for all systems in
the ensemble, but as the disorder becomes weaker there ap-
pear systems with increasing frequency which do not satis-
fy (8) and show very low correlation coefficients in adjust-
ing the data to the exponential, thus we adopted the cri-
teria of discarding systems with a correlation coefficient
below 0.75. Unless explicitly stated, in no case do we
show results for (A, ),„if more than —,

' of the systems were
discarded.

In Fig. 1 we show a histogram for the localization
lengths of 200 one-dimensional systems with a weak-
disorder parameter ( W/V =1.2). Figure 1(a) shows the A,

values obtained by writing (8) with correlation coefficients
larger than 0.75. The other systems with lower correlation
coefficients are plotted in Fig. 1(b). This shows qualita-
tively that the systems with low correlation coefficients
(not exponentially localized) have larger localization
lengths.

In Fig. 2 we plot the mean localization length for E =0
as a function of disorder parameter (W/V). The open cir-
cles represent averages over ensembles where more than —,

'

of the systems should be discarded. The closed circles
satisfy the usual one-dimensional result, namely

k —Ao
1 8 c =0~ v=2

( W/V —W, /V)

For an analytic discussion of these results see the works of
Thouless and Kirkpatrick, ' Weisz et al. , or Sarker. '
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C. Two-dimensional results

The same calculations were performed in two dimen-
sions for a strip of width 10 and results are shown in Fig.
3. Equation (9) again represents quite well the behavior of
exponential localization length with the same parameters
8', =0 and v =2. This shows that one-dimensional
behavior is maintained for strips of finite width.

We also studied how the mean of exponential localiza-
tion length evolves when the dimensionality of systems is

FIG. 2. Mean exponential localization length ((A, ),„) for
E=O as a function of disorder (W/V} for a one-dimensional
chain. Open circles are used for the averages where more than

3 of the ensemble was discarded. The solid line has a slope —2.

increased varying M from 1 to 12 for IV/ V
=14,10,8,7,6,S,4. The results shown in Fig. 4(a) are ap-
parently those found by MacKinnon and also satisfy the
one-parameter scaling found by this author. However, be-
cause the number of systems for which the exponential fit
is good decreases as the width is increasing, as shown in
Fig. 4(b), the procedure of using the exponential fit be-
comes invalid. We interpret this situation as a breakdown
of exponential localization. Instead, we used the criteria
that convergence is obtained when

~
~b,L,

—61 ~~ ~

& 10
the graphs of L vs M for W/V=6 became linear up to
M=35. However, for values of 8'/V=10 the saturating
behavior could still be observed. It was difficult to obtain
very good statistics with this latter method as only a few
systems could be considered; however, there was every in-
dication that the linear behavior was present if the disor-
der is weak. We have also shown in Fig. 4(b) how the
number of systems for which the exponential fit is satis-
factory steadily decreases as the width is increasing for
8'/V&8. Thus there is clearly a regime where weak lo-
calization sets in. This is in accord with results of Pichard
and Sarma. The MCF also seems to provide results simi-
lar to that of Pichard and Sarma for the three-dimensional
case, but since it requires a great deal of machine time, we
are not able to present them yet.

Our result that there is a linear behavior of L with M
for states at E =0 for weak diagonal disorder may bring
to mind the results of Soukoulis et al. ,

' who find the
linear behavior at F. =0 for a model with off-diagonal dis-
order. This brings up the question as to whether localiza-
tion with diagonal disorder is similar to localization with
off-diagonal disorder, after all. It appears, though, that
there remains a strong qualitative difference between our
results with diagonal disorder and those of Soukoulis
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FIG. 3. Mean localization length as function of disorder
( W/V} for a strip of width 10. The open circles are used for the
averages where more than 3 of the ensemble was discarded.
The solid line has slope —2.

Flax. 4. (a) Mean exponential localization length (k) as a
function of the strip width M, (b} the proportion I' of systems
with exponential localization against M, both for E=O and vari-
ous values of W/V.
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et aI. ' with off-diagonal disorder. Indeed their linear
(nonexponential) behavior for E =0 persisted right up to
the strongest disorder parameter that they used. This con-
trasts with our work where we can indeed talk about ex-
ponentially localized states, and saturating behavior for
the localization length, provided the disorder is strong
enough. This fact is not surprising if we think that al-
though a larger width in the distribution of the respective
parameters has a localizing tendency in both cases, the
largest off-diagonal matrix elements would tend to favor
extended states, while larger values of diagonal disorder
tend to favor localized states. It is known, for example,
that models of off-diagonal disorder which emphasize
smaller values of V are the most likely to lead to localiza-
tion at the band center. '

Another difference is that we fail to see a significant
qualitative change using values of E chosen to the band
center. This is in accord with the arguments used by
Soukoulis et al. ' since the diagona1 disorder is known to
remove the Van-Hove logarithmic singularity at E =0 of
the two-dimensional crystal. '

Another consideration is that we deliberately do not
mention a power-law localization. At this point it should
be remembered that our method yields different informa-
tion to that of methods used in Refs. 10, 16, and 19 (see
discussion in Sec. II). Thus in their work a single iteration
sequence, if made long enough, will yield an average local-
ization within a given error. In our method, however, we
are able to calculate localization lengths for particular
clusters, and we obtain very different lengths for different
configurations. In the limit of strong disorder the ex-
ponential fit (8) is valid and we obtain agreement with pre-
vious work' ' upon averaging a large number of configu-
rations. In the weak-disorder limit, however, these lengths
fluctuate so much that the data from individual configura-
tions do not follow a given law. Thus instead of trying to
fit a power-law behavior to the data, we preferred to ex-
amine the distribution of the weakly localized states. Our
conclusion was that the long tail in the distribution of the
weakly localized states appears to imply that there is a
certain fraction of the ensemble with larger localization
length than any given length. This is not surprising if one
thinks that a certain subset of the configurations are near-
ly ordered.

Our calculations for E&0 close to the band center indi-
cate that for strong disorder the states remain exponential-
ly localized, as expected. For weaker disorder different
clusters have widely different localization lengths and one
may mention a proportion P of exponentially localized
states. Then since this proportion increases smoothly as
one moves toward the band edge, one cannot consider the
notion of an abrupt mobility edge to be valid in these sys-
tems. Haydock has also found weakly localized states
near the band center.

IV. TWO-DIMENSIONAL LATTICES
WITH INCOMMENSURATE POTENTIALS

A. General considerations

The properties of electronic wave functions of CDW
systems have been modeled with a one-dimensional tight-

R=n a &+m a2, n, I integers

and the matrix elements are defined in terms of a wave
vector

a] a2
Q=gi +Q2

Q) Q2

E- = W cos(Q R ) = Wcos(ng~a~+mgza2), (10a)
R

V) if R—R'=+a)

V-, = V2 if R—R'=+a2
R R'

0, otherwise .

(lob)

The modulation is only included in the diagonal term
E-. If a;Q; is a rational multiple of m the periodicity of

R
the lattice is commensurable with the CDW along that
direction and incommensurable otherwise. For the sake of
simplicity we take V~ ——V2 ——V; the modulation in the a2
direction is taken to be either commensurate (azgz ——m.) or
incommensurate (azgq ——3), and in the at direction it is
taken to be incommensurate (Q ~ a ~

=2 and 3).
As Hamiltonian (7) is block tridiagonal we studied the

localization of the wave function using the two methods
which pemit a matrix continued-fraction expansion of the
self-energy.

One method is to study the behavior of L when the
dimensionality is increased, as we did in Sec. II; this is ob-
tained by considering a strip of width ranging from 1 to
12.

The other possibility is to use the periodicity in direc-
tion a2 by applying the Bloch theorem to the strip of in-
finite width. This simplifies the problem to that of two
interacting one-dimensional chains for each k state. The
reduced Hamiltonian is then

k
Vn —i, n

V.,a+ i

0
kA„V„„+)

kV. +I n & +i

where

binding Hamiltonian with a periodic potential represent-
ing the distortion (e.g., Sokoloff, Bulka, and Soukoulis and
Economou). If the modulation is incommensurate with
the lattice, the system does not possess translational order,
and unlike the one-dimensional random disordered chains,
a mobility edge may arise separating extended states from
localized ones.

At certain temperatures electrostatic repulsion among
neighboring chains in the same plane may produce a lock-
ing of the relative phase from chain to chain in an angle of
77.

In this section we study the localization of electrons in
such a two-dimensional case by considering Hamiltonian
(7) where R now denotes a position in a rectangular lattice
with basis vector a& and a2, that is
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Bulka also found this band by considering a modulation
of the off-diagonal matrix elements. The width of this
narrow band decreases with increasing 8' and disappears
at W, /V) 1.3 as shown in Fig. 6.

Using the same modulation we studied, the localization
length at E equals 0 for various strip widths. The depen-
dence of L on W did not follow Eq (.12) in this case, al-
though they show the critical point at 8'= 8;. The ap-
plication of MCF to the reduced Hamiltonian (11) for
representative k's agreed with the results for the wide
strip.

The problem of two- and three-dimensional incommen-
surate structures has been discussed by Sokoloff. In this
work the existence of an intermediary region between me-
tallic and insulating behavior is mentioned. It may be ten-
tatively concluded from our results that just such an inter-
mediate is developing, separated from the others by two
critical values of the modulation. This behavior is shown
in Fig. 5 for M=12 where those phases are labeled I, II,
and III. It should be noted that this intermediate phase
only forms for the incommensurate case (in the transverse
direction) and not for the commensurate case.

V. CONCLUSIONS

We have shown that the MCF method is useful in cal-
culating the localization length as well as the DOS in vari-
ous systems with dimensionality higher than 1. This in-
formation is complementary to that provided by methods
of Refs. 10, 16, and 19.

When applied to the case of a strip with rectangular dis-
order the results confirm those of MacKinnon, for ex-
ponentially localized states only. However, we find that
the states are not always exponentially localized. In fact,
the longest localization lengths come from weakly local-
ized states, which are expected to play an important role
in the conduction process. This breakdown of exponen-
tially localized states occurs both as the width is increased
and disorder is decreased; in one dimension it occurs for
sufficiently small disorder (W/V&1). Thus the histo-
grams obtained for the two-dimensional systems were
similar to that shown in one dimension [Figs. 1(a) and
1(b)]. This result also seems to be in general agreement
with the conclusion of Chitanvis and Leath. A transi-
tion around W/V=6 has of course been noted previously
by a number of authors, see for example, Stein and Krey,
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FIG. 6. Behavior of the narrow band inside the gap of an in-

commensurate (Q&a& ——3) orie-dimensional CDW as a function

of the modulation strength ( W/V).

though the detailed nature of this transition has been
under discussion.

The results for the CDW modulation for the two-
diinensional strips were similar to those of the one-
dimensional results. In particular, the critical value of the
modulation does not change very much. However, in the
case of an incommensurate CD%' in two perpendicular
directions the slope of the 1/I. vs in&/V curves appears
to increase as the width of the strips increases indicating a
tendency towards the localization. Also a fine structure
appears in the localization length for stronger values of
modulation, and an intermediate region develops between
the insulating and conducting regimes.
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